Real-TimeInequality∗
Thomas Blanchet (ParisSchoolofEconomics)
Emmanuel Saez (UCBerkeleyandNBER)
Gabriel Zucman (UCBerkeleyandNBER)
November23,2023
Abstract
ThispaperconstructsmonthlydistributionsofnationalincomefortheUnitedStates.We developamethodologytodisaggregateannualdistributionsandprojectmonthlychanges inatimelymannerbycombininghigh-frequencypublicdatasources.Thisallowsus toestimategrowthbysocialgroupsassoonasquarterlymacroeconomicgrowthnumbersarereleased,andtotrackthedistributionalimpactsofgovernmentpoliciesduring andintheaftermathofrecessionsinrealtime.Wetestandvalidateourmethodologybyimplementingitretrospectivelybackto1976.Estimatesareavailableat https: //realtimeinequality.org andareregularlyupdatedwithnewreleasesofthenational accounts.
JEL Codes:E01,H2,H5,J3.
∗ ThomasBlanchet:thomas.blanchet@wid.world;EmmanuelSaez:saez@econ.berkeley.edu;GabrielZucman: zucman@berkeley.edu.WethankAkcanBalkir,AnandBharadwaj,andJamesFengforoutstandingresearch assistance,andHeatherBoushey,DennisFixler,MarinaGindelsky,DamonJones,RobertKornfeld,GregLeiserson,DannyYagan,andnumerousconferenceparticipantsforhelpfulcommentsandreactions.Weacknowledge financialsupportfromtheCenterforEquitableGrowthatUCBerkeley,theCarnegieFoundation,NSFgrant SES-1559014,theStoneFoundation,andtheEuropeanResearchCouncil.Thispaperissupplementedbyawebsite, https://realtimeinequality.org,withregularlyupdatedinequalityanddistributionalgrowthestimates anddetailedvisualizations.Allourdataandprogramsarealsopostedonlineatthisaddress.
1Introduction
Amajorgapinglobaleconomicstatisticsisthelackoftimelyinformationonthedistribution ofaggregateincome.Thankstoasophisticatedsystemofnationalaccountsstatistics,macroeconomicdataarepublishedalmostinrealtime.IntheUnitedStates,estimatesofquarterly grossdomesticproductarereleasedlessthanamonthaftertheendofeachquarter;monthly aggregateincomewithinamonth.Thesefiguresareavitalinputfortheanalysisofthebusiness cycleandtheconductofmonetaryandfiscalpolicy.Buttheyarenotdisaggregatedbyincome level,makingithardtotrackhigh-frequencychangesintheeconomicconditionsofthedifferent socialgroups.Thisgaplimitstheabilityofpolicymakerstodesigneffectivemonetaryandfiscal policiesincrisissituationandintheaftermathofrecessions.Italsorestrictstheabilityof economiststostudytheeffectsofthesepoliciesandtotesttheoriesofthebusinesscyclefor whichinfra-annualdistributionaldataarenecessary.
OurpaperattemptstoaddressthisgapbycreatingmonthlydistributionsofnationalincomefortheUnitedStates,thusputtingdistributionalstatisticsonanequalfootingwith macroeconomicstatistics.Weproposeamethodologytocombinetheinformationcontained inhigh-frequencypublicdatasources,includingmonthlyhouseholdandemploymentsurveys, quarterlycensusesofemploymentandwages,andmonthlyandquarterlynationalaccounts series.Theresultofthiscombinationisasetofharmonizedmonthlymicro-files,available at https://realtimeinequality.org,inwhichanobservationisasyntheticadult(obtained bystatisticallymatchingpublicmicro-data)andvariablesincludeincomeanditscomponents. Thesevariablesadduptotheirrespectivenationalaccountstotalsandtheirdistributionsare consistentwiththoseobservedintherawinputdata.
Thesefilesunifyinformationcurrentlyscatteredindisparatedatasources,allowingfora morecomprehensiveanalysisofthebusinesscycle.Forinstance,anemergingbodyofevidence usinghouseholdsurveysshowsacompressioninthewagedistributionfollowingtheheightofthe Covid-19pandemic(e.g.,Autor,DubeandMcGrew,2023).Meanwhilethereisalsoevidence fromSocialSecuritydataofasignificantincreaseintheconcentrationofwagesearnedbythetop 1%,agroupnotwellcapturedbyhouseholdsurveys(e.g.,GouldandKandra,2022).Because thesourcesarescattered,wecurrentlylackacomprehensiveassessmentofoveralltrendsin wageinequalityinthepost-Covidperiod.Ourworkproposesamethodologytocombineall theexistingevidenceinaunifiedframework.Ahistoricalprecedentisthenationalaccounts themselves,whichwerecreatedinthecontextoftheGreatDepressiontounifydisparatebusiness surveysintoaconsistentandcomprehensivesystem.
1
Themainstepsofourmethodologycanbesummarizedasfollows.Westartwiththe annualdistributionalnationalaccountsmicro-filesofPiketty,SaezandZucman(2018),which allocate100%ofannualnationalincome,householdwealth,andmanycomponentsofthese macroeconomicaggregatesusingprimarilyindividualtaxdata.Wethenstatisticallymatch thesefilestoCurrentPopulationSurveyandSurveyofConsumerFinancemicro-datausing optimaltransportmatchingmethods.Toourknowledgethisisthefirsttimesucha“one-to-one” statisticalmatchisconducted.Thisallowsustobringgender,race,andeducationvariables— whicharemissingintaxdata—intothePiketty,SaezandZucman(2018)distributionalnational accounts,thusallowingustoproducethefirststatisticsonthedistributionofnationalincome bygender,race,andeducationalattainment.
Wethenmovetohigherfrequencyandestimatemonthlystatisticsinthreesteps.First, takingmovingaveragesofcurrentandadjacent-yearannualmicro-data,orusingthelatestfile (2021)from2021onwards,wecreatemonthlyfilesbyrescalingeachcomponentofnationalincometoitsmonthlyseasonally-adjustedaggregatevalue.Second,weincorporatehigh-frequency changesinthewagedistributionusingmonthlysurveymicro-dataandtabulationsofmonthly andquarterlysurveysandadministrativerecords.BuildingontheimportantworkofLee(2020), weshowthatpublictabulationsoftheQuarterlyCensusofEmploymentandWagesby6-digits NAICSindustry × county × ownershipsector(publicvs.private)canbeusedtopredictchanges inwageinequalityremarkablywell,includingatthetopofthedistribution.Forexample,the shareofwagesearnedinthetop1%ofindustries × countieswiththehighestaveragewage(e.g., securitiesbrokerageinNewYorkcounty;InternetpublishinginSantaClaracounty)isstrongly correlatedwiththeshareofwagesearnedbythetop1%workers.Thisallowsustoproject changesinwageswithinthetop10%ofthedistributionreliably.Forthebottom90%,whichis wellcoveredbyhouseholdsurveys,weestimatereal-timewagelevelsbyaveragingpredictions fromtabulatedemploymentsurveysandfromthemonthlyCurrentPopulationSurvey.
