Download pdf Advanced chemical biology chemical dissection and reprogramming of biological systems 1

Page 1


Advanced Chemical Biology Chemical Dissection and Reprogramming of Biological Systems 1st Edition Howard C. Hang

Visit to download the full and correct content document: https://ebookmeta.com/product/advanced-chemical-biology-chemical-dissection-and-r eprogramming-of-biological-systems-1st-edition-howard-c-hang/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Handbook of Chemical and Biological Warfare Agents, Volume 2: Nonlethal Chemical Agents and Biological Warfare Agents 3rd Edition D. Hank Ellison

https://ebookmeta.com/product/handbook-of-chemical-andbiological-warfare-agents-volume-2-nonlethal-chemical-agents-andbiological-warfare-agents-3rd-edition-d-hank-ellison/

The Chemical Biology of Phosphorus 1st Edition Walsh

https://ebookmeta.com/product/the-chemical-biology-ofphosphorus-1st-edition-walsh/

Chemical Calculations Paul C. Yates

https://ebookmeta.com/product/chemical-calculations-paul-c-yates/

Handbook of Chemical and Biological Warfare Agents Vol. 1 - Military Chemical and Toxic Industrial Agents 3 ed. 3rd Edition Ellison D. Hank

https://ebookmeta.com/product/handbook-of-chemical-andbiological-warfare-agents-vol-1-military-chemical-and-toxicindustrial-agents-3-ed-3rd-edition-ellison-d-hank/

The

Chemical Biology of Human Vitamins 1st Edition

Christopher Walsh

https://ebookmeta.com/product/the-chemical-biology-of-humanvitamins-1st-edition-christopher-walsh/

Advanced Chemical Process Control 1st Edition Morten

Hovd

https://ebookmeta.com/product/advanced-chemical-processcontrol-1st-edition-morten-hovd/

Dirty War Rhodesia And Chemical Biological Warfare 1975

1980 Glenn Cross

https://ebookmeta.com/product/dirty-war-rhodesia-and-chemicalbiological-warfare-1975-1980-glenn-cross/

Protein Degradation with New Chemical Modalities: Successful Strategies in Drug Discovery and Chemical Biology 1st Edition Craig Crews & Hilmar Weinmann

https://ebookmeta.com/product/protein-degradation-with-newchemical-modalities-successful-strategies-in-drug-discovery-andchemical-biology-1st-edition-craig-crews-hilmar-weinmann/

Nanosensors: Physical, Chemical, and Biological (Series in Sensors) 2nd Edition Vinod Kumar Khanna

https://ebookmeta.com/product/nanosensors-physical-chemical-andbiological-series-in-sensors-2nd-edition-vinod-kumar-khanna/

AdvancedChemicalBiology

ChemicalDissectionandReprogrammingofBiologicalSystems

Editors

HowardC.Hang

ScrippsResearch DepartmentsofImmunology& MicrobiologyandChemistry 10550NorthTorreyPinesRoad LaJolla,CA,USA92037

MatthewR.Pratt

UniversityofSouthernCalifornia DepartmentofChemistry 3430S.VermontAve. CA UnitedStates

JenniferA.Prescher UniversityofCalifornia,Irvine DepartmentofChemistry 1120NaturalSciencesII CA UnitedStates

Coverimage: ©Shutterstock

Allbookspublishedby WILEY-VCH arecarefullyproduced. Nevertheless,authors,editors,andpublisherdonotwarrant theinformationcontainedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeepinmindthat statements,data,illustrations,proceduraldetailsorotheritems mayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritish Library.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationinthe DeutscheNationalbibliografie;detailedbibliographicdataare availableontheInternetat <http://dnb.d-nb.de>

©2023WILEY-VCHGmbH,Boschstr.12,69469Weinheim, Germany

Allrightsreserved(includingthoseoftranslationintoother languages).Nopartofthisbookmaybereproducedinany form–byphotoprinting,microfilm,oranyothermeans–nor transmittedortranslatedintoamachinelanguagewithout writtenpermissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennotspecifically markedassuch,arenottobeconsideredunprotectedbylaw.

PrintISBN: 978-3-527-34733-9

ePDFISBN: 978-3-527-82629-2

ePubISBN: 978-3-527-82630-8

CoverDesign AdamDesign,Weinheim,Germany

Typesetting Straive,Chennai,India

Contents

Foreword xv

Preface xvii

AbouttheCompanionWebsite xix

1IntroductiontoAdvancedChemical Biology 1

HowardC.Hang,MatthewR.Pratt,and JenniferA.Prescher

1.1Introduction 1

1.2EnabledbySyntheticandPhysicalOrganic Chemistry 1

1.3GuidedbyBiochemistryandStructural Biology 3

1.4EnhancedbyEngineeringandEvolution 3

1.5ExpandedbyAnalyticalChemistryand “Omics”Technologies 4

1.6ImpactonBiologicalDiscoveryandDrug Development 5

1.7Outlook 5 References 6

2DNAFunction,Synthesis,and Engineering 9 AneeshT.VeetilandYamunaKrishnan

2.1Introduction:AHistoricalPerspective 9

2.1.1TheStructureofDNA 9

2.2NewNucleobasesandUnusualDNA Conformations 11

2.2.1G-QuadruplexDNAStructures 11

2.2.2CircularDNAStructures 11

2.2.3Aptamers 11

2.2.4OtherNucleobases 12

2.3TheModernSynthesisofDNA 13

2.3.1Solid-PhaseDNASynthesis 13

2.3.2Backbone-ModifiedOligonucleotides 15

2.3.2.1PeptideNucleicAcids(PNAs) 16

2.3.2.2MorpholinoNucleicAcids 16

2.4DNASequencing 16

2.4.1ModernMethodstoSequenceDNA 16

2.4.1.1SequencingbySynthesis(SBS) 17

2.4.1.2Third-GenerationDNASequencing 17 2.5DNAEngineering 18

2.5.1DNANanotechnology 18

2.5.2DNA-TemplatedNanoparticleAssembly 19

2.5.3DNANanomachines 20

2.5.4DNANanotechnologyforBiology 20

2.5.5DNA-BasedOrganelleMapping Technology 20

2.5.6DNA-BasedTechnologiesfortheDetectionof EndogenousNucleicAcidsandProteins 22

2.5.6.1Fluorescence InSitu Hybridization (FISH) 22

2.5.6.2DNA-BarcodedAntibodiesforSpatial DetectionofProteins 22

2.5.7DNA-BasedSuperResolutionImaging 22

2.5.8DNA-EncodedLibraries(DEL) 23

2.5.9DigitalDataStorageUsingDNA 23

2.6ToolsforEngineeringDNA 24

2.7SummaryandFutureOutlook 25 Acknowledgments 25 Questions 25 References 26

3ChemicalApproachestoGenome Integrity 31

ElizabethR.Lotsof,SavannahG.Conlon,and SheilaS.David

3.1IntroductionandHistoricalPerspective 31

3.2TypesofDNADamage 32

3.2.1DamagetoNucleobase 32

3.2.1.1Oxidation 32

3.2.1.2Alkylation 33

3.2.1.3Depurination/Depyrimidination 35

3.2.1.4Deamination 35

3.2.1.5DNAMismatches 35

3.2.1.6DNACrosslinks 35

3.2.2DamagetoSugar 36

3.2.3DamagetoPhosphateBackbone 36

3.3TypesofDNARepair 36

3.3.1DirectRepair 36

3.3.2BaseExcisionRepair 38

3.3.3NucleotideExcisionRepair 38

3.3.4MismatchRepair 39

3.3.5Double-StrandBreakandInterstrand CrosslinkRepair 39

3.4IdentificationofSitesofDNADamageand Modification 40

3.4.1TraditionalMethodsforDamage Detection 40

3.4.2SearchingforHotspotsofOxidative Damage–AnOGStory 41

3.4.3SequencingforBulkyAdducts–Cisplatinand PyrimidineDimers 41

3.4.4SequencingforAPSiteandStrandBreaks 44

3.5AssaysthatAllowforMonitoringofthe RepairofDNADamageinCellular Contexts 44

3.5.1LesionReporterAssaystoMonitorBase ExcisionRepair 45

3.5.2LeveragingCell-BasedReporterAssaysto AssessImpactofDNALesionsonReplication andTranscription 47

3.5.3PlasmidReportersMonitoringSeveralDNA RepairPathwaysSimultaneously 47

3.5.4HighlySensitiveFluorescentDNARepair ProbesforClinicalDiagnosticsandImaging inCells 48

