Calculus 12 - Note and Homework Package

Page 1

Name:

Teacher’sname:

Calculus12-Integrals

Copyright © 2024by DouglasTam

Allrightsreserved.

Noportionofthisbookmaybereproducedinanyformwithoutwrittenpermissionfrom theauthor,or St.George’sSchool.

Contents 1ApproximatingAreaUnderCurves 4 RiemannSums ..................................... 6 InfiniteSums(Series) 7 TrapezoidalRule 8 PracticeExercises 10 2AntiderivativesandIndefiniteIntegrals 12 TheIndefiniteIntegral ................................. 14 PracticeExercises 15 3TheDefiniteIntegral 17 Average(Mean)Value 18 IntegralasaFunction 19 PracticeExercises .................................... 20 4TheFundamentalTheoremofCalculus 22 DifferentialEquationswithInitialConditions 24 PracticeExercises 25 5ProblemsInvolvingMotion 27 DisplacementvsDistance 28 PracticeExercises .................................... 30 6TheSubstitutionRule 32 PracticeExercises 35 7AnswerKey 38 Section1-Exercises 38 Section2-Exercises 38 Section3-Exercises .................................. 39 Section4-Exercises .................................. 40 Section5-Exercises 40 Section6-Exercises 41

1ApproximatingAreaUnderCurves

Findingtheareaunderacurvecanvaryindifficultydependingonthefunction.Linear functionsareeasybecausetheytakeonthebasicshapesoftriangles/rectangles.

Example1.1 Findtheareaunderthecurvebelowfrom x =0to x =8 x y

Circlesorpartsofcirclesarealsosolvablebytakingtheareaofacircle.

Example1.2 Findtheareaunderthecurvebelowfrom x = 2to x =2

Forotherfunctionsthatdon’ttakeonaregulargeometricshape,itcanbedifficultto calculatetheareaunderthecurve.

Forexample,howwouldwebegincalculatingtheareaunderneaththecurvebelow?

Integrals —4
x y
x
y

Integrals —5 Oneapproachistobeginbytakingapproximationsusingshapesweknowtheareasof.For example,rectanglesandtrapezoids.Theaccuracydependsonhowmanyrectangles/trapezoids areused.Ifthenumberofrectangles, n,istakentoaninfiniteamount,thentheapproximatedareawillbeinfinitelyclosetotheactualarea.

Example1.3 Thegraphbelowleftshowsthepreviouscurveanduses8rectanglestoapproximatetheareaunderneaththecurve.Belowright,uses16rectangles.

Example1.4 Draw5rectanglestoshowtheapproximatedareaunderthecurve y = √x ontheinterval4 ≤ x ≤ 9.Noneedtocalculate.

(a) Usingleftendpoints

(b) Usingrightendpoints

(c) Usingmidpoints

x y x y
(a) x y (b) x y (c) x y

RiemannSums

Wedefinetheprocessofusingafinitenumberofrectanglestoapproximatetheareaunderneaththecurveasthe RiemannSum

Approximatingtheleftendpointsiscommonlyreferredtoas LRAM (LeftRectangular ApproximationMethod),orLeftRiemannSum.

Similarly, RRAM forRightRectangularApproximationMethod,orRightRiemannSum.

And, MRAM forMidpointRectangularApproximationMethod,orMidpointRiemann Sum.

Example1.5 Approximatetheareaof f (x)= x2 ontheinterval[0, 2]using

(a) LRAM4

(b) RRAM4

(c) MRAM4

Thesubscriptdenoteshowmanyrectanglestoapproximatewith.

Integrals —6

InfiniteSums(Series)

Wecancalculateinfinitesumsusingsomewell-knownformulasforspecificseries.

TheDefiniteIntegralofaContinuousFunctionon [a,b]

Let f becontinuouson[a,b],andlet[a,b]bepartitionedinto n subintervalsofequal length,∆x = (b a) n .Thenthedefiniteintegralof f over[a,b]isgivenby

whereeach ck ischosenarbitrarilyinthe kth subinterval.

Example1.6 Findtheareaunder f (x)= x2 from x =0to x =2,usingtheabove definition.

Let∆x = 2 0 n = 2 n .Wecanchoose c

(RRAM).