Third,wemodelchangesinothercomponentsofpretaxandposttaxnationalincome.For businessandcapitalincome,weaccountforchangesintheaggregatevalueofeachcomponent (rentalincome,corporateprofits,etc.)andassumethatwithin-componentdistributionsare unchangedintheshortterm.Forgovernmenttransfers,wemodelthedistributionofnew programsusingprogramparameters,eligibilityrules,andpublicsources.
Wetestandvalidateourmethodologybyapplyingitretrospectivelybackto1976.Comparingpredictedtoobservedincomechanges,wefindthatwecorrectlyanticipatewhetherincome isgrowingorfallingabout80%–90%ofthetimeforthedifferentincomegroups.Weprovide
2
quantificationofthebiasandnoiseofourprojections,whichforallincomeconcepts(e.g.,pretax vs.posttax)andincomegroupsarefoundtobelimited.Ourmethodologydeliversaccurate predictionsduringandintheimmediateaftermathofrecessions,whenreal-timeestimatesare mostvaluablefromapolicyperspective.
Theintuitionforwhyourmethodologygenerallydeliversreliableresultsisthefollowing. About30%ofnationalincomeiscapitalincome.Becausewealthisastockvariable,theconcentrationofthevariouscomponentsofcapitalincomeisslow-movingathighfrequency.The impactofcapitalincomeontotalincomeinequalityismostlydrivenbychangesinthesizeof thedifferentcomponentsofaggregatecapitalincome—suchascorporateprofitsandhousing rents—overthebusinesscycle,changeswhicharecapturedbyourmethodology.Forlaborincome,whichaccountsforabout70%ofnationalincome,short-termchangesinthedistribution canbelarge,asunemploymentspikesinrecessions.Butincontrasttocapitalincome,forlabor incomewedonotassumestabledistributions:wecapturehigh-frequencydistributionalchanges thankstoourcombinationofhouseholdandemploymentsurveys.
Becauseourmethodologyonlyusespublicdata,itcaneasilybereplicated,tested,andextended.Lookingforward,itcouldbeenrichedbycombiningadministrativedatasetswithingovernmentagenciesorbyincorporatingadditionaldatasources,suchasprivatesectorinformation (Chettyetal.,2023).Weviewourpaperasconstructingaprototypeofreal-timedistributions combiningallcurrentlypubliclyavailabledatasources—aprototypethatcouldberefinedusing additionaldataandeventuallyincorporatedintoofficialnationalaccountstatistics.1
Therestofthispaperisorganizedasfollows.InSection2werelateourworktothe literature.Sections3andSections4detailourmethodology.Section5providesvalidation tests.InSection6westudythemonth-to-monthdynamicsofincomeinequalityduringthe Covid-19pandemicandinitsaftermath,andcontrastitwiththeGreatRecessionof2008–2009.WediscussracialinequalityinSection7andconcludeinSection8.
2RelatedLiterature
2.1PreviousAttemptsatEstimatingInequalityataHighFrequency Therehasbeenandthereareongoingeffortstoprovidetimelyestimatesofinequalityinthe UnitedStates.
1 TheFederalReservehaspublishedDistributionalFinancialAccountssince2019,distributingaggregate householdwealthquarterly(Battyetal.,2019).Forincome,theBureauofEconomicAnalysis(BEA)distributes annualpersonalincomeandhasexploredthefeasibilityofhigher-frequencystatistics(Fixler,Gindelsky,and Kornfeld,2021).WehavegreatlybenefitedfromdiscussionswiththeFederalReserveandBEAteams.
3
TheFederalReserveBankofAtlantamaintainsamonthlywagegrowthtracker,constructed usingmicrodatafromtheCurrentPopulationSurveyfollowingamethodologydevelopedin Dalyetal.(2011).2 Thetrackerreportsthemedianpercentchangeinthehourlywageof employedindividualsobserved12monthsapart.Breakdownsby,e.g.,wagequartiles,gender, occupation,andcensusdivisionsareshown.Althoughausefultool,thiswagetrackerhas somelimitations.First,itdoesnotaccountfornon-workers,hencethestatisticsdonotmap ontooverallincomeinequality.Second,thedataaretop-codedat $150,000inannualwage, roughlythe95th percentileofthewagedistribution.Theymissthedynamicofincomeinthe top5%,agroupthatearnsaboutaquarterofallwages.IncontrasttotheAtlantawagegrowth tracker,ourstatisticsincludenon-workers,topearners,andallotherformsofincomebeyond wageincome(e.g.,capitalincomeandtransfers),makingitpossibletodistributeallofnational incomeandtodecomposeitsgrowth.
Since2019,theFederalReservehaspublishedDistributionalFinancialAccounts(DFA),distributingaggregatehouseholdwealthatthequarterlyfrequency(Battyetal.,2019).Following SaezandZucman(2016),theDFAallocatetheofficialFederalReserveFinancialAccountstotals acrossthepopulation.IncontrasttoSaezandZucman(2016)whoprimarilyrelyonindividual incometaxdataandthecapitalizationmethodforthisallocation,theFederalReserveusesthe SurveyofConsumerFinances,atriennalsurveyofabout6,000families.Inthispaper,although ourfocusisprimarilyonincome,wealsoconstructreal-timeestimatesofwealthinequality. AsdetailedinSection6.4,theevolutionofwealthinequalityweobtainisconsistentwiththe DFAestimates.Ourvalue-addedistocapturethetopofthedistributionallthewaytothetop 0.01%,toprovidelongertimeseries(backto1976,whiletheDFAstartsin1989),tohavemore distributionalinformationattheannualfrequency(duetotheannualnatureoftaxdata,as opposedtothetriennalnatureoftheSurveyofConsumerFinances),andtoprovidecurrent-day estimatesofwealthinequality(updateddailyon https://realtimeinequality.org),based ondailychangesinstockmarketindices.
