February16,2025
Abstract
Thispaperpresentsanentirelynovelandcomprehensiveframeworkforintegratinghemp-derivedcarbonnanosheets(HDCNS),alsoknownashempgraphene,into compositematerialsacrossabroadspectrumofmatrices.Weintroducethe Diamond CompositesTheory andprovidedetailedrecipes,includingthe DiamondComposite Recipe —asustainable,organicformulationcomprisinghempoil,HDCNS,andhemp lignin,augmentedwithstrategicadditivesandupcycledwaste(“trash”).Inaddition,weexploreintegrationintoavarietyofothermatrices,rangingfromorganicand bio-basedsystemstoconventionalthermosettingresins,bio-derivedpolyesters,natural rubbers,andadvancedhigh-performancepolymers.Comprehensivescientificanalysis, mathematicalmodeling,andexperimentalrecipesareprovidedtosupportprototyping andoptimization.Allprotocols,recipes,anddataarereleasedunderthe Creative CommonsAttribution4.0International(CCBY4.0) licensetofostercollaborationandreproducibilityinsustainablecompositematerialsresearch[1–3]. Contents
1Introduction3 2LiteratureReviewandBackground3
3DiamondCompositesTheory:FormulationandRecipes3
3.1TheDiamondCompositeRecipe.........................3
3.2MathematicalModelingofCompositeProperties................4
4IntegrationofHDCNSintoOtherCompositeMatrices4
4.11.OrganicandBio-BasedMatrices(Sustainable&Biodegradable)......5
4.22.ConventionalEpoxyandThermosettingResins...............5
4.33.Bio-DerivedPolyestersandPolyurethanes..................5
4.44.NaturalRubberandLatex-BasedMatrices.................6
4.55.AdvancedHigh-PerformancePolymerMatrices...............6
4.6ChoosingtheRightMatrix............................6
5MathematicalModelingandAnalysis6
6ExperimentalRecipesandPrototyping7
6.1DiamondCompositeRecipeProtocol......................7
6.2AlternativeRecipesforOtherMatrices.....................7
7OpenSourceRelease8 8PotentialApplications8 9Discussion8 10Conclusion9
1Introduction
Theneedforsustainableandhigh-performancecompositematerialshasneverbeengreater. Advancesinrenewablematerialshavespurredresearchintonovelnanomaterials,suchas hemp-derivedcarbonnanosheets(HDCNS),whichexhibitpropertiessimilartoconventional graphene,includinghighspecificsurfacearea,excellentelectricalconductivity,andsuperior mechanicalstrength[1,4,10].However,whilepreviousstudieshavefocusedoncarbonized hempfibersandotherderivatives[5–7],thedirectintegrationofHDCNSintocomposite matricesremainsanunexploredfrontier.
Thispaperintroducesthe DiamondCompositesTheory —agroundbreakingstrategy forformulatingcompositesbyintegratingHDCNSintovariousmatrices.Theapproach notonlydetailsthe DiamondCompositeRecipe butalsoencompassesrecipesforintegratingHDCNSintoallotherviablematrices,coveringeverypossibility,allthesupporting science,mathematicalmodels,andexperimentalprotocols.Inlinewithopenscienceprinciples,everyaspectofthisworkisreleasedunderthe CCBY4.0license (see https: //creativecommons.org/licenses/by/4.0/),encouragingcommunitycollaborationand acceleratingtheadoptionofsustainablecompositetechnologies.
2LiteratureReviewandBackground
Recentresearchhasdemonstratedthepotentialofhemp-basedcarbonnanostructuresfor energystorage,electronics,andadvancedmaterialsapplications[1,2,19].Traditionalcompositematerialshavereliedonvariousmatricesrangingfrompetroleum-basedepoxiesto bio-derivedresins.However,theintegrationofHDCNSintothesesystemshasnotbeen thoroughlyexplored.
Studieshaveshownthatrenewablematrices,suchashempoilepoxy[16]andhemplignin resin[17],offersustainablealternativeswithnotableenvironmentalbenefits.Similarly,advancedcuringmethodsandeco-friendlyadditiveshavebeenpivotalinenhancingcomposite performance[13,14,18].Buildingonthesefindings,ourworkprovidesaunifiedframework thatspansallpossibilitiesforHDCNSintegrationintocompositematerials.
3DiamondCompositesTheory:FormulationandRecipes
Thecoreofthisworkisthe DiamondCompositesTheory,whichproposesanovelcomposite materialformulationbasedonthefollowingcomponents.
3.1TheDiamondCompositeRecipe
Thisrecipeisasustainable,organicformulationintegratingHDCNSasthereinforcement, withthefollowingcomponents:
• MatrixComponents:
–HempOilEpoxy: Functionalizedhempoilwithepoxidation,servingasarenewablethermosettingresin[16].
–HempLigninResin: Chemicallymodifiedligninprovidingenhancedthermal stability[17].
• Reinforcement:
–HDCNS(HempGraphene): Offerssuperiormechanicalreinforcement,electricalconductivity,andthermalmanagement[1,2,19].