Integrals —7
n i=1 1= n n i=1 i = n(
2 n i=1 i2 = n(n +1)(2n +1) 6 n i=1 i3 = n2
n +1)
n +1)
(
2 4
lim n→∞ n k=1 f (ck
)∆x
k
2k
A =lim n→∞ n k=1 f (ck )∆x =lim n→∞ n k=1 2k n 2 2 n =lim n→∞ 8 n3 · n k=1 k2 =lim n→∞ 8 n3 n(n +1)(2n +1) 6 =lim n→∞ 8 n3 2n3 +3n2 + n 6 =lim n→∞ 16n3 +24n2 +8n 6n3 =lim n→∞ 8 3 + 4 n + 4 3n2
=
n
= 8 3

TrapezoidalRule

Usingasmallnumberofrectanglestoapproximatetheareaunderacurveisnotoftenvery accurate.Insteadofusingrectangles,usingtrapezoidsprovidesamoreaccurateapproximationoftheareaunderacurve.

Recalltheareaofatrapezoidis

Example1.7 Belowisavisualrepresentationofusing4trapezoidsonthecurve y = x2 on theinterval[0, 2]

The trapezoidalrule is

where[a,b]ispartitionedinto n subintervalsofequallength, h = (b a) n .Equivalently,

Integrals —8
A
(b1 + b2) 2 h
=
x y
T = h 2 (y0 +2y1 +2y2 + ... +2yn 1 + yn)
T
= LRAMn + RRAMn 2

Example1.8 For y = ex on[0, 2],calculatethefollowinganddetermineifthemethodused isanunder-approximationoranover-approximation.Usetheprovidedsketchtohelp.

Integrals —9
x
y y = ex
(a) L4 (b) R4 (c) M4 (d) T4

1. Given f (x)=2x +3overtheinterval[0, 4].Calculate

(a) R2 (b) R4 (c) Theexactareabyanalyzingthesketchgeometrically.

2. Sketchtheregionbelow f (x)=1 x3 overtheinterval[0, 1].Showrectangularapproximations L5,R5, and M5.Explainwhichapproximationisalowerbound,whichisan upperbound,andwhichisthebestapproximationoftheareaoftheregion.

3. Calculatethefollowingrectangularapproximations.

(a) R4 for f (x)= x2 over[0, 1] (b) M4 for f (x)=1 x2 over[0, 1]

Integrals —10
PracticeExercises

(c) L5 for f (x)=2x over[0, 5]

(d) M3 for f (x)= √x 1over[1, 4]

4. Giventhetableofvaluesbelow,calculatethefollowing

L5

(b) R5

T5

Integrals —11
x
0 0.4 0.8 1.2 1.6 2.0 f (x) 20 18 15 19 18 14
(a) (c)

2AntiderivativesandIndefiniteIntegrals

Afterthestudyofderivatives,wecanbegintoworkwithantiderivativeswhichwillleadinto Integrals.

Wetypicallyuse F (x)todenotetheantiderivativeof f (x).Thatis

F ′(x)= f (x)

Notethatthederivativeofanyconstant, C,isequaltozero.So d dx F (x)+ C = f (x)

Example2.1 If f (x)=2x,find F (x),whichisthe general antiderivativeto f (x).

TableofGeneralAntiderivatives

Function f (x)

f (x)= k

f (x)= xn where n = 1

f (x)= 1 x

f (x)= ekx

f (x)=cos(kx)

f (x)=sin(kx)

Antiderivativeof f (x)

F (x)= kx + C

F (x)= 1 n +1 xn+1 + C

F (x)=ln |x| + C

F (x)= 1 k ekx + C

F (x)= 1 k sin(kx)+ C

F (x)= 1 k cos(kx)+ C

Integrals —12

Example2.2 Findthegeneralantiderivativetothefollowing

f (x)=2x2 x +7

f (x)=cos x sin x

f (x)= 3e x +6e2x

(e) f (x)= √x + 1 x

f (x)= 2 x2 5 x + x

(f) f (x)=2sin x cos x

f (x)= 3csc2x cot2x

f (x)=76x

—13
Integrals
(a) (b) (c) (d) (g) (h)

TheIndefiniteIntegral

TheIntegralistheinverseoftheDerivative.Wecan integrate afunction,orfindthe integration ofafunction.

