Year 10 Geometry and Proofs - Questions and worked solutions - Level 1

Page 1


Year10

GeometryandProofs TestQuestions

Level1

Copyright©2024MathspacePtyLtd

Allrightsreserved.

Thisdocument,includingbutnotlimitedtoalltests,questions,answers,andanyaccompanying materials,isprotectedbycopyrightlawandisprovidedexclusivelyfortheuseofteachingstaff. Thecontenthereinisintendedtoassessspecificcurriculumoutcomesasoutlinedinthe MathematicsK–10Syllabus(2023)andisalignedwiththesubtopicscoveredwithinthe designatedMathspacetextbook.

PermittedUse:

-ThismaterialistobeusedsolelybytheteachingstaffofaMathspacecustomerschoolforthe purposeofassessingstudentswhoareofficiallyenrolledandhaveprocuredthenecessary textbook.

-Teachersareauthorisedtoedit,copy,andadjustthetestquestionsforthesolepurposeof tailoringtheassessmenttotheirstudents'needs.Allmodificationsmustretaintheoriginalpurpose ofassessingcurriculum-specificoutcomes.

-SharingofthismaterialisrestrictedtoteachingstaffwithinaMathspacecustomerschool.Itmay not,underanycircumstances,bedisclosedordistributedtostudentsoranythirdpartiesoutside theteachingstaff.

ProhibitedUse:

-Reproductionofthismaterial,inpartorwhole,foranypurposesotherthanthoseexplicitly permittedhereinisstrictlyprohibited.

-DistributionofthismaterialtostudentsorindividualsnotemployedbyaMathspacecustomer schoolasteachingstaffisforbidden.

-Useofthismaterialforanycommercialpurposes,orinanysettingoutsideofaMathspace customerschool,isnotallowed.

SpecialNotes:

-Eachtestcontainsatablethatidentifiesthecurriculumoutcomesitaddressesandreferences therelevantsubtopicfromthetextbook.Thisensuresalignmentwiththeeducationalgoalsand facilitateseaseofuseforteachers.

-Fullyworkedsolutionsandmarkingrubricsareincludedtoaidintheaccurateassessmentof studentperformance.

-Atableisprovidedattheendofeachsetofworkedsolutions,indicatingtheoverlapping questionsamongtestsofvaryingdifficultylevels.Thisisintendedtoassistinscalingand equitablyassessingstudentsundertakingdifferentlevelsofdifficulty.

Byusingthismaterial,youagreetoadheretothetermsoutlinedabove.Violationoftheseterms mayresultindisciplinaryactionandcouldleadtolegalproceedings.

Foranyinquiriesorfurtherclarificationonpermitteduse,pleasecontactMathspaceat info@mathspace.com.au

MathspaceYear102024NSWCurriculum

Chapter14:GeometricProofs

Test1 Name:

Remembertoshowallyourworking!

1 Core Foreachofthebiconditionalstatements,explainwhethertheyaretrueorfalse.Iffalse, justifyyouranswerwithacounterexample.

a.Anumberisoddifandonlyifitisnotamultipleoftwo.

b.Aquadrilateralisarectangleifandonlyifithastwopairsofparallelsides.

c.Anglesarecomplementaryifandonlyiftheyareadjacent.

d.Anumberisaperfectsquareifandonlyifitssquarerootisawholenumber.

e.Atriangleisarighttriangleifandonlyifthesumofthesquaresofthetwoshorter sidesisequaltothesquareofthelongestside.

2 Core Completetheproofforthetheorem:

Usingthediagram:

a.Determineifthereisenough informationtojustifytheconclusionthat

Inthediagrambelow,isastraightline.Whatadditionalinformationisneededtoprove ���� andarecongruentby:∆������∆������ a.Rightangle-Hypotenuse-Side congruence? b.Angle-Side-Anglecongruence?

