Solutions manual for quantum mechanics 1st edition by mcintyre

Page 1

Solutions Manual for Quantum Mechanics 1st Edition by McIntyre Full download: http://downloadlink.org/p/solutions-manual-for-quantummechanics-1st-edition-by-mcintyre/ 1.1. a)

1  3   4  To normalize, introduce an overall complex multiplicative factor and solve for this factor by imposing the normalization condition:

 1  C 3   4  1  1 1

  C 3   4  C 3  *

 C *C 9    12    12    16 C  2

    C C 25 

4 

*

1 25

Because an overall phase is physically meaningless, we choose C to be real and positive: C  1 5 . Hence the normalized input state is

 1  53   45  . Likewise:

 2  C    2i 



 C C   

1  C *    2i   C    2i 

2 

1 5

 

2i 5

*

 4    C

2

5 

and

 3  C 3   ei 3 

 

1  C * 3   ei 3 

3 

3 10

 

1 10

C 3 

 ei 3 

 C C 9   *

 1    C

ei 3 

b) The probabilities for state 1 are

P1,    1

2

P1,    1

2

For the other axes, we get

  53   45 

3 5

   45  

2

3 2 5

 259

  53   45 

3 5

   45  

2

4 2 5

 16 25

2

2

2

10 


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Solutions manual for quantum mechanics 1st edition by mcintyre by McKinley1234 - Issuu