Recallthattheactionoftakingthederivativeofafunctionwithrespectto x is

Thentheinverseofthederivativeistheintegral.

Theindefiniteintegralof f (x)is always the generalantiderivative of f (x).

=

where C isanyconstant. The dx is required toindicatewhichvariabletointegratewithrespectto.

Example2.3 Findthefollowing

Integrals —14
d dx f (x)= f ′(x
)
f ′(x
dx
f (x
)
=
)+ C
Thatis 2
butinstead 2
xdx = x 2
xdx
x 2 + C
(b)
(c) (x 4 3x 3 + √x) dx (d) (cos(5x) sec 2 (3x)) dx
(a) 2sin xdx
1 x dx

1. Findthegeneralantiderivativeof

(a) f (x)=2x +1

(b) f (x)=4x3 11

(c) f (x)=16x9 9x4 +3x

(d) f (x)= √x + 3 √x

(e) f (x)= 2 x7 + x5 2

(f) f (x)= 2 x3 3 x2

(g) f (x)= 1 x

(h) f (x)=sin x +cos x

(i) f (x)=sin2x +2cos x (j) f (x)= 3cos5x +8sin x

(k) f (x)= 4cos(x +2) (l) f (x)= ex + e x

Integrals —15
PracticeExercises

2. Findthefollowingintegrals

(a) 5 dx

(b) 4xdx

(c) cos xdx

(d) (3x 2 4x +7) dx

(e) (8s 3 12s 2 +5) ds

(f) y 4/3 dy

(g) 4 x2 dx (h) 1 t√t dt

(i) sec 2 θdθ (j) 1 x dx

Integrals —16

3TheDefiniteIntegral

Theintegralofafunctioncanbeconsideredtheareaunderneaththefunctionbutabovethe x-axis.Anintegralcanbenegativeiftheareaisbelowthe x-axis.

Thenotationusedtorepresentthe definiteintegral from[a,b]of f (x)is

DefiniteIntegralRules

1.

Example3.1 Findeachofthefollowingintegrals,given

Integrals —17
b a f (x
dx
)
x
dx
a b f (x
dx
f
x
dx =0
b a kf (x) dx = k b a f (x) dx 4. b a f (x) ± g(x) dx = b a f (x) dx ± b a g(x) dx 5. b a
(x
dx
c
f
x
dx = c a f
x
dx
b a f (
)
=
)
2. a a
(
)
3.
f
)
+
b
(
)
(
)
1 1 f (x) dx =5, 4 1 f (x) dx = 2, 1 1 h(x) dx =7 (a) 1 4 f (x) dx (b) 4 1 f (x) dx (c) 1 1 [2f (x)+3h(x)] dx

Example3.2 Useintegralstorepresentthepartsinthegraphbelow

Average(Mean)Value

If f isintegrableon[a,b],its average(mean)value on[a,b]is

Theaverage(mean)valueis not arateofchange,butanaverage y-value.

Example3.3 If 10 2 f (x) dx =80,finditsaveragevalue.

Integrals —18
x y A1 A2 y =3x x2 3 5 A1 = A2 = TotalArea=
b a b a f (x
av(f )= 1
) dx

IntegralasaFunction

Theboundsofanintegralcanalsoincludeavariable.Thismakestheintegralitselfa function. g(x)= x 0 f (t) dt

Notethedifferentvariable, t,usedinthefunction.Thisisjusttopreventconfusionfrom g(x),andeithervariableisinterchangeable.Othervariablescanbeusedaswell.

Twomaintypesofquestionsusethisnotation.Oneisunderstandingthegraphicalnature ofthis.Theotheristreatingitasafunctionandderiving(moreonthislater).

Theabove g(x)canbeinterpretedastheaccumulationofarea(positiveand/ornegative) underthecurveof y = f (x)from0to x.