3.6SummaryandFutureOutlook 48 Acknowledgments 48 ExamQuestions 48 References 50

4RNAFunction,Synthesis,and Probing 55

AndreasPintado-UrbancandMatthewD.Simon

4.1Introduction 55

4.2ThePrinciplesofRNAChemistry 56

4.2.1TheImpactofa2′ -HydroxylonNucleicAcid Chemistry 56

4.2.2RNABasesandBase-Pairing 56

4.2.3RNASecondaryStructure 58

4.2.4RNATertiaryStructuresandthe Ribosome 58

4.3SynthesisofRNA 58

4.3.1ChemicalSynthesis 58

4.3.2 InVitro Transcription 59

4.4LabelingofRNA 60

4.4.1IntroducingModificationsThroughChemical SynthesisofRNA 60

4.4.2UsingLigationtoIntroduceChemical ModificationsintoRNA 60

4.4.3IncorporationofModifiedBasesintoRNA UsingIVT 61

4.4.4Approachesto3′ -EndLabelRNA 62

4.4.5Approachesto5′ -EndLabelRNA 62

4.5IdentificationandEngineeringofFunctional RNAs 62

4.5.1Aptamers 62

4.5.2Riboswitches 63

4.5.3Ribozymes 63

4.5.4GeneticallyEncodedTagstoLabelRNA 64

4.5.5RNA-BasedTherapeutics 64

4.6TheSequencingofRNA 64

4.6.1ReverseTranscriptionofRNA 65

4.6.2Long-ReadandDirectRNASequencing 65

4.6.3ExtensionsandAlternativeApproachesto RNA-seq 66

4.7TheChemicalProbingofRNAStructure 66

4.7.1In-LineProbingofRNAConformation 67

4.7.2ReagentsforChemicalProbingofRNA ConformationandBase-Pairing 67

4.7.3ReagentsforProbingSolventAccessibility, TertiaryStructure,andHigherOrder Interactions 68

4.8SummaryandFutureOutlook 69 Questions 69 References 69

5ChemicalApproachesto TranscriptionandRNARegulation InVivo 75 TongWuandChuanHe

5.1Introduction/HistoricalPerspective 75

5.2CoreConcepts/LandmarkStudies 75

5.2.1TranscriptionRegulationinEukaryotes 75

5.3TranscriptionRegulationbyChemical TargetingofDNAandtheCoreTranscription Machinery 76

5.3.1Cell-PermeableDNA-TargetingSmall Molecules 76

5.3.2TargetingTranscriptionbyNucleicAcidsand TheirAnalogs 79

5.3.3Small-MoleculeInhibitorsofthe TranscriptionMachinery 80

5.4ChemicalRegulationofTranscriptionvia TargetingofEpigeneticElements 81

5.4.1TranscriptionRegulationThroughTargeting ofHistoneModifications 81

5.4.2DNAMethylationandSmallMolecules TargetingDNAModifications 83

5.5ChemicalApproachestoTarget Post-TranscriptionalRNAMetabolism 86

5.5.1Post-TranscriptionalRNAMetabolism 86

5.5.2RegulatingRNAFunctionbyDirectRNA Binders 89

5.5.3RegulatingRNAFunctionbyTargeting RNA-Binding(Effector)Proteins 91

5.6SummaryandFutureOutlook 91 Questions 92 References 92

6ChemicalBiologyofGenome Engineering 99 CarlosA.VasquezandAlexisC.Komor

6.1IntroductiontoGenomeEditing 99

6.2EarlyGeneticEngineeringExperiments: ChemicalMutagenesis,GeneTransfer,and GeneTargeting 100

6.2.1ChemicalMutagenesisMethods 100

6.2.2GeneTransfer 101

6.2.3GeneTargeting 102

6.3ImprovingPrecisionandProgrammability withDouble-StrandedDNABreaks 103

6.3.1TheDevelopmentofDouble-Stranded Break-ReliantGenomeEditing Technologies 103

6.3.2RepairofDouble-StrandedDNABreaksin MammalianCells 104

6.3.3Meganucleases 105

6.3.4ZincFingerNucleases(ZFNs) 106

6.3.5TranscriptionActivator–LikeEffector Nucleases(TALENs) 108

6.4TheGoldenAgeofGenomeEngineering: CRISPR-BasedGenomeEditing Technologies 108

6.4.1Introduction 108

6.4.2CRISPR-Cas9 109

6.4.3ProgrammabilityImprovements 111

6.4.4EfficiencyImprovements 113

6.4.5SpecificityImprovements 113

6.4.6PrecisionImprovements 115

6.4.7EpigenomeEditing 115

6.5Non-DSB-ReliantGenomeEditing Technologies 116

6.5.1BaseEditing 116

6.5.2PrimeEditing 119

6.6GeneEditingMethodsforSpatialand TemporalControl 119

6.7EthicalImplications,Summary,andFuture Outlook 121

Questions 123 References 123

7PeptideSynthesisand Engineering 135 GordonC.BrownandParamjitS.Arora

7.1Introduction 135

7.2PeptideSynthesis 135

7.2.1SPPSIsOptimizedforStepwise Efficiency 135

7.2.2Nα -protectingGroupsEnsureSingle CouplingoftheIncomingAminoAcid 136

7.2.3PlasticResinsAreUsedDuringSPPS 138

7.2.4TemporaryMaskingofReactiveSideChains IsNecessaryDuringSPPS 138

7.2.5PeptideBondsAreSynthesizedbya CondensationReactionMediatedbya StoichiometricCouplingAgent 140

7.3SecondaryandTertiaryStructuresofAmino Acids 142

7.3.1PeptideBackboneConformations 142

7.3.2BiophysicalDeterminantsofHelixFolding andDesignof α-HelixMimics 143

7.3.3 β-Strandand β-SheetMimics 145

7.3.4ProteinTertiaryStructureMimics 147

7.3.4.1 β-Sheetand β-HairpinMimics 147

7.3.5HelicalTertiaryStructureMimics 149

7.4ConformationallyDefinedPeptidesas ModulatorsofProteinInteractions 150

7.4.1PeptideTherapeutics 151

7.5SummaryandFutureOutlook 157 Questions 157 References 158

8ProteinSynthesisand Engineering 167 MatthewR.PrattandTomW.Muir

8.1Introduction/HistoricalPerspective 167

8.2CoreConcepts/LandmarkStudies 170

8.2.1Cysteine-thioester-BasedLigations:Making thePieces 170

8.2.1.1C-terminalPieces:ChemicalSynthesisof N-terminalCysteinePeptides 170

8.2.1.2C-terminalPieces:RecombinantExpression ofN-terminalCysteinePeptides/ Proteins 170

8.2.1.3N-terminalPieces:ChemicalSynthesisof Thioester-ContainingPeptides 171

8.2.1.4N-terminalPieces:RecombinantExpression ofThioester-ContainingProteins 172

8.2.1.5InternalFragments:PreparationofCysteine andThioester-ContainingPeptides/ Proteins 172

8.2.2AddingMorePieces:MovingBeyond Thioester/CysteineLigations 173

8.2.2.1Desulfurization 174

8.2.2.2Auxiliaries 174

8.2.2.3OtherLigationChemistries 176

8.3PuttingthePiecesTogether:Practical ConsiderationsforLigationReactions 178

8.4ProteinTrans-splicing 178

8.5ExamplesofProteinSynthesis 179

8.5.1Post-TranslationalModifications 179

8.5.1.1CellSignaling 179

8.5.1.2Chromatin 181

8.5.1.3Amyloid-FormingProteins 181

8.5.2ChemicalandBiophysicalProbes 182

8.5.2.1BackboneModifications 182

8.5.2.2SegmentalIsotopicLabeling 182

8.5.3MirrorImageProteins 184

8.5.3.1RacemicCrystallography 184

8.5.3.2MirrorImageDisplay 184

8.5.4ProteinLigationinLivingSystems 184

8.5.5PotentialTherapeuticApplications 184

8.6SummaryandFutureOutlook 185 Questions 185 References 186

9DirectedEvolutionforChemical Biology 193 PuXue,FangGuo,LinzixuanZhang,and HuiminZhao

9.1Introduction 193

9.2Methodologies 195

9.2.1DirectedEvolutionattheProteinLevel 195

9.2.1.1RandomMutagenesis 195

9.2.1.2GeneRecombination 195

9.2.1.3Semi-RationalDesign 197

9.2.2DirectedEvolutionatthePathwayLevel 198

9.2.2.1DirectedEvolutionofaSingleEnzymein aPathway 198

9.2.2.2DirectedEvolutionofanEntire Pathway 199

9.2.3DirectedEvolutionattheGenome Level 199

9.2.3.1AdaptiveLaboratoryEvolution 199

9.2.3.2Genome-ScaleEngineeringStrategies 200

9.2.4ContinuousDirectedEvolution 200

9.2.5ScreeningorSelectionMethods 201

9.2.5.1Selection-BasedTechniques 202

9.2.5.2Screening-BasedTechniques 203

9.3CaseStudies 203

9.3.1DirectedEvolutionofaGlyphosate N -Acetyltransferase 203

9.3.2DirectedEvolutionofaTransaminasefor SitagliptinManufacture 207

9.3.3DirectedEvolutionofaCytokineUsingDNA FamilyShuffling 208

9.3.4EfficientProximityLabelinginLivingCells andOrganismswithTurboID 210

9.3.5BiocatalyticCascadeEvolutionfor ManufacturingIslatravir 211

9.3.6AMulti-FunctionalGenome-WideCRISPR System 212

9.4FuturePerspectivesandConclusion 212 Acknowledgments 213 Questions 213 References 214

10ChemicalBiologyofCellular Metabolism 221 PeterC.GrayandAlanSaghatelian

10.1Introduction/HistoricalPerspective 221

10.2MetaboliteDetectionandQuantitation 223

10.2.1ShotgunMetabolomics 223

10.2.2TargetedMetabolomics 225

10.2.3MetaboliteFluxAnalysis 225

10.2.4UntargetedMetabolomics 227

10.2.5DiscoveringStructurallyNovel Metabolites 228

10.3MetaboliteImagingandSensing 229

10.3.1MassSpectrometryImaging 229

10.3.2ChemicalProbesforMetabolite Imaging 230

10.3.3ProteinandRNAMetaboliteSensors 232 10.4PerturbationofMetaboliteLevels 234

10.4.1Small-MoleculeInhibitorsandDrugsof Metabolism 234

10.4.2EnzymaticPerturbationofMetabolism 235

10.5TheImpactofChemicalBiologyinDisease andDrugDiscovery 236

10.6SummaryandFutureOutlook 237 Questions 238 References 238

11ChemicalBiologyofLipids 243 ScotlandFarley,AlixThomas,AurélienLaguerre, andCarstenSchultz