Recently,Fixler,Gindelsky,andKornfeld(2021)buildontheannualdistributionalpersonalincomestatisticscreatedbytheBureauofEconomicAnalysis(Fixleretal.,2017)to explorethefeasibilityofaquarterlydistributionofpersonalincome.ThemainmethodologicaldifferencewithourworkisthatFixler,GindelskyandKornfeld(2021)donotattempt toprojectchangesindistributionswithincomponents,butsimplyrescaletheannualpersonal incometotalscomponentbycomponenttomatchthecorrespondingquarterlytotals.Asthey
2 See https://www.atlantafed.org/chcs/wage-growth-tracker
4
show(andasweconfirminSection5.3below),thismethodologyproducesreasonableresults inyearsofnormalgrowthbutsignificantlyunderestimatesinequalityduringrecessions.Akey contributionofourworkistodemonstratethatamoresophisticatedmethodology—projecting changesinthedistributionoflaborincomeusinghigh-frequencyhouseholdandemployment surveys—overcomesthisissue.Thereareanumberofadditionalmethodologicaldifferences betweenthetwoprojects.IncontrasttoFixler,GindelskyandKornfeld(2021)whodistribute personalincome,wedistributenationalincome,theaggregateusedtocomputemacroeconomic growth.3 Westartfromannualestimateswhicharelargelybasedonindividualtaxreturndata, whileFixler,GindelskyandKornfeld(2021)relyprimarilyontheCurrentPopulationSurvey, makingithardertoprovideestimateswithinthetop10%.Thesedifferencesnotwithstanding, bothprojectssharethesameobjectiveofcreatingtimelyinequalitystatisticsconsistentwith thenationalaccounts.OurworkwasinspiredbydiscussionswithstaffoftheBureauofEconomicAnalysisandtheongoingdialoguebetweenacademicsandresearcherswithingovernment agenciesisinourviewhighlyvaluable.
2.2ImpactsoftheCovid-19PandemiconInequality
OurworkalsorelatestotheliteratureontheimpactoftheCovid-19pandemiconinequality, recentlysurveyedinStantcheva(2022).Theliteratureemphasizestheequalizingeffectsof governmentinterventioninhigh-incomecountries,whilesuggestingseveralchannelsthrough whichthepandemicmayeventuallywideneconomicdisparities.IntheUScontext,Parolinet al.(2022)usethemonthlyCurrentPopulationSurveyandtheSurveyofIncomeandProgram Participationtoproducemonthlypovertyratesinrealtime.Severalstudiesattempttoanalyze inequalityinrealtimeincountriesotherthantheUnitedStates.Forexample,Aspachsetal. (2020)andBounieetal.(2020)usemicro-levelbankaccountdatatoconstructhigh-frequency distributionaldataforSpainandFrancerespectively.
Relativetothisbodyofwork,ourmaincontributionistoprovideageneralmethodologythat canbeappliedtoallbusinesscyclesandcouldbeimplementedthroughouttheworld.Themain featureofourmethodologyisitscomprehensivecharacter(capturing100%ofnationalincome), timeliness(estimatesareavailableonlinewithinamonth),andgranularity(withestimates availablefromthebottom50%tothetop0.01%forpretaxincome,posttaxincome,disposable income,andwealth).
3 SeeSaezandZucman(2020)foradiscussionofthedifferencesbetweenthesetwoconceptsandtheirimplications.
5
3RescalingtoMatchMonthlyIncomeAggregates
Therearetwomainstepsinourmethodology.First,werescaleexistingannualincomedistributionstomatchmonthlymacroeconomicincometotals,incomecomponentbycomponent. Secondandmostimportantly,weincorporateinformationonchangesinthedistributionof incomewithinkeycomponents,mostnotablywageincome.InthisSectionwedefineandconstructourmonthlyaggregatesandexplainhowwerescaleannualdistributionstomatchthese aggregates,beforeturningtochangesindistributionswithincomponentsinSection4.
3.1DefinitionofIncome
Ourgoalistoestimatethemonthlyandquarterlydistributionsoftheincomeconceptsstudiedin Piketty,SaezandZucman(2018)andinthedistributionalnationalaccountsliterature(Blanchet etal.,2021):factor,pretax,posttax,anddisposableincome.4 Factorincomeistheincome earnedfromlaborandcapital,beforeanytaxandgovernmentspendingandbeforetheoperation ofthepensionsystem.Pretaxincomeisfactorincomeaftertheoperationofthepension system(publicandprivate),disabilityinsurance,andunemploymentinsurance.Contributions topensions(includingSocialSecuritytaxes)andtounemploymentanddisabilityinsuranceare removed,whilethecorrespondingbenefitsareadded.Pretaxincomethusinparticularcaptures theeffectofexpandedunemploymentinsuranceduringtheCovid-19pandemic.Posttaxincome ispretaxincomeminusalltaxes(otherthanSocialSecuritytaxes,alreadysubtractedfrom pretaxincome),plusallgovernmenttransfers(otherthanSocialSecurityandunemployment benefits,alreadyincludedinpretaxincome)andthegovernmentdeficit.
Factor,pretax,andposttaxincomealladduptonationalincome.Nationalincomeisthe mostcomprehensiveandharmonizednotionofincome:itincludesallincomethataccruesto residentindividuals,nomatterthelegalnatureoftheintermediariesthroughwhichthisincome isearned.Incontrasttopersonalincome,nationalincomeisnotaffectedbybusinessdecisionsto operateascorporationsvs.non-corporatebusinessessuchaspartnerships,adecisioninfluenced bythetaxsystem.Thisfeatureofnationalincomemaximizescomparabilityovertime.National incomeiscomputedfollowinginternationally-agreedmethods,maximizingcomparabilityacross countries.Last,itiscloselyrelatedtoGDP,theaggregatemostoftenusedtocomputeeconomic growth:NationalincomeisGDPminuscapitaldepreciationplusnetincomereceivedfrom abroad.Sincecapitaldepreciationandnetforeignincomeaccountforarelativelysmallfraction
4 DetaileddefinitionsarepresentedPiketty,SaezandZucman(2018)andSaezandZucman(2020)intheUS context,andinAlvaredoetal.(2016)andBlanchetetal.(2021)intheinternationalcontext.
6
ofGDP,thegrowthofnationalincomeisconceptuallyclosetothegrowthofGDP.5 Ourfocuson nationalincomeisinlinewithrecommendationsmadebytheCommissionontheMeasurement ofEconomicPerformanceandSocialProgress(Stiglitz,SenandFitoussi,2009).