Example3.4 Let g(x)= x 3 f (t) dt forthegraphof y = f (x)below.

y y = f (x)

Integrals —19
x
(a) Find g( 3) (b) Find g(1) (c) Find g(3)

1. Sketchthegraphofthefollowingtoevaluatetheintegral.

2. Giventhefollowingintegralvalues

Integrals —20
PracticeExercises
(a) 4 1 (2x +3) dx (b) 4 1 (3x 2) dx (c) 5 0 4xdx (d) 7 3 (x 4) dx
11 6 f (x) dx = 7 11 6 g(x) dx =24 determinethevaluesof (a) 6 11 9f (x) dx (b) 11 6 (6g(x) 10f (x)) dx

3. Determinethevalueof 9 2 f (x) dx giventhat 2 5 f (x) dx =3and 9 5 f (x) dx =8.

4. Determinethevalueof 20 4 f (x) dx giventhat 0 4 f (x) dx = 2, 0 31 f (x) dx =19and 31 20 f (x) dx =8.

5. Giventhegraphof f (x)belowandlet g(x)= x 0 f (t) dt.Evaluatethefollowing.

Integrals —21
x y y = f (x) 1 2 3 4 5 6 7 8 9 10 11 12 3 2 1 1 2 3
(a) g(2) (b) g(3) (c) g(8) (d) g(12)

4TheFundamentalTheoremofCalculus

TheFundamentalTheoremofCalculus If f iscontinuousateverypointof[a,b],andif F isanyantiderivativeof f on[a,b], then

Example4.2 Evaluate

Integrals —22
b a f (x) dx = F (b) F (a
)
5 2 (2x 3 3x 2 +7x +2) dx
Example4.1 Find
8 1 1 3 √x2 dx Example4.3 Find 4 1 t2 + √t 2 t dt

The FundamentalTheoremofCalculus givestheexact“area”underneaththecurveon anygiveninterval.However,itdoesincludenegative“areas”inthetotal,soanindefinite integralmaybepositive,negative,orzero.

Example4.4 Find

Example4.5 Find

Integrals —23
π 0
x y
2
sin xdx
2 2
3
x
dx

DifferentialEquationswithInitialConditions

A differentialequation isanequationwherethederivativeofafunctionisgiven.This meansweknowthemodelofthefunction’srateofchange. Normally,whenonlythederivativeisknown,wecanonlyfindthegeneralantiderivative. However,ifaninitialconditionwasgiven,thenwecansolvefortheconstant.

Example4.6 Solvefor s,if ds dt =2t,withtheinitialcondition: s =3when t =0.

Example4.7 Findthecurve y = F (x)thatpassesthrough( 1, 0)andsatisfies dy dx =6x2 +6x

Integrals —24

1. Evaluatethefollowingdefiniteintegrals.

Integrals —25
PracticeExercises
(a) 3 1 (2x 2 12x +13) dx (b) 3 0 ( x 3 +3x 2 2) dx (c) 0 1 (x 5 4x 3 +4x +4) dx (d) 0 3 (4 3 √x) dx (e) 1 4 4 x3 dx (f) 1 3 4 x dx (g) π 6 π 4 2cos xdx (h) 1 1 e 2x 2 dx

2. Findtheparticularsolutionforthedifferentialequationthatsatisfiesthegiveninitial condition.

(a) dy dx = 4x +1 y( 1)= 3 (b) dy dx = 2sin xy( 2π 3 )=0

(c) dy dx = e3x y(0)=4

(d) dy dx = 2 3x y(e3)=4

Integrals —26

5ProblemsInvolvingMotion

Recallthattheaccelerationfunction a(t)isthederivativeofthevelocityfunction v(t),which inturn,isthederivativeofthepositionfunction s(t).

Example5.1 Anobjectmovesinastraightlinewithvelocity v =6t 3t2,where v is measuredinmetrespersecond.

(a) Whenistheobjectnotmoving?

(b) Howfardoestheobjectmoveinthefirstsecond?

(c) Howfardoestheobjectmoveinthefirsttwoseconds?

(d) Theobjectisbackwhereitstartedwhen t =3.Howfardidittraveltogetthere?

Integrals —27

DisplacementvsDistance

Ingeneral,theareaunderneatharatecurveisthenetchange.Forexample,thearea underneathavelocitycurveisthenetchangeinposition,or displacement

Reminder: Areabelowthe x-axisisconsiderednegative.

