Name:
Teacher’sname:
Name:
Teacher’sname:
Copyright © 2024by DouglasTam
Allrightsreserved.
Noportionofthisbookmaybereproducedinanyformwithoutwrittenpermissionfrom theauthor,or St.George’sSchool.
Findingtheareaunderacurvecanvaryindifficultydependingonthefunction.Linear functionsareeasybecausetheytakeonthebasicshapesoftriangles/rectangles.
Example1.1 Findtheareaunderthecurvebelowfrom x =0to x =8 x y
Circlesorpartsofcirclesarealsosolvablebytakingtheareaofacircle.
Example1.2 Findtheareaunderthecurvebelowfrom x = 2to x =2
Forotherfunctionsthatdon’ttakeonaregulargeometricshape,itcanbedifficultto calculatetheareaunderthecurve.
Forexample,howwouldwebegincalculatingtheareaunderneaththecurvebelow?
Integrals —5 Oneapproachistobeginbytakingapproximationsusingshapesweknowtheareasof.For example,rectanglesandtrapezoids.Theaccuracydependsonhowmanyrectangles/trapezoids areused.Ifthenumberofrectangles, n,istakentoaninfiniteamount,thentheapproximatedareawillbeinfinitelyclosetotheactualarea.
Example1.3 Thegraphbelowleftshowsthepreviouscurveanduses8rectanglestoapproximatetheareaunderneaththecurve.Belowright,uses16rectangles.
Example1.4 Draw5rectanglestoshowtheapproximatedareaunderthecurve y = √x ontheinterval4 ≤ x ≤ 9.Noneedtocalculate.
(a) Usingleftendpoints
(b) Usingrightendpoints
(c) Usingmidpoints
Wedefinetheprocessofusingafinitenumberofrectanglestoapproximatetheareaunderneaththecurveasthe RiemannSum
Approximatingtheleftendpointsiscommonlyreferredtoas LRAM (LeftRectangular ApproximationMethod),orLeftRiemannSum.
Similarly, RRAM forRightRectangularApproximationMethod,orRightRiemannSum.
And, MRAM forMidpointRectangularApproximationMethod,orMidpointRiemann Sum.
Example1.5 Approximatetheareaof f (x)= x2 ontheinterval[0, 2]using
(a) LRAM4
(b) RRAM4
(c) MRAM4
Thesubscriptdenoteshowmanyrectanglestoapproximatewith.
Wecancalculateinfinitesumsusingsomewell-knownformulasforspecificseries.
TheDefiniteIntegralofaContinuousFunctionon [a,b]
Let f becontinuouson[a,b],andlet[a,b]bepartitionedinto n subintervalsofequal length,∆x = (b a) n .Thenthedefiniteintegralof f over[a,b]isgivenby
whereeach ck ischosenarbitrarilyinthe kth subinterval.
Example1.6 Findtheareaunder f (x)= x2 from x =0to x =2,usingtheabove definition.
Let∆x = 2 0 n = 2 n .Wecanchoose c
(RRAM).
Usingasmallnumberofrectanglestoapproximatetheareaunderacurveisnotoftenvery accurate.Insteadofusingrectangles,usingtrapezoidsprovidesamoreaccurateapproximationoftheareaunderacurve.
Recalltheareaofatrapezoidis
Example1.7 Belowisavisualrepresentationofusing4trapezoidsonthecurve y = x2 on theinterval[0, 2]
The trapezoidalrule is
where[a,b]ispartitionedinto n subintervalsofequallength, h = (b a) n .Equivalently,
Example1.8 For y = ex on[0, 2],calculatethefollowinganddetermineifthemethodused isanunder-approximationoranover-approximation.Usetheprovidedsketchtohelp.
1. Given f (x)=2x +3overtheinterval[0, 4].Calculate
(a) R2 (b) R4 (c) Theexactareabyanalyzingthesketchgeometrically.
2. Sketchtheregionbelow f (x)=1 x3 overtheinterval[0, 1].Showrectangularapproximations L5,R5, and M5.Explainwhichapproximationisalowerbound,whichisan upperbound,andwhichisthebestapproximationoftheareaoftheregion.
3. Calculatethefollowingrectangularapproximations.
(a) R4 for f (x)= x2 over[0, 1] (b) M4 for f (x)=1 x2 over[0, 1]
(c) L5 for f (x)=2x over[0, 5]
(d) M3 for f (x)= √x 1over[1, 4]
4. Giventhetableofvaluesbelow,calculatethefollowing
L5
(b) R5
T5
Afterthestudyofderivatives,wecanbegintoworkwithantiderivativeswhichwillleadinto Integrals.