Factorincome—thesumofincomefromlaborandcapital,thetwofactorsofproduction— naturallylendsitselftodecompositionsofeconomicgrowth.Pretaxincomeandposttaxincome includeincomewhichissocializedthroughsocialinsuranceandthetax-and-transfersystem.At theindividuallevel,thegrowthofpretaxandposttaxincomethusreflectsbothoutputgrowth andchangesintransfers.Comparingthegrowthofposttaxincometothegrowthoffactor incomeprovidesacomprehensiveviewoftheextenttowhichtaxesandgovernmentspending equalizegrowthacrossthedistribution.
Wealsoconsiderafourthincomeconcept,disposableincome.Itisequaltopretaxincome minusalltaxes,plusallcashandquasi-cashtransfers.Disposableincomecapturestheincome individualshaveattheirdisposaltoconsumeprivategoodsandtosave.Incontrasttoposttax income,disposableincomeexcludesin-kindtransferssuchasMedicareandMedicaid,collective consumptionexpenditures,andthegovernmentdeficit.Disposableincomedoesnotaddupto nationalincomeandthuscannotbeusedtodecomposegrowth.Itis,however,ausefulconcept tostudythedistributionalimpactsofstabilizationpoliciesduringeconomiccrises.6
3.2ConstructionofMonthlyIncomeAggregates
Toconstructaggregatemonthlyfactor,pretax,disposable,andposttaxincomeandtheircomponents,weusethemonthlyandquarterlynationalaccountspublishedbytheBureauofEconomic Analysis.Westartfromthemostdetailedcomponentsofpersonalincome(publishedmonthly) anddomesticproductandincome(publishedquarterly)available.Allthemonthlyandquarterlyaggregatesusedinthispaperareseasonally-adjustedandexpressedinrealdollarsusing thenationalincomepricedeflator.
Fourremarksabouttheconstructionofouraggregatesareinorder.First,factorincomeis estimatedusingtheincomeapproachoftheUSnationalincomeandproductaccounts,notthe
5 Conceptually,GDPandgrossdomesticincomeGDI(fromwhichnationalincomeisderivedbysubtracting depreciationandaddingnetforeignincome)areidentical,butinpracticetheyareestimatedusinglargely independentsourcesintheUnitedStatesandhencetheirgrowthcandiverge;seeSection3.2below.
6 Inperiodsofcrisis,posttaxincome—whichincludesgovernmentspendingotherthancashtransfersbutadds backthegovernmentdeficit—canbelowerthandisposableincome.Thiswasthecaseinthesecondquarterof 2020,duetothemassivefederaldeficitsinducedbytheeconomicresponsetotheCovidpandemic.Disposable incomehastwoadvantagesrelativetoposttaxincomeinthiscontext.First,itdoesnotrequireonetomake (necessarilydebatable)assumptionsaboutwhobearstheburdenofthegovernmentdeficit.Second,itismore directlyinformativeoftheconsumptionpossibilitiesofhouseholdsandoftheextenttowhichgovernmentpolicies managetosmooththemoverthebusinesscycle.
7
productapproach.Asiswellknown,thereisastatisticaldiscrepancybetweengrossdomestic income(GDI)andgrossdomesticproduct(GDP)intheUnitedStates(e.g.,Fixler,deFranciscoandKanal,2021).Wedonotallocatethestatisticaldiscrepancy.Ourestimatesmatch incomegrowth,notproductgrowth;wheneverthestatisticaldiscrepancyisnotzero,wedo notexactlycaptureGDPgrowth.7 Second,corporateprofitsandGDIareonlyavailableone monthafterthepublicationofthefirstestimateofGDP.8 Asaresult,nationalincomeandour estimatesofquarterlygrowthbysocialgrouparepublishedonemonthaftertheinitialestimate ofGDP.Third,inadditiontobeingpublishedquarterlyinthecontextofGDPstatistics,most componentsoffactorincome—suchascompensationofemployees,proprietors’income,and rentalincome,butnotcorporateprofits—aswellasgovernmenttransfersarealsopublished monthlyaspartofpersonalincome,aboutfourweeksaftertheendofeachmonth.Thisallows ustoestimatecertainmonthlystatisticswithinamonth,suchasfactoranddisposableincome growthforthebottom50%(wherecorporateprofitsarenegligible)andthedistributionoflaborincome.Fourth,forthecomponentsofincomethatareonlyavailablequarterlybutnot monthly—e.g.,forfactorincome,corporateprofits;forpostttaxincome,collectivegovernment expenditure—wedisaggregatethequarterlyserieswhentheybecomeavailableusingDenton’s (1971)method,followingtheInternationalMonetaryFund(2017)recommendationstocompile high-frequencynationalaccounts.
3.3FromAnnualtoMonthlyMicro-Files
Justasmonthlyandquarterlynationalaccountsdataareseasonallyadjustedandannualized (i.e.,presentedinlevelsequivalenttoafullyear),ourmonthlyandquarterlydistributionaldata areseasonallyadjustedandannualizedsothattheyarealsodirectlycomparableinleveltoannualinequalityestimates.Seasonaladjustmentisimportantbecausesomeformsofincomeare highlyseasonal(e.g.,mostbonusesarepaidonceayearinJanuary).Annualizationmeansthat weestimatethedistributionofwhatannualincomewouldbeifseasonally-adjustedmonthly
7 AppendixFigureA1comparesthegrowthofGDItothegrowthofGDP.Bothtrackeachothercloselybut notperfectly.ThestatisticaldiscrepancyhasbeensignificantduringtherecoveryfromtheCovid-19recession, duringwhichGDIhasrecoveredfasterthanGDP.TheotherreasonwhywedonotexactlymatchGDPgrowth isthefactthatnetforeignincome(includedinnationalincomebutnotinGDI)anddepreciation(includedin GDIbutnotinnationalincome)cangrowatdifferentratesthanGDI.
8 ThefirstestimateofquarterlyGDPisavailableneartheendofthefirstmonthaftereachquarter.Asecond estimateisreleasedaboutamonthafter,andathirdandfinalestimateaboutamonthafterthesecondestimate, i.e.aboutthreemonthsaftertheendofthequarter.RelativetoGDP,quarterlyGDIisproducedwithaalag ofanadditionalmonth(2monthsforthefourthquarter)asitrequiresestimatingcorporateprofits,whichis doneusingthedetailed(butnotquiteastimely)CensusBureauQuarterlyFinancialReport(USCensus,2022).
8
incometotalsandtheirdistributionsremainedstableover12months.9 Concretely,seasonal adjustmentmeansthataJanuarybonusisspreadoutoverthe12monthsoftheyear;annualizationmeansthatifbonusesdoublefromoneJanuarytothenext,thisdoublingisspreadout smoothlyover12months.