Displacement

Thechangeinpositionfromavelocityfunction v(t)from a ≤ t ≤ b is

a v(t) dt

Distanceanddisplacementarenotthesamething.Sometimesdistanceisequaltodisplacement,butnotalways.

Distancecanbeconsidered totalarea ofthecurve,factoringinbothpositiveandnegative areas.

Distance

Thechangeinpositionfromavelocityfunction v(t)from a ≤ t ≤ b is b a |v(t)| dt

Example5.2 Thevelocityfunction(measuredinmetrespersecond)foraparticlemoving alongastraightlineisgivenby v(t)=4 t.Findthedisplacementanddistancetravelled overthetimeinterval0 ≤ t ≤ 4.

Integrals —28
b

Example5.3 Thevelocityfunction(measuredinmetrespersecond)foraparticlemoving alongastraightlineisgivenby v(t)=2t 4.Findthedisplacementanddistancetravelled overthetimeinterval0 ≤ t ≤ 4.

Example5.4 Thevelocityfunction(measuredinmetrespersecond)foraparticlemoving alongastraightlineisgivenby v(t)= t2 9.Findthedisplacementanddistancetravelled overthetimeinterval0 ≤ t ≤ 4.

Example5.5 Astoneistossedupwardwithavelocityof8m/sfromtheedgeofacliff63 mhigh.Howlongwillittakethestonetohitthegroundatthefootofthecliff?Gravity’s accelerationis9.8m/s2 downwards.

Integrals
—29

PracticeExercises

1. Foreachfunction v(t)isthevelocityinm/secofaparticlemovingalongthe x-axis. Find

i. Theparticle’sdisplacementforthegiventimeinterval.

ii. If s(0)=3,whatistheparticle’sfinalposition?

iii. Findthetotaldistancetraveledbytheparticle.

(a) v(t)=5cos t, 0 ≤ t ≤ 2π

(b) v(t)=6sin3t, 0 ≤ t ≤ π 2

(c) v(t)=49 9.8t, 0 ≤ t ≤ 10

(d) v(t)=6t2 18t +12, 0 ≤ t ≤ 2

Integrals —30

2. Acaracceleratesfromrestat(1+3√t)mph/secfor9seconds.

(a) Whatisthevelocityafter9seconds?

(b) Howfardoesittravelinthose9seconds?

3. AccelerationduetoEarth’sgravityis32ft/sec2.Fromgroundlevel,aprojectileisfired straightupwardwithavelocityof90feetpersecond.

(a) Whatisthevelocityafter3seconds?

(b) Whendoesithittheground?

(c) Whenithitstheground,whatisthetotaldistanceithastraveled?

Integrals —31

6TheSubstitutionRule

Insomeintegrals,itisdifficulttoseeanobviousantiderivative,especiallywhenthereseems tobemorethanonefunctionbeingmultipliedordivided.

Recallthechainrule.

Example6.1 Findthederivativeof y =sin2 x,thenfind (2sin x cos x) dx

SubstitutionRuleforIndefiniteIntegrals

If u = g(x),then

Example6.2 Find (2sin x cos x) dx bymakingthesubstitution u =sin x

Integrals —32
f (g(x))g ′(x) dx = f (u
) du

Example6.3 Find (x 2 5)2xdx bymakingthesubstitution u = x2 5

Example6.4 Find x2 √1 x3 dx bymakingthesubstitution u =1 x3

Example6.5 Find ln x x dx

Integrals —33

Example6.6 Find (2+sin x)10 cos xdx

SubstitutionRuleforDefiniteIntegrals

If u = g(x),then b a f (g(x))g ′(x) dx = g(b) g(a) f (u) du

Example6.7 Evaluate 9 1 e√x √x dx

Integrals —34

1. Evaluatethefollowingindefiniteintegrals. (a) 9x 2( 3x 3 +1)3 dx (b) 12x 3(3x 4 +4)4 dx (c) ( 2x 4 4)4 ·−32x 3 dx

(e 4x 4) 1 5 · 8e 4x dx

12x 2( 4x 3 +2) 3 dx

(3x 5 3) 3 5 · 5x 4 dx

Integrals —35
PracticeExercises
(e)
(f)
(d)