Usingthediagram:

Quadrilateralhasand.Cisthepointatwhichthediagonals ������������||��������||���� ���� andintersect. ����

a.Whattypeofquadrilateralis? ��������

b.Ifcm,findthelengthof. ���� =10 ����

c.If,find: ∠������ =112°

ThediagrambelowshowsarighttriangleonaCartesianplane.Pointisthemidpointof �� andpointisthemidpointof. ����������

a.Findtheco-ordinatesofand. ����

TotalMarks=/70 Copyright©2024MathspacePtyLtd

QuestionSubtopicOutcome

114.01MA5-GEO-P-01.5

214.01MA5-GEO-P-01.5

314.02MA5-GEO-P-02.1

414.02MA5-GEO-P-02.1

514.03MA5-GEO-P-02.1

614.03MA5-GEO-P-02.1

714.04MA5-GEO-P-02.2

814.04MA5-GEO-P-02.2

914.05MA5-CIR-P-01.1

1014.05MA5-CIR-P-01.1

1114.04MA5-GEO-P-02.2

1214.06MA5-CIR-P-01.1

1314.05MA5-CIR-P-01.1

1414.07MA5-CIR-P-01.2

MA5-GEO-P-01.5

ApplylogicalreasoningtonumericalproblemsinvolvingplaneshapesContributesto: MA5-GEO-P-01establishesconditionsforcongruenttrianglesandsimilartrianglesandsolves problemsrelatingtopropertiesofsimilarfiguresandplaneshapes(Path:Ext)

MA5-GEO-P-02.1

Copyright©2024MathspacePtyLtd

ConstructformalproofsinvolvingcongruentandsimilartrianglesContributesto:MA5-GEO-P-02 constructsproofsinvolvingcongruenttrianglesandsimilartrianglesandprovespropertiesof planeshapes(Path:Ext)

MA5-GEO-P-02.2

ApplylogicalreasoningtoproofsinvolvingplaneshapesContributesto:MA5-GEO-P-02 constructsproofsinvolvingcongruenttrianglesandsimilartrianglesandprovespropertiesof planeshapes(Path:Ext)

MA5-CIR-P-01.1

ProveandapplyangleandchordpropertiesofcirclesContributesto:MA5-CIR-P-01applies deductivereasoningtoprovecircletheoremsandsolverelatedproblems(Path:Ext)

MA5-CIR-P-01.1

ProveandapplyangleandchordpropertiesofcirclesContributesto:MA5-CIR-P-01applies deductivereasoningtoprovecircletheoremsandsolverelatedproblems(Path:Ext)

MA5-CIR-P-01.2

ProveandapplytangentandsecantpropertiesofcirclesContributesto:MA5-CIR-P-01applies deductivereasoningtoprovecircletheoremsandsolverelatedproblems(Path:Ext)

Copyright©2024MathspacePtyLtd

GeometryandProofs

WorkedSolutions

Level1

Copyright©2024MathspacePtyLtd

Allrightsreserved.

Thisdocument,includingbutnotlimitedtoalltests,questions,answers,andanyaccompanying materials,isprotectedbycopyrightlawandisprovidedexclusivelyfortheuseofteachingstaff.The contenthereinisintendedtoassessspecificcurriculumoutcomesasoutlinedintheAustralian Curriculumv9andisalignedwiththesubtopicscoveredwithinthedesignatedMathspacetextbook.

PermittedUse:

-ThismaterialistobeusedsolelybytheteachingstaffofaMathspacecustomerschoolforthepurpose ofassessingstudentswhoareofficiallyenrolledandhaveprocuredthenecessarytextbook.

-Teachersareauthorizedtoedit,copy,andadjustthetestquestionsforthesolepurposeoftailoringthe assessmenttotheirstudents'needs.Allmodificationsmustretaintheoriginalpurposeofassessing curriculum-specificoutcomes.

-SharingofthismaterialisrestrictedtoteachingstaffwithinaMathspacecustomerschool.Itmaynot, underanycircumstances,bedisclosedordistributedtostudentsoranythirdpartiesoutsidethe teachingstaff.

ProhibitedUse:

-Reproductionofthismaterial,inpartorwhole,foranypurposesotherthanthoseexplicitlypermitted hereinisstrictlyprohibited.

-DistributionofthismaterialtostudentsorindividualsnotemployedbyaMathspacecustomerschool asteachingstaffisforbidden.

-Useofthismaterialforanycommercialpurposes,orinanysettingoutsideofaMathspacecustomer school,isnotallowed.

SpecialNotes:

-Eachtestcontainsatablethatidentifiesthecurriculumoutcomesitaddressesandreferencesthe relevantsubtopicfromthetextbook.Thisensuresalignmentwiththeeducationalgoalsandfacilitates easeofuseforteachers.