Anotherwaytomeasureinequalityatahighfrequencywouldbetoestimatetheinequality ofactualmonthlyincome.Becauseofincomemobility(e.g.,losingorstartingajobinthe middleofayear),thisapproachwouldleadtomoreinequalityatthemonthlyfrequencythan attheannualfrequency.Bycontrast,ourprocedurewhichannualizesincomemakesinequality statisticscomparableathighvs.lowfrequency.10
Ourstartingpointtoestimatemonthlydistributionsistheannualdistributionalnational accountssyntheticmicro-dataofPiketty,SaezandZucman(2018).ThesefilescombineIRStax micro-data,surveys,andnationalaccountsdatatoconstructannualdistributionsofincomeand wealthconsistentwithnationalaccountsaggregates.Sincetheirfirstpublication,aliteraturehas developedtotestassumptions,conductrobustnesstests,developimprovements,andmaximize comparabilitywithothercountrieswheresimilarmethodsarefollowed(Blanchetetal.,2021). Thecurrentfiles,updatedinSaezandZucman(2020b),incorporatetheresultsofthisbodyof work.Anewfileiscreatedeachyearwhenthemostrecenttaxstatisticsandannualnational accountsbecomeavailable.Thelastannualmicro-fileisfortheyear2021.Thisfilecurrently servesasourbaselinefor2021andonwardsestimations.
Toconverttheseannualfilestothemonthlyfrequency,wenormalizethepopulationandthe distributionofeachincomecomponenttoone.Wethencreatemonthlyversionsoftheannual filesmixingsamplesfromtwoadjacentyearswithunequalweights.Specifically,tocreatea filecorrespondingtomonth m inyear y,wecombinethemicro-datafortheyear y withits weightsmultipliedby m/12withthemicro-datafortheyear y 1withitsweightsmultiplied by1 m/12.Therefore,eachmonthlyfileisamovingaverageoftheyearlyfilesoverthelast twelvemonths.Thisproceduresmoothesoutshort-run,year-specific,mean-revertingvariations, whicharenotinformativeofthedistributionforagivenmonth,andwouldotherwiseintroduce discontinuitiesinthemonthlyseries.Likeintheannualmicro-files,eachobservationinthe monthlymicro-filesrepresentsanadultindividual,definedasanindividualaged20ormore.
Wethenrescalethecomponentsoffactor,pretax,posttax,anddisposableincomesothat
9 Quarterlyincomeiscomputedastheaverageofmonthlyincomeoverthethreemonthsofthequarter.
10 Thereisnomicro-dataintheUnitedStatesallowingonetotrackthelongitudinalevolutionofhousehold incomemonthaftermonthorquarterafterquarter(Fixler,GindelskyandKornfeld,2021).Ourapproachthat focusesonmonthlyandquarterlydistributionsofannualizedincomesdoesnotrequirelongitudinaldataand usefullyby-passesthisissue.
9
theyadduptotheirseasonally-adjustedmonthlytotalvalue,componentbycomponentandat themostgranularlevelpossible.Specifically,forfactorincomewerescalewagesandsalaries, supplementstowagesandsalaries,proprietor’sincome,rentalincome,corporateprofits,interest income,productiontaxes,productionsubsidies,non-mortgageinterestpayments,andgovernmentinterestpaymentstotheirrespectivemonthlytotals.11 Forpretaxincomeweadditionally rescaleprivatepensioncontributions,SocialSecuritytaxes,contributionstounemployment insurance,privatepensionbenefits,SocialSecuritybenefits,andunemploymentinsurancebenefits;fordisposableincome,Medicaretaxes,directtaxes,theestatetax,veteranbenefits,and othercashbenefits;andforposttaxincome,Medicare,Medicaid,otherin-kindtransfers,collectiveexpenditures,andthegovernmentdeficit.Componentsofhouseholdwealtharesimilarly rescaledtotheirend-of-monthvalues,asdetailedinAppendixB.
Becausethevariouscomponentsofaggregateincomedonotgrowatthesameratefromone monthtoanother,themereactofrescalingtomatchmonthlytotalschangesthedistribution ofincome.Fromthesecondtothethirdquarterof2020,forexample,corporateprofitsgrew bycloseto25%,muchfasterthanwages.Sinceprofitsaremoreconcentratedthanwages,this pushestowardsahighertop1%pretaxincomeshare.Rescalingtomatchaggregates,however, isnotsufficienttoaccuratelycapturehigh-frequencychangesininequality,especiallyduring recessions.Withpubliclyavailabledataitispossibletodomore,namelytoprojectchangesin distributionswithinkeycomponents—ataskwenowturnto.
4IncorporatingChangesWithinIncomeComponents
Themostimportantstepofourmethodologyinvolvesincorporatinginformationonthemonthto-monthevolutionofthedistributionoflaborincome,whichaccountsforabout70%ofnationalincome.Weestimatebothchangesintheextensivemargin(numberofemployedvs. non-employedindividuals,includingrecipientsofunemploymentinsurancebenefits)andinthe intensivemargin(changesinthewagedistribution).Weestimatethesechangesbycellsofrace × education × gender × 5-yearagegroup × maritalstatus.Thisrequiresbringinginrace, education,andagevariablesintothePiketty,SaezandZucman(2018)annualdistributional nationalaccountsfiles.WedosobystatisticallymatchingthesefilestotheMarchCPSandthe SurveyofConsumerofFinances.ThisSectionbeginsbydescribingthisstatisticalmatching, beforeturningtohowweincorporatechangesintheextensivemarginandintensivemargin,
11 AppendixAprovidesadetailedmappingoftheseNationalIncomeandProductAccountsconceptstothe variablesusedinourmicro-files.
10
andinthedistributionofgovernmenttransfers.
4.1One-to-OneStatisticalMatchingtoSurveyData
Method. Considertwodatasets: A (sometimesreferredtoasthebasefile,theannualdistributionalnationalaccountsmicro-filesinourcase)and B (sometimesreferredtoasthesupplementalfile,e.g.,theMarchCPS).Assume A and B havecommonvariables,denotedby X (e.g., incomeanditscomponents).Theremainingvariablesaredenotedby Y infile A and Z infile B
Thegoalistobringthe Z variables(e.g.,education)intofile A.Theoptimalwaytodosoisto implementaconstrainedstatisticalmatch(e.g.,Rodgers1984),inwhicheachobservationfrom B ismatched“one-to-one”withanobservationin A,whileminimizingthesumofdistances overthe X variablesbetweenmatchedobservations.Thisconstrainedstatisticalmatchcanbe implementedusingoptimaltransportmethods.
