NCERT Solutions for Class 12 Maths

Page 1

CHAPTER NAME- INTEGRATION

NCERT class 12 Maths

chapter 1 DEFINITE INTEGRATION GEOMETRICAL INTERPRETATION OF DEFINITE INTEGRAL If f(x) > 0 for all x Î [a, b]; then

ò

b

a

f ( x ) is numerically

x =a

equal to the area bounded by the curve y = f(x), then x-axis

ò

and the straight lines x = a and x = b i.e.

In general

ò

b

a

b

a

x =b S C

f(x) L

f ( x)

+

+

f ( x) dx represents to algebraic sum of the

A

O

-

Q

figures bounded by the curve

M

-

B

D

R

y = f(x), the x-axis and the straight line x = a and x = b. The areas above x-axis are taken place plus sign and the areas below x-axis are taken with minus sign i.e, i.e.

ò

b

a

Note:

f ( x ) dx = area OLA - area AQM – area MRB + area BSCD

ò

b

a

f ( x ) dx = , represents algebraic sum of areas means, that if area of function y = f(x)

is asked between a to b. ÞArea bounded =

ò

b

a

b

f(x) dx andnot beenrepresented by ò f(x) dx a

e.g., If some one asks the area of y = x3 between -1 to 1. Then y = x3 could be plotted as; \ Area =

ò

0

-1

1

-x 3 dx + ò x 3 dx = 0

or, using above definition Area =

1

-1

1 2

O -1

ò

1

-1

1

x dx = 2ò x 3 dx 3

0

1

é x4 ù 1 =2ê ú = ë 4 û0 2 But if, we integrate x3 between -1 to 1.

y = x3

1


Þ

ò

1

-1

x 3 dx = 0 which does not represent area.

Thus, students are adviced to make difference between area and definite Integral.

2.1.1

FUNDAMENTAL THEOREM OF CALCULUS (NEWTON-LEIBNITZ FORMULA)

This theorem state that If f(x) is a continuous function on [a, b] and F(x) is any anti derivative of f(x) b

on [a, b] i.e. F' (x) = f (x) " x Î (a, b), then

Úf(x)dx

= F(b) - F(a)

a

The function F(x) is the integral of f(x) and a and b are the lower and the upper limits of integration.

Illustration 1: Evaluate

dx directly as well as by the substitution x = 1 /t. Examine -2 4 + x 2

ò

2

as to why the answer do not tally? Solution:

dx -2 4 + x 2

I= ò

2

2

é1 1 æ x öù = ê tan-1 ç ÷ ú = éë tan-1 (1) - tan-1 (-1) ùû è 2 ø û -2 2 ë2 1 é p æ p öù p p = ê - ç - ÷ú = Þ I = 2 ë 4 è 4 øû 4 4 On the other hand; if x = 1/t then, 1/2 1/2 dx dt dt =ò 2 = -ò 2 2 -2 4 + x -1/2 t (4 +1/t ) -1/2 4t 2 +1

I= ò

2

1/2

é1 ù =- ê tan-1(2t)ú ë2 û -1/2

1 p p p æ 1 ö = - tan -1 (1) - ç - tan -1 (-1) ÷ = - - = 2 8 8 4 è 2 ø 2


\I=

p

when x =

4

1 t

In above two results l = - p/4 is wrong. Since the integrand

1 > 0 and 4 + x2

therefore the definite integral of this function cannot be negative. Since x = 1/t is discontinuous at t = 0, the substitution is not valid

(\ I

= p/4). Note: It is important the substitution must be continuous in the interval of integration.

¥

¥

Illustration 2:

dx x 2 dx Let a = ò 4 then show that a = b and b = ò 4 x +7 x2 +1 x +7 x2 +1 0 0

Solution:

a=ò

¥

0

dx x + 7x 2 + 1 4

put x = 1/t Þ dx = –1/t2 then

1 dt ¥ ¥ 2 dt t 2 t 2dt t a=ò =ò 4 = 2 ò0 t 4 + 7t 2 + 1 = b 1 7 t + 7t + 1 ¥ 0 + +1 t4 t2 0

-

2.1.2

PROPERTIES OF DEFINITE INTEGRATION

1.

Change of variable of integration is immaterial so long as limits of integration remain the same b

i.e.

ò

b

f(x)dx =

a

b

2.

ò a

ò

f(t)dt

a

a

f(x)dx = -

ò

f(x)dx

b

3


b

3.