Wetypicallyuse F (x)todenotetheantiderivativeof f (x).Thatis
F ′(x)= f (x)
Notethatthederivativeofanyconstant, C,isequaltozero.So d dx F (x)+ C = f (x)
Example2.1 If f (x)=2x,find F (x),whichisthe general antiderivativeto f (x).
TableofGeneralAntiderivatives
Function f (x)
f (x)= k
f (x)= xn where n = 1
f (x)= 1 x
f (x)= ekx
f (x)=cos(kx)
f (x)=sin(kx)
Antiderivativeof f (x)
F (x)= kx + C
F (x)= 1 n +1 xn+1 + C
F (x)=ln |x| + C
F (x)= 1 k ekx + C
F (x)= 1 k sin(kx)+ C
F (x)= 1 k cos(kx)+ C
Example2.2 Findthegeneralantiderivativetothefollowing
f (x)=2x2 x +7
f (x)=cos x sin x
f (x)= 3e x +6e2x
(e) f (x)= √x + 1 x
f (x)= 2 x2 5 x + x
(f) f (x)=2sin x cos x
f (x)= 3csc2x cot2x
f (x)=76x
TheIntegralistheinverseoftheDerivative.Wecan integrate afunction,orfindthe integration ofafunction.
Recallthattheactionoftakingthederivativeofafunctionwithrespectto x is
Thentheinverseofthederivativeistheintegral.
Theindefiniteintegralof f (x)is always the generalantiderivative of f (x).
=
where C isanyconstant. The dx is required toindicatewhichvariabletointegratewithrespectto.
Example2.3 Findthefollowing
1. Findthegeneralantiderivativeof
(a) f (x)=2x +1
(b) f (x)=4x3 11
(c) f (x)=16x9 9x4 +3x
(d) f (x)= √x + 3 √x
(e) f (x)= 2 x7 + x5 2
(f) f (x)= 2 x3 3 x2
(g) f (x)= 1 x
(h) f (x)=sin x +cos x
(i) f (x)=sin2x +2cos x (j) f (x)= 3cos5x +8sin x
(k) f (x)= 4cos(x +2) (l) f (x)= ex + e x
2. Findthefollowingintegrals
(a) 5 dx
(b) 4xdx
(c) cos xdx
(d) (3x 2 4x +7) dx
(e) (8s 3 12s 2 +5) ds
(f) y 4/3 dy
(g) 4 x2 dx (h) 1 t√t dt
(i) sec 2 θdθ (j) 1 x dx
Theintegralofafunctioncanbeconsideredtheareaunderneaththefunctionbutabovethe x-axis.Anintegralcanbenegativeiftheareaisbelowthe x-axis.
Thenotationusedtorepresentthe definiteintegral from[a,b]of f (x)is
1.
Example3.1 Findeachofthefollowingintegrals,given
Example3.2 Useintegralstorepresentthepartsinthegraphbelow
Average(Mean)Value
If f isintegrableon[a,b],its average(mean)value on[a,b]is
Theaverage(mean)valueis not arateofchange,butanaverage y-value.
Example3.3 If 10 2 f (x) dx =80,finditsaveragevalue.
Theboundsofanintegralcanalsoincludeavariable.Thismakestheintegralitselfa function. g(x)= x 0 f (t) dt
Notethedifferentvariable, t,usedinthefunction.Thisisjusttopreventconfusionfrom g(x),andeithervariableisinterchangeable.Othervariablescanbeusedaswell.
Twomaintypesofquestionsusethisnotation.Oneisunderstandingthegraphicalnature ofthis.Theotheristreatingitasafunctionandderiving(moreonthislater).
Theabove g(x)canbeinterpretedastheaccumulationofarea(positiveand/ornegative) underthecurveof y = f (x)from0to x.
Example3.4 Let g(x)= x 3 f (t) dt forthegraphof y = f (x)below.
y y = f (x)
1. Sketchthegraphofthefollowingtoevaluatetheintegral.
2. Giventhefollowingintegralvalues
3. Determinethevalueof 9 2 f (x) dx giventhat 2 5 f (x) dx =3and 9 5 f (x) dx =8.
4. Determinethevalueof 20 4 f (x) dx giventhat 0 4 f (x) dx = 2, 0 31 f (x) dx =19and 31 20 f (x) dx =8.
5. Giventhegraphof f (x)belowandlet g(x)= x 0 f (t) dt.Evaluatethefollowing.
TheFundamentalTheoremofCalculus If f iscontinuousateverypointof[a,b],andif F isanyantiderivativeof f on[a,b], then
Example4.2 Evaluate
The FundamentalTheoremofCalculus givestheexact“area”underneaththecurveon anygiveninterval.However,itdoesincludenegative“areas”inthetotal,soanindefinite integralmaybepositive,negative,orzero.