11.1Introduction 243

11.2IdentificationofBulkLipids 245

11.2.1LipidomicsbyMassSpectrometry 245

11.2.2LipidAnalysisbyThin-Layer Chromatography 247

11.3FixingLipidsinSubcellularSpace 247

11.3.1Protein-BasedTechniquestoLocalize Lipids 248

11.3.2MassSpectrometryImagingofLipids 249

11.3.3LipidDetectionUsingModifiedLipidsas Probes 249

11.4TracingIndividualLipidsviaInCelluloClick Chemistry 250

11.4.1Alkyne/Azide-ModifiedLipidsandClick Chemistry 251

11.4.2BifunctionalLipidDerivatives 251

11.5ToolstoElucidateLipidSignaling 253

11.5.1MetabolicMachineryasaChemicalTool: theAdvantageofChemicalDimerizers 253

11.5.2ReleasingBioactiveLipidswithLight 255

11.6AComprehensiveViewofProtein–Lipid Interactions 256

11.6.1TrifunctionalLipids 256

11.6.2Lipid–ProteinInteractome 258

11.7SummaryandFutureOutlook 258 Questions 259 References 259

12ProteinPosttranslational Modifications 267 SamWhedonandPhilipA.Cole

12.1Introduction 267

12.2FunctionalImpactsofPTMs 268

12.3EvolutionandPTMs 270

12.4MajorClassesofPTMs 270

12.4.1Phosphorylation 270

12.4.2Acetylation 272

12.4.3Ubiquitination 273

12.4.4Methylation 275

12.4.5Glycosylation 275

12.4.6LipidationofProteins 278

12.4.7OxidationofProteins 278

12.4.8MiscellaneousModifications 278

12.5WritersandErasers 280

12.5.1ProteinKinasesandPhosphatases 280

12.5.2AcetyltransferasesandDeacetylases 280

12.5.3UbiquitinLigasesand Deubiquitinases 281

12.5.4MethylationandDemethylases 281

12.5.5Glycosyltransferasesand Glycosidases 282

12.5.6LipidTransferaseandHydrolases 282

12.6StrategiesfortheStudyofPTMs 283

12.6.1Mutagenesis 283

12.6.2GeneticCodonExpansion 283

12.6.3Small-MoleculeProbesandChemical Complementarity 283

12.6.4ChemicalLigation 284

12.6.5ProteinMicroarrays 284

12.7ProteinPTMsinDiseases 284

12.7.1ProteinKinasesandDiseases 285

12.7.2LysAcetylationandCutaneousTCell Lymphoma 285

12.7.3Ubiquitination 285

12.8Summary 286 Questions 286 References 287

13ChemicalGlycobiology 295 AmélieM.Joffrin,AlexanderW.Sorum,and LindaC.Hsieh-Wilson

13.1Introduction 295

13.2TotalChemicalSynthesisof StructurallyDefinedGlycans 297

13.3EnzymaticandChemoenzymaticSynthesisof Glycans 300

13.4ProgrammableandAutomatedGlycan Synthesis 302

13.5SynthesisofGlycopeptidesand Glycoproteins 303

13.6GlycanMicroarrays 305

13.7ChemicalTaggingandRemodelingofCellular Glycans 306

13.8InhibitorsofGlycan-ProcessingEnzymesand GlycanBindingProteins 310

13.9Glycan-TargetedTherapeutics 313

13.10SummaryandFutureOutlook 316 Questions 317 References 317

14TheChemicalandEnzymatic ModificationofProteins 329 NicholasS.Dolan,JohnathanC.Maza, AlexandraV.Ramsey,andMatthewB.Francis 14.1Introduction 329

14.2GeneralConsiderations 329

14.3LysineModification 330

14.4AsparticAcid,GlutamicAcid,and C-TerminalCarboxylateModification 333

14.5TyrosineModification 334

14.6CysteineModification 337

14.7MethionineModification 340

14.8TryptophanModification 341

14.9HistidineModification 343

14.10SerineandThreonineModification 344 14.11N-TerminalModification 344

14.12EnzymaticApproachestoModifying Proteins 347

14.12.1Transpeptidases 347 14.12.2Ligases 348

14.12.3ActivatingEnzymes 349 14.13SummaryandFutureOutlook 350 Questions 350 References 352

15GeneticCodeExpansion 359 PengR.Chen,ShixianLin,andJieP.Li

15.1Introduction 359

15.2GeneticCodeExpansionThroughDirected EvolutionofaaRS/tRNAPairs 359

15.2.1TheDevelopmentoftheMj.TyrRS-tRNA BasedGCESystem 360

15.2.2TheDevelopmentofAdditional aaRS/tRNA-BasedGCESystem 362

15.2.3ThePylRS-tRNAPairasa“one-stop-shop” GCESystem 362

15.2.4GeneticCodeExpansioninMulticellular Organisms 363

15.3GCEwithGenomeRecodingStrainsand/or UnnaturalCodons 364

15.3.1GCEwithGenomeRecodingStrains 364

15.3.2GCEwithFour-BaseCodonsUsing OrthogonalRibosome 366

15.3.3GeneticCodeExpansionwithUnnaturalBase Pairs 366

15.4GCE-basedApplications 366

15.4.1Site-SpecificPosttranslationalModifications (PTMs) 367

15.4.2New“Physical”PropertyEmpoweredby ncAAs 369

15.4.3NewChemicalReactivityDerivedfromncAA andTheirUniqueApplications 369

15.4.4ControlofProteinActivation 372

15.5TherapeuticConjugates 374

15.6Live-AttenuatedVirusandOtherGenetically ModifiedVaccines 375

15.7SummaryandFutureOutlook 376

15.7.1ImprovingtheEfficiency 376

15.7.2ExpandingtheApplications 376

15.7.3ExploringtheTherapeuticPotential 377 Questions 377 References 377

16BioorthogonalChemistry 387 JeremyBaskinandPamelaChang

16.1IntroductionandHistorical Perspective 387

16.2KeyConcepts:Bioorthogonalityand BioorthogonalReactions,ClickChemistry, andtheBioorthogonalMetabolicReporter Strategy 388

16.2.1BioorthogonalityandBioorthogonal Reactions 388

16.2.2ClickChemistry 388

16.2.3TheBioorthogonalMetabolicReporter Strategy 389

16.3TheBeginningsofBioorthogonalChemistry: OximeandHydrazoneFormation 390

16.4TheAzideasaBioorthogonalHandle 391

16.5TheStaudingerLigationofAzidesand Phosphines 392

16.6Cu-CatalyzedAzide–AlkyneCycloaddition (CuAAC)ofAzidesandTerminal Alkynes 393

16.7Strain-Promoted[3+2]Azide–Alkyne Cycloaddition(SPAAC)ofAzidesand Cyclooctynes 395

16.8TheTetrazineLigation:RapidBioorthogonal InverseElectron-DemandDiels–Alder Reactions 396