• Additives:
–OrganicAdditives: Bio-basedplasticizersandcross-linkingagentstoenhance processabilityandflexibility[14,18].
–UpcycledWaste(“Trash”): Reclaimedorganicwastematerialsincorporated toreducecostandenvironmentalimpact[15].
• CuringMethods:
–OptimizedThermalCuring: Controlledtemperatureprofilesforoptimalcrosslinkingofthehempoilepoxyandlignincomponents[13].
–AlternativeCuringTechniques: UVorcatalyticcuringmethodstofurther reduceenergyconsumptionandenvironmentalfootprint[20].
3.2MathematicalModelingofCompositeProperties
Topredicttheperformanceofthecompositematerials,classicalmicromechanicalmodelsare employed.Forinstance,theruleofmixturesfortheelasticmodulus(Ec)ofthecomposite isgivenby:
Ec = Vf Ef + VmEm, (1) where Vf and Vm arethevolumefractions,and Ef and Em aretheelasticmoduliofthe reinforcement(HDCNS)andthematrix(e.g.,hempoilepoxy),respectively[12].Additional modelsforthermalconductivity,fracturetoughness,andelectricalconductivityarealso applicable,allowingfortheoptimizationofcompositepropertiesthroughprecisecontrolof formulationparameters.
4IntegrationofHDCNSintoOtherCompositeMatrices
BeyondtheDiamondCompositeRecipe,HDCNScanbeintegratedintoavarietyofother matrices.Belowisanexhaustiveclassificationofpotentialmatrixmaterialsalongwith correspondingrecipes.
4.11.OrganicandBio-BasedMatrices(Sustainable&Biodegradable)
Hemp-BasedMatrices:
• HempOilEpoxy: AsdescribedintheDiamondCompositeRecipe.
• HempLigninResin: Usedtoimprovethermalandmechanicalproperties.
• HempSeedOilPolyurethane: Suitableforcreatingeitherflexibleorrigidbiocomposites.
OtherPlant-BasedMatrices:
• LinseedOil-BasedEpoxy: Renewableandnaturallydrying,providingarobust polymermatrix.
• Soy-BasedEpoxyResin: Widelyusedinautomotivebio-composites.
• CashewNutShellLiquidEpoxy: Offersenhanceddurabilityandchemicalresistance.
• Starch-BasedPolymers: ModifiedstarchreinforcedwithHDCNSforbiodegradable applications.
4.22.ConventionalEpoxyandThermosettingResins
• Bisphenol-AEpoxyResins: Commoninaerospace,thoughlesssustainable.
• Bisphenol-FEpoxyResins: Providelowerviscosityandimprovedmechanicalperformance.
• PhenolicResins: Knownforhighthermalandchemicalresistance.
• CyanateEsterResins: Exhibithigh-temperatureresistanceforspaceapplications.
• Polybenzoxazine: Anext-generationthermosettingpolymerwithexceptionalthermalstability.
4.33.Bio-DerivedPolyestersandPolyurethanes
• PolylacticAcid(PLA)Composites: Biodegradablebutinherentlybrittle.
• Polyhydroxyalkanoates(PHA): Biodegradablepolymerssynthesizedbybacteria.
• Bio-BasedPolyurethane(PU): Canbeproducedusingnaturaloilsforflexible compositeapplications.
4.44.NaturalRubberandLatex-BasedMatrices
• HeveaBrasiliensisLatex: Providesflexibility,stretchability,andimpactabsorption.
• GuayuleLatex: Ahypoallergenicalternativewithsimilarproperties.
4.55.AdvancedHigh-PerformancePolymerMatrices
Foraerospaceanddefenseapplications,high-performancepolymersarepreferred:
• PolyetherEtherKetone(PEEK): High-temperatureresistantandextensivelyused inaerospace.
• Polyimides: Maintainstabilityattemperaturesexceeding300°C.
• LiquidCrystalPolymers(LCPs): Offerhighstrengthandexceptionalheatresistance.
4.6ChoosingtheRightMatrix
• Lightweight,BiodegradableComposites: Hempoilepoxyorsoy-basedresin.
• High-PerformanceAerospaceComposites: Polyimidesorcyanateesterresins.
• FlexibleApplications: Naturalrubberorbio-basedpolyurethane.
• ConductiveApplications: EpoxyresinswithcontrolleddispersionofHDCNS.
EachmatrixoptionisaccompaniedbyatailoredrecipethatintegratesHDCNS,ensuring optimaldispersion,interfacialbonding,andperformanceenhancement.
5MathematicalModelingandAnalysis
Todesigncompositeswithpredictableproperties,rigorousmathematicalmodelsareapplied. Inadditiontotheruleofmixturesdiscussedearlier,theHalpin-Tsaiequationsprovideinsight intothereinforcementefficiencyofHDCNS:
and ξ isashapefactorrelatedtotheaspectratioofHDCNS[12].Suchmodelsallowfor optimizationofcompositeformulationsbyadjustingvolumefractions,matrixproperties, andprocessingconditions.