Example4.4 Find
Example4.5 Find
A differentialequation isanequationwherethederivativeofafunctionisgiven.This meansweknowthemodelofthefunction’srateofchange. Normally,whenonlythederivativeisknown,wecanonlyfindthegeneralantiderivative. However,ifaninitialconditionwasgiven,thenwecansolvefortheconstant.
Example4.6 Solvefor s,if ds dt =2t,withtheinitialcondition: s =3when t =0.
Example4.7 Findthecurve y = F (x)thatpassesthrough( 1, 0)andsatisfies dy dx =6x2 +6x
1. Evaluatethefollowingdefiniteintegrals.
2. Findtheparticularsolutionforthedifferentialequationthatsatisfiesthegiveninitial condition.
(a) dy dx = 4x +1 y( 1)= 3 (b) dy dx = 2sin xy( 2π 3 )=0
(c) dy dx = e3x y(0)=4
(d) dy dx = 2 3x y(e3)=4
Recallthattheaccelerationfunction a(t)isthederivativeofthevelocityfunction v(t),which inturn,isthederivativeofthepositionfunction s(t).
Example5.1 Anobjectmovesinastraightlinewithvelocity v =6t 3t2,where v is measuredinmetrespersecond.
(a) Whenistheobjectnotmoving?
(b) Howfardoestheobjectmoveinthefirstsecond?
(c) Howfardoestheobjectmoveinthefirsttwoseconds?
(d) Theobjectisbackwhereitstartedwhen t =3.Howfardidittraveltogetthere?
Ingeneral,theareaunderneatharatecurveisthenetchange.Forexample,thearea underneathavelocitycurveisthenetchangeinposition,or displacement
Reminder: Areabelowthe x-axisisconsiderednegative.
Thechangeinpositionfromavelocityfunction v(t)from a ≤ t ≤ b is
a v(t) dt
Distanceanddisplacementarenotthesamething.Sometimesdistanceisequaltodisplacement,butnotalways.
Distancecanbeconsidered totalarea ofthecurve,factoringinbothpositiveandnegative areas.
Thechangeinpositionfromavelocityfunction v(t)from a ≤ t ≤ b is b a |v(t)| dt
Example5.2 Thevelocityfunction(measuredinmetrespersecond)foraparticlemoving alongastraightlineisgivenby v(t)=4 t.Findthedisplacementanddistancetravelled overthetimeinterval0 ≤ t ≤ 4.
Example5.3 Thevelocityfunction(measuredinmetrespersecond)foraparticlemoving alongastraightlineisgivenby v(t)=2t 4.Findthedisplacementanddistancetravelled overthetimeinterval0 ≤ t ≤ 4.
Example5.4 Thevelocityfunction(measuredinmetrespersecond)foraparticlemoving alongastraightlineisgivenby v(t)= t2 9.Findthedisplacementanddistancetravelled overthetimeinterval0 ≤ t ≤ 4.
Example5.5 Astoneistossedupwardwithavelocityof8m/sfromtheedgeofacliff63 mhigh.Howlongwillittakethestonetohitthegroundatthefootofthecliff?Gravity’s accelerationis9.8m/s2 downwards.
PracticeExercises
1. Foreachfunction v(t)isthevelocityinm/secofaparticlemovingalongthe x-axis. Find
i. Theparticle’sdisplacementforthegiventimeinterval.
ii. If s(0)=3,whatistheparticle’sfinalposition?
iii. Findthetotaldistancetraveledbytheparticle.
(a) v(t)=5cos t, 0 ≤ t ≤ 2π
(b) v(t)=6sin3t, 0 ≤ t ≤ π 2
(c) v(t)=49 9.8t, 0 ≤ t ≤ 10
(d) v(t)=6t2 18t +12, 0 ≤ t ≤ 2
2. Acaracceleratesfromrestat(1+3√t)mph/secfor9seconds.
(a) Whatisthevelocityafter9seconds?
(b) Howfardoesittravelinthose9seconds?
3. AccelerationduetoEarth’sgravityis32ft/sec2.Fromgroundlevel,aprojectileisfired straightupwardwithavelocityof90feetpersecond.
(a) Whatisthevelocityafter3seconds?
(b) Whendoesithittheground?
(c) Whenithitstheground,whatisthetotaldistanceithastraveled?
Insomeintegrals,itisdifficulttoseeanobviousantiderivative,especiallywhenthereseems tobemorethanonefunctionbeingmultipliedordivided.
Recallthechainrule.