Formally,assumethetwodatasetsareofsize n and m respectively,andthatobservations ineachdatasetshaveweights u =(u1,u2,...,un)and v =(v1,v2,...,vm).Withoutlossof generality,assumeweightssumtoone.Denoteby Dij thedistancebetweenobservation i inthe firstdatasetand j inthesecondoverthe X variables(inourapplicationweusethe L1 norm,i.e., thesumoftheabsolutevaluesofthedifferences).TheoptimaltransportmapΓ ∈ Rn×m which matchesobservations“one-to-one”whileminimizingthesumofdistancesbetweenmatched observationisthesolutionofthefollowinglinearprogrammingproblem:
Themainappealofconstrainedstatisticalmatchingisthatthemultivariatedistributionsof allthe Z variablesarepreservedinthematcheddataset.Inthatsense,thereisnolessofdistributionalinformation,incontrasttoothermatchingprocedures.12 Themainpracticalobstacle toimplementingconstrainedstatisticalmatchessofarhasbeencomputationalrequirements. FindingtheoptimalΓinvolvessolvingforalarge-scalelinearprogrammingproblem:ifthe twodatasetstobematchedeachhave100,000observations(whichistheorderofmagnitude inourcase)thenthematrixofpairwisedistanceshas10billionentries.Thankstorecently developedimplementationsofoptimaltransportalgorithms,solvingthistypeofproblemhas becomedoableinareasonableamountoftime.
12 One-sidedmatchingdoesnotrespectthedistributionsseenintheseconddataset.One-sidedmatching withoutreplacementisinefficientasmatchqualitybecomesverypoorforthelastobservationsmatched.
min Γ∈Rn×m n i=1 m j=1 Γij Dij suchthatΓ1= u Γ 1= v Γ ≥ 0
11
Implementation. Tostatisticallymatchthedistributionalnationalaccountsmicro-filesto surveydata,westartbysupplementingtheMarchCPSwithgroupquarterobservationsfrom theAmericanCommunitySurvey:individualslivingincorrectionalfacilities,nursinghomes, collegedormitories,etc.,whoarenotsampledbytheMarchCPS.Thisallowsustocapture theentirepopulationofUSresidents,asinourdistributionalmicro-files,whichisimportant tocaptureincomedynamicsatthebottomofthedistribution.Wethenstatisticallymatchthe augmentedMarchCPStoourannualmicro-filesoverthefollowing X variables(observedin bothdatasets):wageincome,pensionincome,businessincome,interest,dividendandrents, SocialSecuritybenefits,welfarebenefits,andgovernmenttransfersotherthanSocialSecurity andwelfarebenefits.Webringinthefollowing Z variables:race,education,age.Thematchis doneatthehouseholdlevel,separatelyformarriedvs.singles,individualsagedmorevs.less than65,andemployedvs.unemployedindividuals.
Wesimilarlymatchourmicro-filestotheSurveyofConsumerFinances(SCF),atriennal surveyofabout6,500familiesthatover-sampleswealthyhouseholds.WeannualizetheSCF bytakingmovingaveragesofthetwoclosestwavesoftheSCFandmatchittoourmicro-files overwageincome,pensionandSocialSecurityincome,businessincome,interestanddividend income,capitalgains,financialandbusinessassets,housingassets,anddebts.Thisallowsusto bringsocio-economiccharacteristicsforhigh-incomehouseholds,whicharenotwellcoveredin theMarchCPS.Weusethesocio-economicvariablestransportedfromtheSCFforhouseholds inthetop5%oftheincomeorwealthdistribution,andthosetransportedfromtheMarchCPS forthebottom95%.
Valueandlimitation. Thekeyvalueofourone-to-onestatisticalmatchistojointogether severalmicro-databases(includingindividualtaxdata,theCPS,andtheSCF)inasinglefile. Variablesthatarecommonacrossdatabasesexistinversionscorrespondingtoeachdataset (e.g.,SCFnetwealthandnetwealthestimatedfromtaxdata)andareclosetoeachother recordbyrecordthankstothematchingprocedure.Thismakesitstraightforwardtoswitch fromonedatabasetoanotherasneeded.Forexample,researcherswhoareusedtoworking withtheCPScanprimarilyfocusonCPSvariablesandreplacethemwithtax-datavariables whenevertheanalysisconcernsthetopofthedistribution.
However,weemphasizethatthismatcheddatabasecannotprovidereliableinformation aboutthejointdistributionofvariablesthatarenotjointlyincludedinatleastoneofthe originaldatabase.Forexample,becauseneitherthepublic-useindividualtaxdata,northe
12
CPSortheSCFprovidescomprehensiveinformationonthejointdistributionofincomeand state,13 wecannotanalyzepatternsinincomegrowthbystate × socialgroup.Asanother example,becausetheonlyinformationonthejointdistributionofwealthandracecomesfrom theSCFandtheSCFisnoisyabovethetop1%(duetosmallsamplesizes),itisnotpossible tousethematcheddatasettoobtainreliableestimatesoftheracialcompositionofwealth abovethe99th percentile.Thelimitationsofthesourcefilescarryovertothematchedfileand knowledgeoftheselimitationsiscriticaltomakeaninformedusedofthematcheddatabase.
Anobviouslysuperiorwaytoconstructaunifieddatabasewouldbetoproceedtoexact matchesacrossadministrativesourcesandsurveys,ascanbedoneforresearchpurposesin, e.g.,Scandinaviancountries.However,thisisnotyetfullyfeasibleintheUnitedStateseven withingovernmentagencies(see,e.g.,Chettyetal.,2010)andcertainlynotusingpublicdata. Furthermore,anysuchmatchcouldnotbeproducedquicklyandthuswouldnothelpwiththe productionreal-timeinequalityestimates.Thestatisticalmatchweimplementleveragesthe strengthofUSpublicdata,whicharerichbutscattered.