16.9OtherBioorthogonalLigations 398

16.10Light-ActivatedBioorthogonal Reactions 399

16.11BioorthogonalUncagingandCleavage Reactions 400

16.12MutuallyOrthogonalBioorthogonal Reactions 401

16.13FluorogenicBioorthogonalReagents 402

16.14ApplicationsofBioorthogonal Chemistry 403

16.14.1BioorthogonalNon-canonicalAminoAcid Tagging(BONCAT) 403

16.14.2 InVivo ImagingofGlycans 404

16.14.3TherapeuticApplicationsofBioorthogonal Chemistry 404

16.15SummaryandFutureOutlook 406 Questions 406 References 407

17CellularImaging 415

AmyE.PalmerandLukeD.Lavis

17.1Introduction 415

17.1.1History 415

17.1.2LightandFluorescence 417

17.2Small-MoleculeFluorophores 417

17.2.1Background 417

17.2.2PyrenesandCoumarinFluorophores 417

17.2.3BODIPYDyes 418

17.2.4FluoresceinsandRhodamines 418

17.2.5PhenoxazineandCyanineDyes 419

17.2.6UseasBiomoleculeLabels 419

17.2.7UseasCellularStains 419

17.2.8FluorescentIndicators 420

17.2.9EnzymeSubstrates 421

17.3FluorescentProteins 421

17.3.1Background 421

17.3.2GeneralConsiderationsofFluorescent Proteins 421

17.3.3FluorescentProteinsasBiomoleculeLabels and“Stains” 422

17.3.4FluorescentProteinsasSensors 423

17.3.5FluorescentProteinsasEnzyme Substrates 423

17.4HybridSmall-Molecule–Protein Systems 424

17.4.1Background 424

17.4.2Labels 425

17.4.3Sensors 426

17.5LandmarkStudyI:HarnessingPhotosensitive Fluorophores 426

17.5.1Background 426

17.5.2Super-ResolutionMicroscopy 426

17.6LandmarkStudyII:Ca2+ Imaging 427

17.6.1Background 427

17.6.2Small-MoleculeCa2+ Indicators 427

17.6.3GeneticallyEncodedCa2+ Indicators 428

17.6.4GeneticallyEncodedIndicatorsfor InVivo Imaging 428

17.7SummaryandFutureOutlook 430 Questions 430 References 430

18 InVivo Imaging 435 ZiYaoandJenniferA.Prescher

18.1Introduction 435

18.2BasicConceptsforImaging InVivo436

18.3TheImagingToolbox:ProbesforImaging CellularandMolecularFeatures 438

18.3.1“AlwaysOn”Probes 439

18.3.2“Turn-On”(Activatable)Probes 439

18.3.3GeneticallyEncodedProbes 439

18.4MolecularImagingAcrossthe ElectromagneticSpectrum 440

18.4.1ImagingwithX-rays(CT) 440

18.4.2ImagingwithSound(US) 440

18.4.3ImagingwithRadioWaves(MRI) 441

18.4.4ImagingwithRadionuclides (PET/SPECT) 442

18.4.5ImagingwithOpticalLight (Fluorescence/Bioluminescence) 444

18.4.5.1TargetedFluorophoresandFluorescent Materials 445

18.4.5.2ActivatableProbes 445

18.4.5.3GeneticallyEncodedFluorescentProbes 445

18.4.5.4GeneticallyEncodedBioluminescentProteins (Luciferases) 447

18.4.5.5EngineeredProbesforSensingMetabolites andMolecularFeatures 447

18.5MultimodalityImagingandCombination Probes 449

18.6EmergingAreasinMolecularImaging 450

18.7SummaryandFutureOutlook 450 Questions 451 References 451

19ChemicalBiologyofMetals 459 EvaJ.Ge,PatriciaDeLaTorre,and ChristopherJ.Chang

19.1Introduction 459

19.2MetalsandtheInorganicFoundationsof Life 459

19.2.1MetalComplexesareLewisAcid–Base Complexes 459

19.2.2CrystalFieldTheoryEnablesBonding AnalysisfromMolecularShapeandd Orbitals 460

19.2.3HardSoftAcidBaseTheoryDefines Metal–LigandPreferences 462

19.3Non-RedoxRolesforMetalsinBiology: StructureandLewisAcidCatalysis 462

19.3.1MetalsforStabilizingNucleicAcid Structure 463

19.3.2MetalsasProteinStructuralUnits:Zinc FingerandEFHandMotifs 463

19.3.3MetalsasLewisAcidCatalysts: Metallohydrolases 464

19.4RedoxChemistry:OxygenTransportand ElectronTransferProteins 464

19.4.1OxygenTransportRequiresRedox-Active MetalBinding 465

19.4.2MarcusTheoryandElectronTransfer Proteins 465

19.5RedoxChemistry:MetalloenzymesforRedox CatalysisatOxygen,Nitrogen,and Carbon 467

19.5.1OxygenEvolutioninPhotosynthesis: PhotosystemII 467

19.5.2OxygenReduction:Respirationwith Cytochrome c Oxidase 467

19.5.3OxygenCatalysis:HemeandNon-Heme Iron-DependentOxidations 468

19.5.4NitrogenCycle:Nitrogenasesand Nitrate/NitriteReductases 469

19.5.5BioorganometallicChemistry:Carbon CyclingandVitaminB12 469

19.6MetalsinMedicine:Metallotargets, Metallodrugs,andMetal-BasedImaging Agents 470

19.7EmergingAreasforMetalsinBiology: TransitionMetalSignalingand Metalloallostery 472

19.8ChemicalToolstoStudyMetal Biology 472

19.9SummaryandFutureOutlook 475 Questions 475 References 476

20RedoxChemicalBiology 481

YunlongShiandKateS.Carroll

20.1Introduction 481

20.2Activity-BasedDetectionofCysteine Modifications 484

20.3IndirectProfilingofCysteineOxidation 484

20.4DirectProfilingofCysteineOxiPTMswith ChemoselectiveProbes 486

20.4.1ProfilingProteinSulfenicAcids( SOH) 486

20.4.1.1SulfenicAcidProbes–AHistorical Perspective 486

20.4.1.2ChemicalModelsfortheAssessmentof SulfenicAcidProbes 486

20.4.1.3SelectivityofChemicalProbesforSulfenic Acids 486

20.4.1.4QuantificationofProteinSulfenicAcids 489

20.4.1.5ApplicationofSulfenicAcidProbes 492

20.4.2ProfilingProteinSulfinicAcids ( SO2 H) 492

20.4.3ProfilingProteinPersulfides( SSH) 493

20.5ProbesandBiosensorsforReactiveOxygen SpeciesinCells 494

20.6ConclusionsandOutlook 496 Questions 496 References 497

21Activity-BasedProtein Profiling 503 WilliamH.ParsonsandBenjaminF.Cravatt

21.1Introduction/HistoricalPerspective 503

21.2CoreConcepts/LandmarkStudies 504

21.2.1ProbeDesign 504

21.2.1.1ReactiveGroups 504

21.2.1.2ReporterTags 507

21.2.1.3RecognitionGroup/Linker 508

21.2.2DetectionMethods 509

21.2.2.1Gel-BasedAnalysis 509

21.2.2.2FluorescencePolarization 510

21.2.2.3ImagingofProteinsinCellsand Organisms 511

21.2.2.4QuantitativeProteomicsbyMass Spectrometry 511

21.2.3CommonApplications 512

21.2.3.1ProfilingProteinActivityandAminoAcid ReactivityinBiologicalSystemsof Interest 513

21.2.3.2CompetitiveABPPforLigandDiscoveryand Optimization 513

21.2.3.3TargetIdentificationforLigands 515

21.2.3.4AssignmentofEnzymeFunction 516

21.2.3.5VisualizingEnzymeLocalizationandActivity inLivingCellsandOrganisms 517

21.3SummaryandFutureOutlook 518 Questions 518 References 519

22ChemicalGenetics 527 MichaelS.Cohen

22.1Introduction 527

22.2AS-Protein–OrthogonalMolecular Glues 528

22.3AS-Enzyme–OrthogonalSubstrate Pairs 532

22.3.1ProteinKinases 532

22.3.2ProteinMethyltransferases 535

22.3.3ProteinLysineAcetyltransferases 538

22.3.4PARPs 539

22.3.5Glycosyltransferases 542

22.3.6PTMErasers:LysineDemethylases 544

22.3.7BeyondPTMEnzymes 544

22.4AS-Enzyme–OrthogonalInhibitor Pairs 547

22.4.1ProteinKinases 547

22.4.2OtherEnzymes 549

22.5FinalThoughts 549

22.5.1BeyondBump–Hole 549

Questions 550 References 550

23NaturalProductDiscovery 555 MohammadR.Seyedsayamdost,BrettC. Covington,YifanZhang,andYuchenLi

23.1IntroductionandDefinitions 555

23.2KeyConcept:NaturalProductsare GeneticallyEncoded 556

23.3KeyConcept:StructuralDifferencesBetween NaturalProductsandSyntheticDrugs 558

23.4KeyConcept:TargetSpecificityandLatent Reactivity 559

23.5KeyConcept:NaturalProductDiscoveryand Activity-GuidedFractionation 561

23.6KeyConcept:CrypticBiosyntheticGene Clusters 562

23.7LandmarkStudies:PenicillinandtheGolden AgeofAntibioticDiscovery 563

23.8LandmarkStudies:ActivatingSilent BiosyntheticGeneClusters 565

23.8.1ManipulationofCultureConditions 565

23.8.2ClassicalGenetics 566

23.8.3ChemicalGenetics 567

23.8.4HeterologousExpression 568

23.9SummaryandOutlook 569

Questions 570

References 570

24NaturalProductBiosynthesis 575 EunBinGoandYiTang

24.1Introduction 575

24.2PeptideNaturalProducts 577

24.2.1RibosomallySynthesizedand Post-translationallyModifiedPeptides (RiPPs) 577

24.2.2Non-ribosomalPeptides 579

24.3PolyketideNaturalProducts 582

24.3.1BacterialType-IPolyketides 584

24.3.2BacterialType-IIPolyketides 586

24.4TerpeneNaturalProducts 588

24.5HybridandUnnaturalNaturalProducts 591

24.6SummaryandFutureOutlook 592 Acknowledgment 592 Questions 593 References 594

25ChemicalMicrobiology 597 VictoriaM.Marando,StephanieR.Smelyansky, DariaE.Kim,andLauraL.Kiessling

25.1IntroductionandHistory 597

25.2CellEnvelopeStructureand Biosynthesis 598

25.2.1BacterialCellStructure 598

25.3ChemicalandChemoenzymaticSynthesisfor PathwayElucidation 600

25.3.1Peptidoglycan(PG)Biosynthesis 600

25.3.1.1ReconstructingtheStepsinPGBiosynthesis UsingDefinedSubstrates 600

25.3.1.2AccessingLipidsIandII 602

25.3.2CellEnvelopeComponentsBeyond Peptidoglycan 603

25.3.2.1Gram-NegativeLipopolysaccharides 603

25.3.2.2WallTeichoicAcidBiosynthesis 605

25.3.2.3MycobacterialGalactan 605

25.4TheChemicalBiologyofAntibiotic Action 607

25.4.1PGAssemblyIsTargetedbyDiverse Antibiotics 607

25.4.2PenicillinandOtherAntibioticsInduce Dominant-NegativeEffects 609

25.4.3IdentifyingInhibitorsofEssentialEnzymesIs NotEnough 609

25.4.4IdentifyingAttributesforCompoundUptake inBacteria 610

25.5ChemicalBiologyStrategiesforImagingPG AssemblyandRemodeling 610

25.5.1Antibiotic-BasedPGProbes 611

25.5.1.1AntibioticsthatBindPGIntermediates 611

25.5.1.2ProbesfromAntibioticsthatActonEnzymes thatGeneratePG 612

25.5.2SubstrateAnaloguePGProbes 612

25.6LabelingGlycanCellEnvelope Components 613

25.6.1DiversityandFunctionofBacterial Polysaccharides 613

25.6.2ProbesofBacterialGlycans 614

25.6.3ProbesofLPS:AzKdo 615

25.6.4LabelingMycobacterialGlycans 615

25.6.5TrehaloseAnalogs 616

25.6.6ImagingProbes 616

25.6.7FluorogenicProbes 617

25.7ChemicalProbesAppliedtothe Microbiome 617

25.7.1Microbiome:LookingForward 618

25.8SummaryandFutureOutlook 619 Questions 619 References 620

26ChemicalApproachestoAnalyze BiologicalMechanismsand OvercomeResistanceto Therapeutics 629 RudolfPisa,TommasoCupido,and TarunM.Kapoor