Example6.1 Findthederivativeof y =sin2 x,thenfind (2sin x cos x) dx
SubstitutionRuleforIndefiniteIntegrals
If u = g(x),then
Example6.2 Find (2sin x cos x) dx bymakingthesubstitution u =sin x
Example6.3 Find (x 2 5)2xdx bymakingthesubstitution u = x2 5
Example6.4 Find x2 √1 x3 dx bymakingthesubstitution u =1 x3
Example6.5 Find ln x x dx
Example6.6 Find (2+sin x)10 cos xdx
SubstitutionRuleforDefiniteIntegrals
If u = g(x),then b a f (g(x))g ′(x) dx = g(b) g(a) f (u) du
Example6.7 Evaluate 9 1 e√x √x dx
1. Evaluatethefollowingindefiniteintegrals. (a) 9x 2( 3x 3 +1)3 dx (b) 12x 3(3x 4 +4)4 dx (c) ( 2x 4 4)4 ·−32x 3 dx
(e 4x 4) 1 5 · 8e 4x dx
12x 2( 4x 3 +2) 3 dx
(3x 5 3) 3 5 · 5x 4 dx
(g) sin(5x 2 3) · 20xdx
(h) 15x 3 · sec 2 (4x 4 2) dx
(i) 5cos( 4+ln4x) x dx
(j) 36x 3 sec(3x 4 +3) tan(3x 4 +3) dx
(k) 12x2 x3 +2 dx (l) 20e5x e5x +3 dx
2. Evaluateeachdefiniteintegral
3. Expresseachdefiniteintegralintermsof u,butdonotevaluate.
Section1-Exercises
1. (a) R2 =36
(b) R4 =32
(c) 28
2. L5:Upperbound, R5:Lowerbound, M5:BestApproximation
3. (a) 15 32
(b) 0.671875
(c) 31
(d) ≈ 3.513
4. (a) L5 =36
(b) R5 =33 6
(c) T5 =34.8
Section2-Exercises
1. (a) F (x)= x2 + x + C
(b) F (x)= x4 11x + C
(c) F (x)= 8 5 x10 9 5 x5 + 3 2 x2 + C
(d) F (x)= 2 3 x 3 2 + 3 4 x 4 3 + C
(e) F (x)= 1 3 x 6 + 1 12 x6 + C
(f) F (x)= x 2 +3x 1 + C
(g) F (x)=ln |x| + C
(h) F (x)= cos x +sin x + C
(i) F (x)= 1 2 cos2x +2sin x + C
(j) F (x)= 3 5 sin5x 8cos x + C
(k) F (x)= 4sin(x +2)+ C
(l) F (x)= ex e x + C
2. (a) 5x + C
(b) 2x2 + C
(c) sin x + C
(d) x3 2x2 +7x + C
(e) 2s4 4s3 +5s + C
(f) 3y 1 3 + C
(g) 4 x + C
(h) 2 √t + C
(i) tan θ + C
(j) ln |x| + C
Section3-Exercises
1. (a) 24
(b) 16.5
(c) -50
(d) 4
2. (a) 63
(b) 214
3. 5
4. -29
5. (a) 4 5
(b) 3
(c) 7 5
(d) 7 5+2π
Section4-Exercises
1. (a) 14 3
(b) 3 4
(c) 17 6
(d) 9 3 √3
(e) 15 8
(f) 4ln(3)
(g) 1+ √2
(h) 1 2 1 2e4
2. (a) y = 2x2 + x
(b) y = 2cos x 1
(c) y = 1 3 e3x + 11 3
(d) y = 2 3 ln |x| +2
Section5-Exercises
1. (a) i).0mii).3miii).20m
(b) i).2mii).5miii).6m
(c) i).0mii).3miii).245m
(d) i).4mii).7miii).6m
2. (a) 63mph
(b) 234.9miles
3. (a) 6ft/sec
(b) 5.625seconds
(c) 253 125ft
1. (a) 1 4 ( 3x3 +1)4 + C
(b) 1 5 (3x4 +4)5 + C
(c) 4 5 ( 2x4 4)5 + C
(d) 5 3 (e4x 4) 6 5 + C
(e) 1 2( 4x3 +2) 2 + C
(f) 5 24 (3x5 3) 8 5 + C
(g) 2cos(5x2 3)+ C
(h) 15 16 tan(4x4 2)+ C
(i) 5sin( 4+ln4x)+ C
(j) 3sec(3x4 +3)+ C
(k) 4ln |x3 +2| + C
(l) 4ln |e5x +3| + C =4ln(e5x +3)+ C
2. (a) 8 3
(b) 21 10 (c) 665 6
(d) 1 6 e20 1 6 e5
3. (a) 1 5 1 u2 du
(b) 3 1 u 3 du