ò a

c

f(x)dx =

ò

b

f(x)dx +

a

ò

f(x)dx .

c

Generally we break the limit first at the points where f(x) is discontinuous and second at the points where definition of f(x) changes.

5p 12

ò [tan x ] dx , where [.] is the greatest integer function.

Illustration 3: Evaluate

0

5p 12

Solution:

ò [tan x] dx

Let I =

0

Value of tan x at x =

5p is 2 + 12

3

Value of tan x at x = 0 is 0 Integers between 0 and 2 +

3 are 1, 2, 3

\ tan x = 1, tan x = 2, tan x = 3 Þ x = tan-1 1, x = tan-1 2, x = tan-1 3 tan -1 1

tan -1 2

tan -1 3

5p 12

0

tan - 1 1

tan - 1 2

tan - 1 3

ò [tan x] dx + ò [tan x] dx + ò [tan x] dx + ò [tan x] dx

\I=

=

tan -1 1

tan -1 2

tan -1 3

5p 12

0

tan - 1 1

tan - 1 2

tan - 1 3

ò 0 dx + ò 1 dx + ò 2 dx + ò 3 dx

(

) (

)

æ 5p ö - tan -1 3 ÷ è 12 ø

= 0 + tan -1 2 - tan -1 1 + 2 tan -1 3 - tan -1 2 + 3ç

=

5p p - - tan -1 3 - tan -1 2 4 4

4


é

ù æ3 + 2ö ÷ + pú = -tan-1 (-1) è 1- 6 ø û

= p - êtan -1ç

ë

p . 4

=

b

4.

ò

a

b

f(x)dx =

a

Illustration 4:

ò

f(a + b - x)dx . In particular

ò

a

f ( x )dx =

0

a

ò

f ( a - x ) dx .

0

If f, g, h be continuous function on [0, a] such that f(a - x) = f(x), g(a - x) = - g(x) and 3h(x) - 4h(a - x) = 5, then prove that

ò Solution:

a 0

I=

f ( x ) g ( x ) h ( x ) dx = 0 . a

a

0

0

ò f ( x) g( x) h ( x) dx = ò f (a - x) g(a - x) h (a - x) dx a

ò

= – f ( x ) g( x ) h (a - x ) dx 0

7I = 3I + 4I a

=

ò f ( x) g( x) {3h ( x) - 4h (a - x)} dx 0

a

ò

= 5 f ( x ) g( x ) dx = 0, since f (a – x) g (a – x) = –f (x) g (x) 0

ÞI=0

p

Illustration 5:

æp

ö

ò x sin 2 x sin çè 2 cos x ÷ø dx 0

5


p

Solution:

æp

ö

ò x sin 2x sinçè 2 cos x ÷ø dx

Let I =

……….(1)

0

p

=

æp

ö

ò (p - x )sin 2(p - x )sinçè 2 cos(p - x )÷ø dx = 0

p

æ p

ö

ò (p - x )(- sin 2x )sinçè - 2 cos x ÷ø dx 0

p

=

æp

ö

ò (p - x )sin 2x sinçè 2 cos x ÷ø dx

……….(2)

0

Adding (1) & (2), we get p

æp ö cos x ÷ dx è2 ø

ò

2I = p sin 2x sinç 0

p 2

æp ö cos x ÷ dx è2 ø

ò

Þ I = p 2 sin x cos x sinç 0

p p cos x = z Þ - sin x dx = dz 2 2

Put

0

0

8 2z æ 2 ö 8 = p 2. z sin z dz = . ç - ÷ sin z dz = p p è pø pp p

ò 0

ò

2

2

a 2

a

5.

ò

f(x)dx =

ò

[f(x) + f(a - x) ]dx

0

a 2

a

Special cases: If f (x) = f (a – x), then

ò 0

f ( x )dx = 2

ò

f ( x )dx .

0

a

If f (x) = - f (a – x), then

ò

f ( x )dx = 0 .

0

6


a

6.