Testofthematchingprocedure. Wetestandvalidatethequalityofourmatchingprocedurebycomparingthedemographiccompositionofincomeandwealthbyincomeandwealth groupinthesurveymicro-dataandthematchedfile.Tounderstandthelogicofthetest,considerthecaseofgenderandwageearnings.TheCPSprovidesgoodinformationongender compositionbyannualwageearningsdeciles(i.e.,thefractionofindividualsineachdecileof theearningsdistributionwhoarewomen).Wecancheckthatthisgendercompositionispreservedwhenusingtheannualwageearningsvariablecomingfromthetaxdata(asopposedto theCPS)inthematchedfile.Thiswillnaturallybethecaseifthematchedobservationshave similarearningsintheCPSandthetaxdata.14
Figure1reportstheresultsofthistest.Thefigurecomparesdemographiccomposition alongonekeyincome(orwealth)variableofinterest,asmeasuredintheoriginalsurveydata vs.inthematchedfiletaxdata.Panels(a)and(b)considergenderandracialcompositionby annualwageearningsmeasuredintheCPSvs.taxdata.Inbothcases,thesampleincludes thefullpopulationofworking-ageindividuals(aged20–64),includingindividualswithnowage earnings.Panel(c)considersracialcompositionbyannualtotalincomeintheCPS,theSCF, andthematchedfile.Forthepurposeofthisexercise,totalincomeisthesumofwages,
13 Thestatevariableisnotavailablefortopearnersinthepublic-usetaxfiles.
14 Bycontrast,thistestcouldfailifthestatisticalmatchisnotexcellentonthewageearningsvariable,e.g., becausethesamplesmatchedaretoosmalltofindclosematches,orbecausethematchingprocedureputshigh weightonothervariables.
13
pensions,SocialSecuritybenefits,businessincome,interest,dividends,andrents.Last,panel (d)considersracialcompositionbywealthintheSCFvs.thematchedfile.Inbothpanels(c) and(d),weconsidertheentireCPS(andSCF)samples.Allfourpanelsshowthatdemographic compositionsareverycloseintheoriginalsurveydataandthematchedfile.Thereasonforthis successisthatourone-to-onematchingprocedurepreservesranksintheincomeandwealth distributionwell,asillustratedinAppendixFigureA2inthecaseofwageearnings.
4.2ChangesinEmployment
Tocapturehigh-frequencychangesinthedistributionoflaborincome,thefirststepofour methodologyinvolvesadjustingemploymentstatusatthemicro-leveleachmonth.Todosowe computeemploymentratesbyrace × education × gender × 5-yearagegroup × maritalstatus cellsinthemonthlyCPS,andusethesetabulationstoimputeemploymentratesbycellsinour monthlydistributionalnationalaccountsmicro-files.Weproceedinfoursteps.
Estimationofaggregateemploymentrate First,weestimatethenumberofworkerseach monthusingtheBLSmonthlyreleaseofnon-farmemploymentatthenationallevel.Sincethe numberofemployedpeopleinagivenyearismechanicallyhigherthaninagivenmonth,we adjustmonthlyemploymentnumberstomakethemcommensurablewithyearlyestimatesfrom SocialSecuritytaxdata.Wedosousingthestrongandconsistentlinearrelationshipobserved betweentheBLSandtheSocialSecuritynumbersovertime.AppendixFigureA3depictsthe rawmonthlyemploymentratesfromtheBLS,theannualemploymentratesfromtheSocial Securitytaxdata,andthemonthlyemploymentratesadjustedtomatchannualrates(inall casesfortheworking-agepopulation,age20–64).Inrecentdecades,rawmonthlyemployment ratesarearound75%whileadjustedmonthlyemploymentrates(thattrackannuallevels)are 10percentagepointshigher,around85%(becauseofpart-yearworkers).
EstimationoftheaggregatenumberofUIrecipients Second,weestimatethenumber ofunemploymentinsurance(UI)recipientseachmonth.Todoso,weusetheDepartmentof Labor’sweeklypublicationofunemploymentclaims.Weaggregatethisdatabymonthand adjustitforseasonalvariationsusingtheX11procedure(Shiskinetal.,1967).Sincethe numberofUIrecipientsinagivenweekismechanicallylowerthaninagivenyear,weadjust thenumberofUIclaimsbyaconstantcoefficienttomatchtheannuallevelsrecordedinthe taxdata(consistentwithourgoalofconstructingmonthlydistributionsofannualizedincome).
14
Estimationoflaborforcestatusbyindividualcharacteristic Third,usingthemonthly CPS,weestimatemonthlyseriesoflaborforcestatusbyrace × education × gender × 5-year agegroup × maritalstatus.IneachmonthlyCPSdataset,werunalogisticregressionof (i)employmentstatusand(ii)unemploymentstatusagainstrace,education,ageby5-year group,andmaritalstatusinteractedwithgender.Weusethepredictionfromtheseregressions toestimateemploymentandunemploymentratesbycell.Weadjustthisdataforseasonal variationsusingtheX11procedure(Shiskinetal.,1967).
AdjustmentofemploymentandUIrecipientsinthemonthlymicrofiles. Last,inour monthlymicrofiles,weadjustatthemarginwhethersomeone(i)isemployedand(ii)receives UIbenefitsbasedontheinformationcollectedinthethreeprecedingsteps.Theprocedure, describedindetailinAppendixC.1,reproducesrelativechangesinlaborforcestatusbyrace × education × gender × 5-yearagegroup × maritalstatus,whilealsomatchingtheaggregate levelsofemploymentandnumberofUIbenefitrecipients.
4.3ChangesintheDistributionofEarnings
Thesecondstepofourmethodologytocapturehigh-frequencychangesinthedistributionof laborincomeinvolvesestimatingchangesinthedistributionofwagesatthemonthlyfrequency. Wedothisbycombiningalltheavailableevidenceonthisissue:monthlyandquarterlyemploymentsurveysandthemonthlyCPS.
Predictingwageinequalityfromtabulatedemploymentsurveys. Wefirstestimate wageinequalitymonthlyusingthetimelyemploymentcensusesandestablishmentsurveysofthe BureauofLaborStatistics.TheQuarterlyCensusofEmploymentandWages(QCEW)provides employmentandwagestatisticsforabout95%ofemployees,basedonstateandfederalunemploymentinsuranceadministrativerecords.Atthemonthlyfrequency,theCurrentEmployment Statistics(CES)surveyprovidessimilarinformationbasedonarepresentativesampleofabout 144,000businessesandgovernmentagencies.BoththeQCEWandtheCESarepublishedin theformoftabulationsbyindustries × geographicalareas,upto6-digitsNAICSindustry × county × typeofownership(i.e.,publicorprivate)inthecaseoftheQCEW.Althoughtheunderlyingindividual-levelmicro-dataarenotpubliclyavailable,valuableinformationaboutthe distributionofwages,includingatthetop,canberetrievedfromthesegranulartabulations.