-Fullyworkedsolutionsandmarkingrubricsareincludedtoaidintheaccurateassessmentofstudent performance.

-Atableisprovidedattheendofeachsetofworkedsolutions,indicatingtheoverlappingquestions amongtestsofvaryingdifficultylevels.Thisisintendedtoassistinscalingandequitablyassessing studentsundertakingdifferentlevelsofdifficulty.

Byusingthismaterial,youagreetoadheretothetermsoutlinedabove.Violationofthesetermsmay resultindisciplinaryactionandcouldleadtolegalproceedings.

Foranyinquiriesorfurtherclarificationonpermitteduse,pleasecontactMathspaceat info@mathspace.com.au

MathspaceYear102024NSWCurriculum

Chapter14:GeometricProofs

Test1WorkedSolutions

1 a.True (1mark)

b.False (1mark)

Aparallelogramhastwopairsofparallelsidesbutis notarectangle. (1mark)

c.False (1mark)

Inthediagramsbelow(nottoscale):

● isadjacenttobuttheyarenot∠������∠������ complementary

● iscomplementarytobuttheyarenot∠������∠������ adjacent

(1markforasinglecounterexample)

d.True (1mark)

e.True (1mark)

2 (Given) ∠�� = ∠�� (Complementaryangles)

Statethatitistrue.

Statethatitisfalse. Giveavalidcounterexample.

Statethatitisfalse. Giveavalidcounterexample.

Statethatitistrue.

Statethatitistrue.

=90°

=90° (Substitute)

(Collectliketerms)

=90° (Dividebothsidesby )

=45°

=45°2 (Substitute)

=45° (0.5markforeachcompletedblank) Copyright©2024MathspacePtyLtd

a.(Given) ����||���� (Given) (0.5mark)

∠������ =127° (Co-interiorangles)

∠������ + ∠������ =180° (1mark) (Substitute)

∠������ +127°=180° ∠������ =127° (1mark)

(Subtractfrombothsides)

∠������ =53°127° (0.5mark)

Statetherelevantgiveninformation.

Useparallellinesrelationshipstomake linksbetweenknownandunknown angles.

Useknownangle(s)towriteanequation whichcanbesolvedfor. ∠������ Maketheconclusion.

b.(Given)

∠������ =62°

∠������ + ∠������ + ∠������ =180° (Supplementaryangles) (1mark)

53°+ ∠������ +62°=180° (Substituteand) ∠������ =53° ∠������ =62° (1mark) (Evaluatethesum)

∠������ +115°=180° (0.5mark) (Subtractfrombothsides)

∠������ =65°115° (0.5mark)

4 a. Yes (1mark)

Statetherelevantgiveninformation.

Useanglerelationshipstomakelinks betweenknownandunknownangles.

Useknownangle(s)tofind, ∠������ showingworking.

Maketheconclusion.

Byoppositeangles ∠2= ∠4. ∠1= ∠5 meansthat(correspondingangles). ��||�� Giventhenand ��||����||��∠4= ∠12 (correspondingangles).Bysubstitution ∠2= ∠12

b.(Given) ��||�� (Given) (0.5mark)

∠3= ∠11 (Correspondingangles) (1mark)

7= ∠11 (Substitute) (1mark)

3= ∠7 ∠7= ∠11 (Correspondingangles) (0.5mark)

5 a. (1mark) ����

(1mark)

Statetherelevantgiveninformation. Useparallellinesrelationshipsandgiven informationtomakelinksbetweenangles. Maketheconclusion.

Fromthediagram ∠������ = ∠������ =90° (R)andiscommon(S),sotosatisfy ���� theRHStestthehypotenusesmustbeof equallength.

Fromthediagram ∠������ = ∠������ =90° (A)andiscommon(S),sotosatisfy ���� theASAtesttheanglesontheotherside ofthecommonsidemustbeequal.

6 (Given) ���� =

(Given) (1mark) ����

(Verticallyoppositeangles)

(1mark) (Alternateangles) (1mark)

Statetherelevantgiveninformation. Useanglerelationshipsandparallellines relationshipstomakelinksbetween angles.