26.1Introduction 629

26.2UsingChemicalInhibitorsasToolstoProbe CellularProcesses 630

26.3UsingResistancetoCharacterizeChemical Inhibitors 632

26.4Crash-TestingDrugs 633

26.5RADD–ResistanceAnalysisDuring Design 635

26.6DesigningInhibitorswithDistinctBinding Modes 636

26.7AddressingDrugResistancewithTargeted ProteinDegradation 639

26.8OvercomingResistancebyUsing CombinationsofDrugs 640

26.9Conclusions 641 Questions 641 References 642

27ChemicalDevelopmental Biology 647 JamesK.Chen

27.1Introduction 647

27.2Small-MoleculeTeratogens 648

27.2.1Cyclopamine 648

27.2.2Thalidomide 650

27.3OptochemicalandOptogeneticProbes 653

27.3.1OptochemicalControlofGene Expression 653

27.3.2OptogeneticControlofCellSignaling 657

27.4LineageTracingTools 660

27.4.1ChemicalControlofGenetic Recombination 661

27.4.2DNABarcodingStrategies 664

27.5Summary 665 Questions 665 References 665

28ChemicalImmunology 669 MatthewE.Griffin,JohnTeijaro,and HowardC.Hang

28.1Introduction 669

28.2ChemicalDissectionofAdaptive Immunity 669

28.3GenerationandChemicalEngineeringof Antibodies 672

28.4AntigenRecognitionbyImmune Cells 673

28.5ChemicalInnovationsforElicitingand DiscoveringAntigen-specificImmune Responses 676

28.6ChemicalModulationofInnate Immunity 678

28.7ChemicalDissectionofImmunity 682

28.8SummaryandFutureOutlook 685 Questions 685 References 685

29ChemicalNeurobiology 695 JohannesMorsteinandDirkTrauner

29.1Introduction 695

29.2Actuation 697

29.2.1NeuropharmacologyHasaStoried History 697

29.2.2MolecularCloningandStructuralBiology HaveRevolutionizedtheField 697

29.2.3CagedLigandsandPhotopharmacology AllowforOpticalControlofNeural Activity 699

29.2.4ChemogeneticsEnablesCell-Specific NeuropharmacologyinBrains 701

29.2.5TetheredPharmacologyOperateson EngineeredReceptorsorNativeReceptorsin GeneticallyModifiedCells 703

29.2.6TetheredPhotopharmacologyCombines GeneticwithOpticalControl 704

29.2.7SyntheticPhotoreceptorsCanBeEngineered ThroughGeneticCodeExpansion 705

29.3Visualization 708

29.3.1ChemicalStainingandImagingMethods HaveLaunchedModernNeuroscience 708

29.3.2CalciumImagingCanBeUsedtoMonitor NeuronalActivity 708

29.3.3VoltageSensingProvidesaDirectPictureof NeuronalActivity 708

29.3.4NeurotransmittersCanBeSensedwith ChemogeneticFRETSensors 708

29.3.5MetalsandGasesintheBrainCanBeSensed withFluorescentProbes 709

29.3.6PositronEmissionTomographyRequiresFast Chemistry 712

29.3.7ProximityLigationEnablesSpatiallyResolved MappingofNeuralNetworks 713

29.4SummaryandOutlook 715 Questions 715 References 715

30Small-MoleculeDrug Discovery

723

LukeL.Lairson

30.1Introduction 723

30.2DiscoveryofChemicalMatter 724

30.2.1Target-BasedDiscovery 724

30.2.2HTS-CompatibleAssayFormats 725

30.2.3Phenotype-BasedDiscovery 727

30.2.4HTS:GeneralConsiderations 728

30.2.5DrugRepurposingandSerendipity 729

30.2.6AlternativeSmall-MoleculeDiscovery Approaches 729

30.3 InVivo Pharmacology:InventionofDrug Candidatesand InVivo Probes 730

30.3.1DrugAbsorption,Distribution,Metabolism, andExcretion 731

30.3.1.1DrugAbsorptionandDistribution 731

30.3.1.2PhysicochemicalPropertiesofDrugs 733

30.3.1.3DrugMetabolismandExcretion 734

30.3.1.4Pharmacokinetics,Pharmacodynamics,and Biomarkers 737

30.3.2MedicinalChemistry 739

30.3.3DrugToxicityandHumanClinical Trials 743

30.4Conclusion 744 Questions 744 References 746

Index 751

Foreword

Icameofageasascientistduringatimewhentheboundariesbetweenthehistoricallyseparatefieldsofchemistry andbiologywerebeingdismantled.Themolecularbiologyrevolutionofthe1980shadbroughtnewfoundpowerto thelifescientist,allowingbiologicalsystemstobeengineeredandmanipulatedtoanswerquestionsaboutmolecularmechanism,ratherthansimplyobserved.High-resolutionmicroscopyandstructuralbiologytechniquesoffered atomicviewsofbiologicalmolecules,complexes,andmaterials,bringingbiologyeverclosertothescaleatwhich chemistsoperate.Atthesametime,chemistrywaspoweringbiologyatrecordpace:solid-phasepeptideandoligonucleotidesynthesiswererevolutionizingourunderstandingofthesebiomolecules’structuresandfunctions,andalso propellingadvancesingenomesequencingandengineering.Thesyntheticchemist’sabilitytosynthesizecomplex naturalproductsprovidedpharmacologicaltoolsthatrevealedthesecretsofthecell,whileanalyticalchemistrytechnologies,quiteprominentlymassspectrometry,providedunprecedentedclarityonthemolecularcompositionsof biologicalsamples.Thenotionthatchemistscoulddesignmoleculestoprobeorperturbabiologicalprocesswas becomingwidelyrecognizedamongbiologists,andlikewise,historicallyintractablebiologicalproblemshadbecome compellingchallengesforchemists.Inretrospect,mytrainingyears(i.e.thelate1980sandearly1990s)wereafantasticperiodforayoungscientisttopursueresearchattheburgeoninginterfaceofchemistryandbiology!

Sincethoseearlydays,Ihavewatchedthetwofieldscoevolvetocreatethedistinctivedisciplinewenowcallchemicalbiology.Thisevolutionwasnotwithoutfriction.Intheearlydays,veryfewlabspossesseddepthofknowledge andtechnicalknowhowinbothchemistryandbiology.Indeed,itwastherarechemistwhounderstoodtheneedsof biologyandtherarebiologistwhounderstoodthepowerofchemistry;gettingthetwotogetherascollaboratorswas keytoprogressinthefield.Meanwhile,traineeswhosoughttodevelopskillsinbothdisciplineswereoftenmisunderstood,orevenworse,mischaracterizedas“Jacksofalltrades,mastersofnone.”Pioneersatthisexcitinginterface hadtoprovethemselvesseparatelyaschemistsandbiologistswhilealsocreatingtheethosofadistinctivenewfield.

Now,severaldecadesintomyowncareerasachemicalbiologist,Iamdelightedtoseeourfieldplayingacentralrole acrossacademiaandindustry.Wearethegluethatbindschemistsandbiologiststogether,thebilingualinterpreters thatcatalyzecross-pollinationofideasandtechnologies.Andwemakeourownfundamentaldiscoveriesinbiology thatareuniquelyenabledbyourchemicaltools,whilealsodevelopingbiologicaltoolsforbetter,greener,chemical processes.Manybiopharmacompanieswhowereskepticalofourvalueafewdecadesbacknowhostso-namedchemicalbiologygroupsthatcutacrossplatformsandtherapeuticareas.Oursuperpowersasmultidisciplinaryscientists arerecognized,andwearerightfullyinhighdemand.

Whiletheprofessionalpracticeofchemicalbiologyhasbeencodified,themechanismsbywhichwetrainstudents inthisdisciplinecontinuetoevolve.Manyofusacademicsteachcoursesinchemicalbiologythatarerather ad hoc,oftenbasedonprimaryliteraturethathappenstoalignwithourinterests.Asthefieldhasgrowninscopeand participation,sohastheneedformorestructuredandcomprehensiveresourcesonwhichsuchcoursescanbebased. Forthisreason,Iamdelightedtocelebratethisbook, AdvancedChemicalBiology,whichcoversabroadspectrum ofexcitingconceptsandtechnologiesandcapturesboththehistoric,definingmomentsinthefieldaswellasits guidingprinciples.Thetopicscutacrossallthemajorbiomoleculeclassesandhighlighthowchemicalapproaches canpowerfundamentalresearchaswellasclinicaltranslation.Thetextillustratesapplicationsinvariousbranches ofbiology–neuroscience,immunology,cancerbiology,andinfectiousdisease–andshowcasesnewtherapeutic modalitiesarisingfromouruniquebrandofmolecularengineering.Thebook’seditorsandcontributorsareleaders inchemicalbiology,andtheyhavedoneallofusagreatservice.Thisbookwillbeavaluableresourceforboth establishedchemicalbiologistsandmanyfuturegenerationsoftrainees.