(g) sin(5x 2 3) · 20xdx

(h) 15x 3 · sec 2 (4x 4 2) dx

(i) 5cos( 4+ln4x) x dx

(j) 36x 3 sec(3x 4 +3) tan(3x 4 +3) dx

(k) 12x2 x3 +2 dx (l) 20e5x e5x +3 dx

Integrals —36

2. Evaluateeachdefiniteintegral

3. Expresseachdefiniteintegralintermsof u,butdonotevaluate.

Integrals —37
(a) 2 0 x√4 x2 dx (b) 1 0 x 4(x 5 +1)5 dx (c) 1 1/2 1+ 1 x 5 x2 dx (d) 2 1 (x +1)e 3x2 +6x 4 dx
(a) 0 1 8x (4x2 +1)2 dx; u =4x 2 +1 (b) 1 0 12x 2(4x 3 1)3 dx; u =4x 3 1

7AnswerKey

Section1-Exercises

1. (a) R2 =36

(b) R4 =32

(c) 28

2. L5:Upperbound, R5:Lowerbound, M5:BestApproximation

3. (a) 15 32

(b) 0.671875

(c) 31

(d) ≈ 3.513

4. (a) L5 =36

(b) R5 =33 6

(c) T5 =34.8

Section2-Exercises

1. (a) F (x)= x2 + x + C

(b) F (x)= x4 11x + C

(c) F (x)= 8 5 x10 9 5 x5 + 3 2 x2 + C

(d) F (x)= 2 3 x 3 2 + 3 4 x 4 3 + C

(e) F (x)= 1 3 x 6 + 1 12 x6 + C

(f) F (x)= x 2 +3x 1 + C

(g) F (x)=ln |x| + C

(h) F (x)= cos x +sin x + C

(i) F (x)= 1 2 cos2x +2sin x + C

(j) F (x)= 3 5 sin5x 8cos x + C

(k) F (x)= 4sin(x +2)+ C

(l) F (x)= ex e x + C

Integrals —38

2. (a) 5x + C

(b) 2x2 + C

(c) sin x + C

(d) x3 2x2 +7x + C

(e) 2s4 4s3 +5s + C

(f) 3y 1 3 + C

(g) 4 x + C

(h) 2 √t + C

(i) tan θ + C

(j) ln |x| + C

Section3-Exercises

1. (a) 24

(b) 16.5

(c) -50

(d) 4

2. (a) 63

(b) 214

3. 5

4. -29

5. (a) 4 5

(b) 3

(c) 7 5

(d) 7 5+2π

—39
Integrals

Section4-Exercises

1. (a) 14 3

(b) 3 4

(c) 17 6

(d) 9 3 √3

(e) 15 8

(f) 4ln(3)

(g) 1+ √2

(h) 1 2 1 2e4

2. (a) y = 2x2 + x

(b) y = 2cos x 1

(c) y = 1 3 e3x + 11 3

(d) y = 2 3 ln |x| +2

Section5-Exercises

1. (a) i).0mii).3miii).20m

(b) i).2mii).5miii).6m

(c) i).0mii).3miii).245m

(d) i).4mii).7miii).6m

2. (a) 63mph

(b) 234.9miles

3. (a) 6ft/sec

(b) 5.625seconds

(c) 253 125ft

Integrals —40

Section6-Exercises

1. (a) 1 4 ( 3x3 +1)4 + C

(b) 1 5 (3x4 +4)5 + C

(c) 4 5 ( 2x4 4)5 + C

(d) 5 3 (e4x 4) 6 5 + C

(e) 1 2( 4x3 +2) 2 + C

(f) 5 24 (3x5 3) 8 5 + C

(g) 2cos(5x2 3)+ C

(h) 15 16 tan(4x4 2)+ C

(i) 5sin( 4+ln4x)+ C

(j) 3sec(3x4 +3)+ C

(k) 4ln |x3 +2| + C

(l) 4ln |e5x +3| + C =4ln(e5x +3)+ C

2. (a) 8 3

(b) 21 10 (c) 665 6

(d) 1 6 e20 1 6 e5

3. (a) 1 5 1 u2 du

(b) 3 1 u 3 du

Integrals —41

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.