Alternatively,(Alternateangles) ∠������ = ∠������ (AAS) (1mark) ∴∆������≡∆������

7 a.Thereisinformationgivenforonlyonepairof correspondingsidesandonepairofangles. (1mark)

Eachsimilaritytestrequiresinformationaboutthree pairsofsidesorangles. (1mark)

b.(RHS) ���� ���� =2 (SAS) ���� ���� =2 (AAA) ∠������ = ∠������ (AAA) ∠������ = ∠������ (1markeachforanythreeoftheabove)

8 (1mark) 15 10 =1.5 (1mark)

Concludethatthetrianglesarecongruent, statingtherelevanttest.

Notethatinformationisgivenfor2pairs ofsides/anglesonly.

Notethateachtestrequiresinformation for3pairsofsides/angles.

Findtheratiooftheshortestsides

Findtheratioofthemiddlesides

75 50 =1.5

45 30 =1.5 (1mark)

SothetrianglesaresimilarbySSS. (1 mark)

9 a.Parallelogram (1mark)

b. ���� = 1 2 ���� = 1 2 10() cm (1mark) =5

c. i. (1mark) ∠������ =112° ii. ∠������ =180°112° (1mark) =68° d. ���� = ���� ���� = ����

(1markforanythreeoftheabove)

Findtheratioofthelongestsides Statethesimilaritytest.

Aquadrilateralwithbothpairsofopposite sidesareparallelisaparallelogram.

Diagonalsofaparallelogrambisecteach other

Substitutecm ���� =10

Evaluate

Oppositeanglesinaparallelogramare congruent

Co-interioranglesinaparallelogramare supplementary

Stateanytwoadjacentsidesareequal

Statethediagonalsareperpendicular Stateadiagonalbisectsoneoftheangles itpassesthrough 10

Usethemidpointformulafor ��

Simplify

c.Slopeof

(1mark)

Usethemidpointformulafor ��

Simplify

Usethedistanceformulafor ����

Substitutetheco-ordinates

Simplify

Substitutetheco-ordinatesfor ����

Simplify

Maketheconclusion,linkingtoprevious working

Usethegradientformulafor ����

Substitutetheco-ordinates

Simplify

Statetheslopeof ����

Maketheconclusion,linkingtoprevious working

ishorizontalsoalsohasaslopeof (1mark) ���� 0

Theslopesofandareequalso������������

11 (1mark)

(1mark)

(1mark)

12 (1mark) ∠������ =2(46)=92 (Angleatcentreistwiceangleatcircumference) (1mark)

2�� +92=180 (Anglesumoftriangle)

Writetheratioofonepairofknownsides

Writetheratioofanotherpairofknown sides

Statethattheincludedanglesarethe same

Writethecongruencystatementandtest

Writeanequationfortheratioofthefinal pairofsides

Substitutethevaluesofthesides

Takethereciprocalofbothsides

Multiplybothsidesby 20

Evaluatetheproduct

Subtractfrombothsides 5

Dividebothsidesby 2

Usecentreangletheorem

Identifiesisoscelestriangleanduseangle sumtoequateto180

13

2�� =98 =49 (1mark) �� Solvesforx

Gradientof: ����

(1mark)

Gradientof: ���� (1mark)

(1mark)

andareparallel (0.5mark)

Gradientof: ����

Gradientof: ���� (1mark)

andareparallel (0.5mark)

Bothpairsofoppositesidesareparallel,soisa �������� parallelogram. (0.5mark)

Writethegradientof ����

Usethegradientformulafor ����

Findthegradientof ����

Concludethatandareparallel ��������

Findthegradientof ����

Findthegradientof ����

Concludethatandareparallel ��������

Concludethatisaparallelogram ��������

= ����(����������) (0.5marks)

14 (0.5marks)

= ����(������������������������������������������������) (0.5

∠������ = ∠������ =90(��������������������������������������������������������) marks)

(0.5marks)

Usepropertiestoprovecongruenceofthe twotrianglesusingRHSmethod

=2+ �� =2+10=8

TotalMarks:70 Copyright©2024MathspacePtyLtd

Usecongruenceoftrianglestoequate correspondingsidelengthsandsolvefor x

Equatecorrespondingsidelengthsand substitutextofindFH

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Year 10 Geometry and Proofs - Questions and worked solutions - Level 1 by Chris Velis - Issuu