Preface

Thefieldofchemicalbiologyisexpandingatarapidpace,withcontinuedadvancesinchemicalmethodologiesand biologicalapplications.Thecommunityofchemicalbiologistsisalsogrowinginnumber,withresearchersnowspanningadiversesetofbackgroundsandinterests.Withthisgrowthcomestheneedtotrainandeducatenewcomersto thefield.Chemicalbiologycourseshavesproutedatinstitutionsaroundtheglobe,andmostdonotuseastandard text.Weweremotivatedtofillthisvoid,providingabookthatiseasilyaccessibletocurrentandfuturegenerationsof chemicalbiologists.Thisisnoeasytask,consideringthebreadthofthedisciplineanditscontinuedevolution.Some unifyingthemeshaveemerged,though,thatwehopedtocaptureinthisbookandprovideahistoricalcontextfor theirdevelopment.Torealizeourvision,wereachedouttoleadersinthefieldfortheirinputongeneratingaresource forthecommunity.Theendproductisthecompilationofthechaptersbetweenthesecovers.

Overall,the AdvancedChemicalBiology textbookshowcaseshowchemicaltoolsandmolecularmethodshavebeen usedtogaininsightintobiologicalsystems.Theinitialchaptershighlightchemicalbiologyinthecontextofthe centraldogma:howmolecular-levelthinkinghasenablednumerousdiscoveriesrelevanttoDNA,RNA,proteins,and metabolites.Subsequentchaptersfeaturetransformativetechnologiesdevelopedwithinthecommunitythatcontinue toenablenewpursuits.Thefinalsectionofthebookillustratestheimpactofchemicalbiologyinthebroaderscientific community,withexamplesfrommicrobiology,immunology,neuroscience,drugdiscovery,andmore.Collectively, thesechaptersunderscorethebreadthofdiscoveryenabledbychemicalapproachesandprovideahistoricalbackdrop forthefield.

AdvancedChemicalBiology isdesignedforentry-levelgraduatestudentsinchemicalbiology,althoughthetext willserveasanexcellentresourceforstudentsinavarietyofchemistry-andbiology-relatedfields,inadditionto advancedundergraduates.Basicknowledgeoforganicchemistryandbiochemistry,uponwhichmuchofchemical biologybuilds,isassumed.Thechaptersarenotintendedtobein-depthreviewsonthesubjectmatter;rather,they serveasbasicprimersfornewcomerstothefield.Eachchapterbeginswithabriefintroductionandhistoricalcontext forthetopic.Thebulkofeachchapteristhendevotedtopresentingkeyconceptsanddevelopmentswithinchemical biology,drawingfromahandfuloflandmarkstudies.Sampleexamquestionsandslidesforinstructionalusearealso included.Sinceeachchaptertopicisnotcoveredin-depth,weexpectthatinstructorswillsupplementthematerials inthisbookwithadditionalexamplesandinformationtobestsuittheirclasses.

Thistextbookwouldnothavebeenpossiblewithoutthehardworkanddedicationofseveralindividuals.Weextend oursincerethankstotheauthorsofeachchapter,whoseworkonthisprojectcoincidedwiththeCOVID-19pandemic. Withouttheireffortsandcommitment,thisbookwouldhavebeenimpossible.Wearealsogratefultotheteamat Wileyforhelpingustonavigatethedevelopmentofateachingtextduringaquiteunprecedentedtime.Last,we wouldliketothankthemanycolleaguesandmentorswhohelpedtosparkourinterestsinthefieldandwhocontinue

xviii Preface

toguideourpaths.Wehopethatthisbooksimilarlycaptivatesthenextgenerationoftraineesandinspiresthemto continuetopushthefrontiersofchemicalbiologyandscientificdiscovery.

11July2022

HowardC.Hang ScrippsResearchInstitute LaJolla,CA92037,USA

MatthewR.Pratt UniversityofSouthernCalifornia LosAngeles,CA90089,USA

JenniferA.Prescher UniversityofCalifornia,Irvine Irvine,CA92697,USA

AbouttheCompanionWebsite

AdvancedChemicalBiology:ChemicalDissectionandReprogrammingofBiologicalSystems isaccompaniedby acompanionwebsite:

www.wiley.com/go/hang

Thewebsiteincludes:

• AnswerstoQuestions

ScanthisQRcodetovisitthecompanionwebsite.

IntroductiontoAdvancedChemicalBiology

HowardC.Hang 1,2 ,MatthewR.Pratt 3 ,andJenniferA.Prescher 4,5,6

1 ScrippsResearch,DepartmentofImmunology&Microbiology,10550NorthTorreyPinesRoad,LaJolla,CA92037,USA

2 ScrippsResearch,DepartmentofChemistry,10550NorthTorreyPinesRoad,LaJolla,CA92037,USA

3 UniversityofSouthernCalifornia,DepartmentofChemistry,3430S.VermontAve,CA92121,USA

4 UniversityofCaliforniaIrvine,DepartmentofChemistry,1120NaturalSciencesII,CA92697,USA

5 UniversityofCaliforniaIrvine,DepartmentofMolecularBiologyandBiochemistry,3205McGaughHall,CA92697,USA

6 UniversityofCaliforniaIrvine,DepartmentofPharmaceuticalSciences,101TheorySuite100,CA92697,USA

1.1Introduction

Asitsnameimplies,thefieldofchemicalbiology employschemicalprinciplestodissectmechanismsin biologyandpotentiallytranslatethesediscoveriesinto therapeuticapproachesforhealthanddisease.Chemicalbiologyasafieldevolvedfromandmergeddifferent specializedfieldsofinvestigationintoabroadertopic thatencompassesmanyareasofresearch.Onecould arguethattheoriginsofchemicalbiologydateback tothediscovery,characterization,andsynthesisof smallmoleculestodeterminetheirmechanismsof actionandproductionfortherapeuticapplications. Notably,studiesinthelate1800sbyEmilFischerand coworkersledtothesynthesisofindoles,peptides, andmonosaccharidesaswellastheirstereochemical determination[1],whichwashighlightedbytheNobel PrizeinChemistryin1902.Inaddition,PaulEhrlich andcoworkersdevelopedarsphenamine(Salvarsan)as antimicrobialtreatmentforsyphilisintheearly1900s andpioneeredtheconceptofchemotherapyasa“magic bullet”fordiseasetreatment[2].Thesetwolandmark examplesestablishedthefoundationforthesynthesisof smallmolecules,thedeterminationoftheirstructures andmechanismsofactionaswellastheirtherapeutic application.Manyareasofchemistryandbiologyhave evolvedfromthesepioneeringstudiesandhaveculminatedinourcurrentperspectiveonchemicalbiology. Notably,thedesignandsynthesisofspecificchemical probesandhomogeneousbiomoleculesliesattheheart ofchemicalbiology.Itisalsoimportanttonotethat theadvancesinchemicalbiologyhavebeenenabled bymanymajorareasofsciencesuchasphysicaland

Figure1.1 Chemicalbiologyisatthenexusofbasicscience, medicine,andtechnology.

organicchemistry,biochemistry,structuralbiology,analyticalchemistryaswellasengineeringandevolutionary approaches(Figure1.1),whichwehighlightbelow.

1.2EnabledbySynthetic andPhysicalOrganicChemistry

Theabilityofchemiststounderstandreactivityof moleculesandexploittheseprinciplesforsynthesis hasbeentransformativeforscience[3]andunderlies muchoftheinnovationsinchemicalbiology[4,5] (Figure1.2).Indeed,innovationsinorganicchemistry

AdvancedChemicalBiology:ChemicalDissectionandReprogrammingofBiologicalSystems, FirstEdition. EditedbyHowardC.Hang,MatthewR.Pratt,andJenniferA.Prescher. ©2023WILEY-VCHGmbH.Published2023byWILEY-VCHGmbH. Companionwebsite:www.wiley.com/go/hang

Chemical biology
Basic science
Medicine

Synthetic chemistry

(a)

Physical organic chemistry

(b)

• New synthetic methods

• Access to complex natural products

• Insights into mechanisms of action

• Development of new chemical probes and therapeutic leads

• Development of new bioorthogonal reactions

• Designer chromophores for imaging applications

Figure1.2 Impactofsyntheticandphysicalorganicchemistryonchemicalbiology.(a)Retrosyntheticanalysisofcomplex naturalproductsuchasrapamycin.Source:Nicolaouetal.[6]/AmericanChemicalSociety.(b)Improvedbioorthogonalreactions suchasstrain-promotedazide-alkynecycloaddition[7]aswellasnewchromophoressuchassiliconrhodamine[8].

havegreatlyfacilitatedthesynthesisofcomplexnaturalproducts(Figure1.2a),small-moleculeprobes, andmacromoleculesforfundamentalstudiesand therapeuticapplications[4,5].Forexample,efficient methodsforthechemicalsynthesisofnucleicacids haverevolutionizedmolecularbiology[9],facilitated thedevelopmentofhighlysensitivediagnosticmethods[10],andsupportedthegenerationofprecise vaccines[11](Chapter2).Moreover,thesynthesisof shortoligonucleotideshasenabledstructure–function studies,therapidcloningofgenes(Chapter2)[10], andefficientprogrammablegenomeengineering[12] (Chapter6).Likewise,thechemicalsynthesisofpeptides[13],proteins[14,15],andglycans[16,17]have alsoprovidedimportantaccesstothesebiomolecules forstructure–activitystudiesaswellasthegenerationofdiagnosticsandtherapeutics(Chapters7,8, 13,15,17,24,26,and30).Ofnote,thesite-specific installationofbiophysicalprobesandposttranslationalmodificationsontopeptidesandproteinshas revealedfundamentalprinciplesofproteinfolding, structure,andfunction(Chapters7,8,and15).Alternatively,thesynthesisofglycanshasyieldedhomogeneous materialstoexploretheirfunctionaswellasimportant imaginganddiagnosticagentssuchasfluorine-18-2fluoro-2-deoxy-D-glucose(F18-FDG)(Chapter13).