ò

a

f(x)dx =

-a

ò [f(x)+ f(-x)]dx 0

a

Special case:

ò

-a

ì a ï f ( x )dx = í2 f ( x )dx, if f ( x ) is even . ï0 0, if f ( x ) is odd. î

ò

4

Illustration 6:

ò (x

Evaluate

-4

4

Solution:

Let I =

4

ò

- 4 (1 +

-4

x5

æ x2 ö ç f (x) = ÷ ç x 2 + 16 ÷ø è

dx

5

4

x5

)

dx +

)

f (x)

ò (1 + e

-4 4

f (x)

ò (1 + e

=

dx 5 + 16 )(1 + e x )

ex )

f (x)

-4 4

2

f (x)

ò (1 + e

2I =

x2

-4

)

f (-x)

ò (1 + e

dx +

x5

( - x )5

)

dx

dx

4

=

ò f ( x) dx

-4

4

I=

ò 0

x2 dx x 2 + 16

= 4 – tan-11

p

2

Illustration 7:

dx æ5 - x ö Find the value of ò + ò log ç ÷ dx is cos x 1+5 è5 + x ø 0 -2

Solution:

Let I = I1 + I2 p

Consider I1 =

dx

ò 1+ 5

cos x

…(1)

0

7


p

Now I1 =

p

p

dx dx 5 cos x dx = = …(2) cos( p - x ) -cos x cos x 1 + 5 1 + 5 5 + 1 0 0 0

ò

ò

ò

Adding (1) and (2) , we get

p

p

p

dx 5 cos x dx + = 1.dx = p 1 + 5 cos x 0 5 cos x + 1 0 0

ò

2I1 =

ò

ò

I1 = p/2

2

æ5-xö

ò logçè 5 + x ÷ødx

Consider I2 =

-2

æ5-xö ÷ è5+ xø

Let g(x) = logç

æ 5 - (-x) ö 5-x ÷÷ = - log = -g( x ) 5+x è 5 + (-x) ø

Now g(-x) = logçç

\ g(x) is an odd function 2

\

ò g( x)dx =0

Þ I2 = 0

-2

I = I1 + I2 = p/2 + 0 = p/2

7.

b

1

ò a f (x)dx =(b - a)ò 0 f ((b - a)x + a)dx

Illustration 8: Evaluate Solution:

-5

ò

-5

-4

e(x+5) dx + 3 ò 2

2/3

1/3

e

2ö æ 9ç x - ÷ 3ø è

2

dx

I1 = ò e(x+5) dx 2

-4

8


1

= ( 5 - 4 ) ò e(

(-5+4)x-4+5 )

2

0

1

dx

I1 = ò e(x-1) dx 2

…(i)

0

Again let I 2 =

ò

2/3

1/3

e

æ 2ö 9ç x - ÷ è 3ø

2

éæ 2 1 ö

dx 1 2ù

2

æ 2 1 ö 1 9 êç - ÷ x + - ú I 2 = ç - ÷ ò e ëè 3 2 ø 3 3 û dx è 3 3ø 0

=

1 1 (x-1)2 e dx 3 ò0

=

1 ( -l1 ) 3

...(ii )

where I = I1 + 3I2

æ l ö = I1 + 3 ç - 1 ÷ = I1 -I1 è 3ø I=0

ò

-5

-4

8.

e

(x+5)2

dx + 3ò

2/3

1/3

e

æ 2ö 9ç x - ÷ è 3ø

2

dx =0

If f (x) is a periodic function with period T, then a + nT

T

a

0

ò f(x)dx = n ò f(x)dx

where nÎI ,

In particular, (i) if a = 0,

nT

T

0

0

ò f ( x)dx = n ò f ( x)dx a+T

(ii) If n = 1,

ò a

where n Î I

T

ò

f ( x )dx = f ( x )dx 0

9


10 p

Illustration 9:

Evaluate

ò sin x dx . 0

10 p

Solution:

Let I =

ò sin x dx 0

We know that |sinx| is a periodic function with period p p

ò

Hence I = 10 sin x dx

[ applying prop. 8 ]

0

Illustration 10:

If f(x) is a function satisfying f(x + a) + f(x) = 0 for all x Î R and constant a such that

ò

c +b

b

f(x) dx is independent of b, then find the least positive

value of c. Solution:

We have f(x + a) + f(x)

for all x Î R

Þ f(x + a + a) + f(x + a) = 0 Þ f(x + 2a) + f(x+ a) = 0

……(i)

[Replacing x by x + a]

….(ii)

….(iii)

Subtracting (i) from (ii), we get f(x + 2a) - f(x) = 0 for all x Î R. Þ f(x + 2a) = f(x) for all x Î R So, f(x) is periodic with period 2a It is given that

ò

c +b

b

f(x) dx is independent of b.

\ The minimum value of ‘c’ is equal to the period of f(x) i.e., 2a.

10


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.