Solutions manual for calculus single variable 6th edition by hughes hallett

Page 1

95

Chapter Two /SOLUTIONS

2.1 SOLUTIONS

95

SOLUTIONS MANUAL for Calculus Single Variable 6th Edition by Hughes-Hallett Download: https://downloadlink.org/p/solutions-manual-for-calculus-singlevariable-6th-edition-by-hughes-hallett/ TEST BANK for Calculus Single Variable 6th Edition by Hughes-Hallett Download: https://downloadlink.org/p/test-bank-for-calculus-single-variable6th-edition-by-hughes-hallett/

CHAPTER TWO Solutions for Section 2.1 Exercises 1. For t between 2 and 5, we have Average velocity =

∆s 400 − 135 265 = = km/hr. ∆t 5−2 3

The average velocity on this part of the trip was 265/3 km/hr. 2. The average velocity over a time period is the change in position divided by the change in time. Since the function x(t) gives the position of the particle, we find the values of x(0) = −2 and x(4) = −6. Using these values, we find Average velocity =

∆x(t) x(4) − x(0) −6 − (−2) = = = −1 meters/sec. ∆t 4−0 4

3. The average velocity over a time period is the change in position divided by the change in time. Since the function x(t) gives the position of the particle, we find the values of x(2) = 14 and x(8) = −4. Using these values, we find Average velocity =

∆x(t) x(8) − x(2) −4 − 14 = = = −3 angstroms/sec. ∆t 8−2 6

4. The average velocity over a time period is the change in position divided by the change in time. Since the function s(t) gives the distance of the particle from a point, we read off the graph that s(0) = 1 and s(3) = 4. Thus, Average velocity =

∆s(t) s(3) − s(0) 4−1 = = = 1 meter/sec. ∆t 3−0 3

5. The average velocity over a time period is the change in position divided by the change in time. Since the function s(t) gives the distance of the particle from a point, we read off the graph that s(1) = 2 and s(3) = 6. Thus, Average velocity =

∆s(t) s(3) − s(1) 6−2 = = = 2 meters/sec. ∆t 3−1 2

6. The average velocity over a time period is the change in position divided by the change in time. Since the function s(t) gives the distance of the particle from a point, we find the values of s(2) = e2 − 1 = 6.389 and s(4) = e4 − 1 = 53.598. Using these values, we find Average velocity =

∆s(t) s(4) − s(2) 53.598 − 6.389 = = = 23.605 µm/sec. ∆t 4−2 2

7. The average velocity over a time period is the change in the distance divided by the change √ in time. Since the function √s(t) gives the distance of the particle from a point, we find the values of s(π/3) = 4 + 3 3/2 and s(7π/3) = 4 + 3 3/2. Using these values, we find √ √ ∆s(t) s(7π/3) − s(π/3) 4 + 3 3/2 − (4 + 3 3/2) Average velocity = = = = 0 cm/sec. ∆t 7π/3 − π/3 2π Though the particle moves, its average velocity is zero, since it is at the same position at t = π/3 and t = 7π/3.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.