Beyondthesynthesisofbiomolecules,advances inphysicalorganicchemistrysuchasthehard–soft acid–baseandmolecularorbitaltheories(Figure1.2b)

[18]haveledtothedevelopmentofnewchemical reactionsandprobestoexplorebiology.Forexample, understandingtherelativereactivityofaminoacidside chainswithdifferentchemotypeshasyieldedefficient bioconjugationmethodsformodifyingnativeproteins (Chapter14).Alternatively,thedevelopmentofchemicalreactionsthatareorthogonaltotheendogenous reactivityincellsandyetcompatiblewithbiological conditionshasaffordedavarietyof“bioorthogonal” reactionsforthemodificationofdiversebiomolecules andsmallmoleculeswithuniquefunctionality (Figure1.2b)(Chapter16).Moreover,understanding thestereo-electroniceffectsofchemicalmodifications onchromophoreshasyieldedawiderangeofimaging reagentsforvisualizingmanybiologicalprocessesin cellsandanimals(Figure1.2b)(Chapters17and18). Thesechromophorescanalsobetunedtobinddifferent metalstoexploretheirabundanceanddynamicsinbiologicalsystems(Chapter19).Furthermore,theunique reactivityofdifferentchemotypescanbeharnessedfor selectiveprofilingofvariousredoxstates(Chapter20) andbiochemicalactivitiesofproteins(Chapter21).

Inadditiontoreactionandprobedevelopment,the totalsynthesisofcomplexnaturalproductsandtheir analogshasaffordedimportantreagentstodetermine theirmoleculartargetsandmechanismsofaction [19],whichhasledtomoreprecisetherapeuticsfor humandiseases.Alandmarkexampleofthesestudies isthediscovery,synthesis(Figure1.2a),andtarget

identificationofrapamycin,whichrevealedmammaliantargetofrapamycin(mTOR)[20,21],asakey kinasethatregulatescellulargrowthandmetabolism (Chapter25).Althoughrapamycinfrom Streptomyces hygroscopicus wasoriginallyexploredasananti-fungal agent,itexhibitedpotentimmunosuppressiveactivity onTcellsandwasultimatelyapprovedbytheFederal DrugAdministration(FDA)tomitigatethesideeffects oforgantransplantation(Chapter4).Thesubsequent characterizationofmTORasthemechanistictarget ofrapamycin[20,21]andthediscoveryofitsphosphatidylinositol3-kinase-relatedkinaseactivityledto thedevelopmentofmorespecificandpotentmTOR kinaseinhibitorstotreatcancerandothermetabolic diseasesinhumans(Chapter30).

1.3GuidedbyBiochemistry andStructuralBiology

Thedesignanddevelopmentofspecificchemical probestoperturbandvisualizebiologicalsystemshas beenguidedbyinnovationsinbiochemistry[22]and structuralbiology(Figure1.3)[25,26].Forexample,the studyofenzymereactionmechanisms[22]allowed thedevelopmentofspecificchemicalprobesfor activity-basedproteinprofiling(ABPP)(Figure1.3a) (Chapter21).Alternatively,theadvancesinX-ray

crystallographyhaveallowedstructure-baseddesign ofimportantsmall-moleculeprobesandtherapeutics(Figure1.3b).Moreover,thedesignoforthogonal “bump-and-hole”enzyme–substratepairs(Chapter22) wasfacilitatedbyX-raystructuresofdifferentenzymes andproteinfamilies.Inaddition,structuralstudiesof largemulti-domainproteincomplexessuchaspolyketidesynthases(PKSs)havehelpedtodeconvolutethe biosynthesisofnaturalproductsandprovidednew opportunitiestoengineerthesepathways(Chapter24). Morerecently,advancesincryo-electronmicroscopy haveshedlightonthestructuresofmembraneproteinsandlargercomplexes[27],whichhasenabledthe designanddevelopmentofadditionalchemicalprobes andtherapeutics.Furthermore,theestablishmentof robustproteinstructurepredictionmethodshasprovidedimportantcomputationaltoolsforexploringsmall molecule–proteininteractionsaswellas denovo design ofnovelproteinswithdiversefunctions[28].

1.4EnhancedbyEngineering andEvolution

Aschemistsandbiologistsbegantounderstand thestructureandfunctionofbiomolecules,this collaborationallowedthedesignofnovelsystemswith improvedornewfunctions(Figure1.4).Forexample,

Biochemistry Fluorophosphonate (FP)-biotin Mechanism-/activity-based chemical probe(s)

(a)Enzyme mechanism(s)

Structural biology

• Biomolecule mechanisms of action

• Development of selective antagonists or agonists

• Design of mechanism-/activitybased chemical probes

• Biomolecule atomic structures

• Development of selective antagonists or agonists

• Design of mechanism-/activitybased chemical probes

Figure1.3 Impactofbiochemistryandstructuralbiologyonchemicalbiology.(a)Understandingenzymereactionmechanisms hasaffordedactivity-basedprobessuchasFP-biotin.Source:Liuetal.[23]/TheNationalAcademyofSciences.(b)Structural biologyandcomputationalmethodshaveenabledstructure-baseddesignofselectivechemicalprobesandtherapeuticssuch asHIV-1proteaseinhibitor.Source:Swainetal.[24]/TheNationalAcademyofSciences.

(b)
Synthetic HIV-1 protease (PDB: 7HVP)

Engineering

Evolution

• Engineering proteins with novel functions (b)

• Rational protein design and mutagenesis

• Evolving proteins with novel function

• Random mutagenesis and selection or screening

Figure1.4 Examplesofengineeringandevolutionaryapproachesinchemicalbiology.(a)Advancesinproteinengineeringhave enabledthedesignanddevelopmentofproteinswithnovelactivitysuchascatalyticantibodiesforstereoselectiveDiels–Alder reaction.Source:AdaptedfromGouverneuretal.[29].(b)Directedevolutionhasalsoaffordedproteinswithnovelfunctions suchasP450enzymeswithcyclopropanationactivity.Source:AdaptedfromCoelhoetal.[30].

protein-engineeringmethodswereemployedtogeneratecatalyticantibodiesthatcouldexecutechemical reactionslikenaturalenzymesorentirelynewreactions (Figure1.4a)(Chapter28).Alternatively,directedevolutionapproachescombiningrandommutagenesisin combinationwithhigh-throughputselectionorscreeningmethodsweredevelopedtoidentifyunpredicted andnovelproteinvariantswithuniqueorimproved properties(Figure1.4b)(Chapter9).Ofnote,protein engineeringanddirectedevolutionapproacheshave beenemployedtoestablishgeneticcodonexpansionfor thesite-specificincorporationofnon-canonicalamino acidswithuniquereactivityintospecificproteinsand wholeorganisms(Chapter15).Beyondthesesynthetic biologyexamples,proteinengineeringanddirected evolutionapproacheshavealsobeeninstrumental ingeneratingfluorescentproteins(Chapter17)and reporterenzymes(Chapter18)withimprovedcellular and invivo imagingproperties.

1.5ExpandedbyAnalytical Chemistryand“Omics”Technologies

Chemicalbiologyhasalsobeensignificantlyenabled andexpandeduponwithimprovedanalyticalmethods andinstrumentation(Figure1.5).Thedevelopmentof rapidandinexpensivenucleicacidsequencingmethods hasbeentransformativeforilluminatingthegenome

ofmanyorganismsandhasallowedcomparative genomicsofhealthyanddiseasestates(Figure1.5) (Chapters2–6).Theextensionofthesemethodsto singlecellanalyseshasrevealedspatialandtemporalphenotypesofdiversebiologicalprocessesandis revolutionizingbiologyandmedicine[31].Inparallel, theadvancesinmassspectrometry[32]andnuclear magneticresonancespectroscopy[33]havegreatly improvedthedetectionandstructuralcharacterization ofmacromoleculesandmetabolites(Figure1.5).For example,thehigh-throughputfragmentationanddetectionpeptidesbymassspectrometryalongwithaccurate computationalassemblymethodshavefacilitatedthe large-scalecomparativeanalysisofproteins[32]and theirposttranslationalmodifications(Chapter12).In addition,theunionofmassspectrometrywithchemical affinityprobesandABPP(Chapter21)hasfacilitated theidentificationofsmallmolecule–proteintargets forimprovedpharmacologyanddrugdevelopment (Chapters26and30).Furthermore,thesesignificant advancesinanalyticalchemistryhaveallowedthe large-scalecomparativeanalysisofcellularmetabolites (Chapter10)andlipids(Chapter11)incells,tissues,and wholeorganismsaswellascomplexnaturalproducts (Chapter23).Collectively,theselarge-scalemethods foranalyzingthegenome,transcriptome,proteome, andmetabolomeofcellsandorganismsareproviding importantmethodsfordissectingcomplexbiology systemsanddiseases.

Cytochrome p450 CYP120A1 (PDB: 3QI8)
Evolved
(PDB: 3QI8)
Catalytic

Analytical chemistry

(a)

Genomics

• Improved detection of metabolites, peptides, and proteins for metabolomics and proteomics (b)

• Large-scale profiling of biological systems (cells, tissues, and organisms)

• Discovery of novel biomolecules

• Development of selective chemical probes

• Improves detection of nucleic acids for genomics

• Large-scale profiling of biological systems (cells, tissues, and organisms)

• Discovery of novel genetic variants

• Development of biomarkers

Figure1.5 Impactofanalyticalchemistryandlarge-scalemethodsonchemicalbiology.(a)Betteranalyticalmethodshave allowedimproveddetectionofbiomoleculesformetabolomicsandproteomics.(b)Enhancednucleicaciddetectionand sequencingmethodshavesignificantlyexpandedthescopeandimpactofgenomics.

1.6ImpactonBiologicalDiscovery andDrugDevelopment

Innovationsinchemicalbiologyhaveilluminatedspecificareasofbiologyandarefuelingthedevelopmentof newtherapeutics.Sincetheoriginaldiscoveryofpenicillin[34],chemicalapproachesandnewprobeshave helpedtoelucidatefundamentalbiosyntheticpathways inbacteriaandhavefacilitatedthedevelopmentofnew antibiotics(Chapter25).Likewise,chemicalbiology approacheshaveaidedinthedissectionofcomplex signalingpathwaysineukaryoticcellsandthedeterminationofmechanismsofactionandresistancefor newsmall-moleculedrugcandidates(Chapter26). Chemicalbiologyhasalsohelpedtouncoverimportantdevelopmentalpathwaysinwholeorganismsand characterizedetrimentalsideeffectsofdrugmolecules (Chapter27).Sincethebirthofimmunologyasfield, chemistryhasplayedakeyroleinestablishingthe principlesoftheadaptiveimmuneresponseandhas alsoaffordednewtoolsforlarge-scaleimmuneprofiling aswellasthenextgenerationofadjuvantmolecules (Chapter28).Neurosciencehasalsobenefittedfrom theadvancesinchemicalbiology,astheengineering ofnovelprotein–ligandpairshasaffordedmethodsfor cell-specificperturbationsandimaging invivo,which

hasbeeninstrumentalindeconstructingneuronal circuitsandmodulatinganimalbehavior(Chapter29). Finally,themultitudeofchemicalbiologyapproachesto discovernovelbioactivesmallmoleculesandelucidate theirmechanismsofactionhasgreatlyimprovedthe overallpipelinefordrugdiscovery(Chapter30).

1.7Outlook

Wehavebeenfortunatetowitnessandparticipateinthe evolutionofchemicalbiologyasamulti-disciplinary fieldthatintegratesdifferentfieldsofbasicscienceto understandbiologyanddisease.Wegreatlyappreciate theremarkablecontributionsofthechapterauthors andaregratefulfortheirinsightfulperspectivesoneach areaofchemicalbiology,whichwehopewillbehelpful andinspirethenextgenerationofscientists.Aswelook forwardtothefuture,remarkableadvancesinsynthetic chemistrycontinuetoprovideaccesstomorecomplex moleculesforinvestigation,whilenewandimproved instrumentationfromanalyticalchemistrywillallowfor moresensitiveandhigh-throughputanalysesofdiverse biomolecules.Excitingly,machine-learningandartificialintelligencemethodshavealreadybeguntoprovide newapproachestodesignandsynthesizebiomolecules

moreefficientlyandwithnovelproperties[35].The unionoftheseadvanceswith“omics”technologies shouldprovidenewopportunitiestorealizethepromise ofpersonalizedmedicinefordifferentdiseases.Aswe achievenewmilestonesinchemistryandbiologyfor

References

1 Kunz,H.(2002).EmilFischer–unequalledclassicist,masteroforganicchemistryresearch,and inspiredtrailblazerofbiologicalchemistry. Angew. Chem.Int.Ed. 41(23):4439–4451.

2 Stern,F.(2004).PaulEhrlich:thefounderof chemotherapy. Angew.Chem.Int.Ed. 43(33): 4254–4261.

3 Corey,E.J.andChengX-m(1989). TheLogicof ChemicalSynthesis.NewYork:Wiley,436pages.

4 Schreiber,S.L.,Kotz,J.D.,Li,M.etal.(2015). Advancingbiologicalunderstandingandtherapeutics discoverywithsmall-moleculeprobes. Cell 161(6): 1252–1265.

5 Schreiber,S.,Kapoor,T.M.,Gn,W.,andWiley,I. (2007). ChemicalBiology:FromSmallMolecules toSystemsBiologyandDrugDesign.Weinheim: Wiley-VCH.

6 Nicolaou,K.C.,Chakraborty,T.K.,Piscopio,A.D. etal.(1993).Totalsynthesisofrapamycin. J.Am. Chem.Soc. 115(10):4419–4420.

7 Agard,N.J.,Prescher,J.A.,andBertozzi,C.R.(2004). Astrain-promoted[3+2]azide-alkynecycloaddition forcovalentmodificationofbiomoleculesinliving systems. J.Am.Chem.Soc. 126(46):15046–15047.

8 Koide,Y.,Urano,Y.,Hanaoka,K.etal.(2011). Evolutionofgroup14rhodaminesasplatforms fornear-infraredfluorescenceprobesutilizing Photoinducedelectrontransfer. ACSChem.Biol. 6(6):600–608.

9 Caruthers,M.H.(2013).Thechemicalsynthesisof DNA/RNA:ourgifttoscience. J.Biol.Chem. 288(2): 1420–1427.

10 Mullis,K.,Faloona,F.,Scharf,S.etal.(1986). SpecificenzymaticamplificationofDNAinvitro: thepolymerasechainreaction. ColdSpringHarbor Symp.Quant.Biol. 51(Pt1):263–273.

11 Sahin,U.,Kariko,K.,andTureci,O.(2014). mRNA-basedtherapeutics–developinganew classofdrugs. Nat.Rev.DrugDiscovery 13(10): 759–780.

12 Doudna,J.A.(2020).Thepromiseandchallenge oftherapeuticgenomeediting. Nature 578(7794): 229–236.

globalhealth,wehopethatnewinnovationsinchemical biologywillcontinuetoexpandbeyondhumanhealth andprovidekeysolutionsforothermajorchallenges facingourplanet,includingfoodsecurity,energy production,andclimatechange.

13 Merrifield,B.(1986).Solidphasesynthesis. Science 232(4748):341–347.

14 Thompson,R.E.andMuir,T.W.(2020).Chemoenzymaticsemisynthesisofproteins. Chem.Rev. 120(6): 3051–3126.

15 Dawson,P.E.andKent,S.B.(2000).Synthesisof nativeproteinsbychemicalligation. Annu.Rev. Biochem. 69:923–960.

16 Pardo-Vargas,A.,Delbianco,M.,andSeeberger,P.H. (2018).Automatedglycanassemblyasanenabling technology. Curr.Opin.Chem.Biol. 46:48–55.

17 Cheng,C.W.,Wu,C.Y.,Hsu,W.L.,andWong,C.H. (2020).Programmableone-potsynthesisofoligosaccharides. Biochemistry 59(34):3078–3088.

18 Anslyn,E.V.andDougherty,D.A.(2006). Modern PhysicalOrganicChemistry.Sausalito,CA:University Science.

19 Nicolaou,K.C.,Snyder,S.A.,andCorey,E.J.(2003). ClassicsinTotalSynthesis.Weinheim:Wiley-VCH, xix,639pages:illp.

20 Schreiber,S.L.(1991).Chemistryandbiologyof theimmunophilinsandtheirimmunosuppressive ligands. Science 251(4991):283–287.

21 Sabatini,D.M.(2017).Twenty-fiveyearsofmTOR: uncoveringthelinkfromnutrientstogrowth. Proc. Natl.Acad.Sci.U.S.A. 114(45):11818–11825.

22 Fersht,A.(1999). StructureandMechanisminProteinScience:AGuidetoEnzymeCatalysisandProtein Folding.NewYork:W.H.Freeman,xxi,631pages: illustrationsp.

23 Liu,Y.,Patricelli,M.P.,andCravatt,B.F.(1999). Activity-basedproteinprofiling:theserine hydrolases. Proc.Natl.Acad.Sci.U.S.A. 96(26): 14694–14699.

24 Swain,A.L.,Miller,M.M.,Green,J.etal.(1990). X-raycrystallographicstructureofacomplex betweenasyntheticproteaseofhumanimmunodeficiencyvirus1andasubstrate-basedhydroxyethylamineinhibitor. Proc.Natl.Acad.Sci.U.S.A. 87(22):8805–8809.

25 Hendrickson,W.A.(1991).Determinationofmacromolecularstructuresfromanomalousdiffractionof synchrotronradiation. Science 254(5028):51–58.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.