BuildingonLee(2020),weconstructquarterlywageincomedistributionsusingtheQCEW data.TheideaistousetheQCEWasifitwereamicro-leveldataset,treatingeach6-digits-
15
NAICS-industry × county × type-of-ownershipcellasanobservationwhoseweightistheemploymentcountandwhosevalueistheaveragewage.EachwaveoftheQCEWcontainsabout amillionsuchobservationsinrecentyears,muchmorethanatypicalwagesurvey.Weremove outliers,definedascellswhosewageislessthanhalfofafull-timeminimumwagejob.We thenestimatetheaveragewagebypercentile,afterimplementingthreeadjustmentsdescribed below.AsdetailedinSection5below,ourproceduredeliversremarkablyaccuratepredictions oftrendsinwageinequality.
AdjustmentstotheQCEWdata. TheadjustmentsweapplytotheQCEWdataarethe following.WefirstconverttheQCEWwagedatafromquarterlytomonthly.Employment countsarereportedmonthlyintheQCEW,butwageearningsonlyquarterly.Thisisnota significantissuesincewagesaresticky,sochangesinthewagedistributionintheshortrunare drivenbychangesintherelativeemploymentoflow-wageandhigh-wageworkersratherthan bychangesintheirrespectivesalaries.WerunthewagedataintheQCEWthroughamoving averageofthelasttwelvemonthstogetsmoothmonthlywagesandtogetridoftheseasonality inthewagedata(due,forexample,toend-of-yearbonuses).15
Second,becausetheQCEWdataisaggregatedincells,itunderstatesthelevelofinequality betweenindividualworkers.ThisisillustratedonFigure2.Intheannualtaxmicro-data,the top1%wageshare(amongindividualswithpositivewages)increasesfrom6%inthelate1970s toabout12%inthe2000s.Intherawbutde-seasonalizedQCEWdata,thetop1%wageshare islower.Wefixthisdiscrepancybyimplementingasimpleadjustmenttothemonthlyseries. Specifically,weregressthetaxdatarealwageagainsttheQCEWrealwageforeachpercentile, andusethepredictionfromtheseregressionsasourmonthlyestimateforeachpercentile.This procedureworkswellbecausetherelationshipbetweentheaveragewageofagivenpercentilein theQCEWdataandthetaxdataisstronglylinear.Importantly,thiscorrectiondoesnotvary withtimeandthusdoesnotweakenthepredictingpoweroftheQCEW.Figure2illustrates thiscorrectioninthecaseofthetop1%share,whichistypicallyhardtocapturewithnon-tax data.Adjustingtherawde-seasonalizedQCEWwageserieswithamultiplierandlevelshift (constantovertheperiod)generatestheadjustedQCEWseriesdepictedinblue.Thisadjusted seriesalmostperfectlyalignswiththeactualtop1%wageshareobservedinthemicrotaxdata inbothlevelsandtrendsovertheentireperiod.
15 Wheneverthisprocedureintroducesmissingvalues,weimputethembackbyregressinglogwagesoncounty, time,industry,andtype-of-ownershipfixedeffects.Remainingseasonalvariations(introducedbyseasonalityin employmentnumbers)iscorrectedbyrunningtheaveragewageforeachpercentilethroughtheX11procedure.
16
Third,wesupplementtheQCEWwiththeCurrentEmploymentStatistics(CES)surveyto gettimelyestimates.TheQCEWispublishedwithalagofonetotwoquarters.TheCESis releasedeverymonth,albeitwithacoarserlevelofaggregation:about19,000monthlyseries coveringupto300industriesand450areas,comparedtoaboutamillionseriesintheQCEW. WematcheachQCEWcelltothreeCESseries.ThefirstmatchesthelocationoftheQCEW cellaspreciselyaspossible,thesecondmatchesitatthestatelevel,andthethirdatthenational level.Becausethereisatrade-offintheCESbetweenthelevelofgeographicalandindustry disaggregation,usingthesethreeseriesallowsustoextractasmuchinformationaspossible. Weaveragethetrendfromthesethreeseriesineachcellandusethisaveragetrendtoextend theQCEWdatainthemostrecentquarters.AppendixFigureA4depictsthequalityofthis projectionbycomparingbottom50%andtop10%wagesharesestimatedusingtherawQCEW datavs.projectedusingtheCESupto6monthsforward(indashedlines).Bydefinition, theprojectionmatchestheQCEWlevelinthelastmonthofeachquarter,andthenprojects forwardoverthenexttwoquarters.Overall,theCESprojectioncomesclosetotheQCEW, althoughthefitisabitweakerforthetop10%thanforthebottom50%.
WageinequalityinthemonthlyCPS. Inadditiontoestimatinghigh-frequencychangesin thewagedistributionusingtheQCEW,wealsoestimatechangesinaveragewagesbypercentile usingtheweeklyearningsvariableofthemonthlyCPS.Ourfinalestimatesofaveragewageby percentileinagivenmonthisobtainedastheaverageoftheCPSandQCEWpredictions.For thebottom80%ofthewagedistribution,QCEWandCPSpredictionsareweightedequally.
TheweightontheCPSpredictionthenlinearlyfallsto0aswemovetothe90th percentile,and is0abovethe90th percentilewheretheCPSisnotinformativebecauseoftop-coding.Oncewe haveourfinalestimateofwagesbypercentile,thedistributionwithinpercentilesisinterpolated usinggeneralizedParetointerpolationmethods(Blanchetetal.,2022).
Adjustmentofwagelevelsinthemonthlymicrofiles. Weusetheresultingmarginal wageincomedistributiontoupdateourmonthlymicro-filesasfollows.InthemonthlyCPS,we computetheaveragerankinthewagedistributionofeachrace × education × gender × age × maritalstatuscell.Wealsocomputetheseaverageranksinthe12precedingmonths.Inour monthlymicro-files,weadjusttheaveragerankbycelltoreplicatetheevolutionseeninthe CPS.Oncetheranksareadjusted,weassigneachindividualobservationthewagecorresponding tohisorheradjustedrank.AppendixC.2providescompletedetails.
17
4.4DistributionofNewGovernmentTransfers
Inthelaststepofourmethodology,wemodelthedistributionofnewgovernmenttransfers. WesimulatethekeycomponentsofthegovernmentresponsetotheCovidcrisis:thePaycheck ProtectionProgram,Covidreliefpayments,andexpandedrefundabletaxcredits.
ThePaycheckProtectionProgramwasaloanprogramdesignedtokeepsmallbusinesses afloat,representingabout $1,000billion,or5%ofnationalincome.Thegovernmentforgave mostoftheseloans,assumingcompanieskepttheiremployeesandwagesstable.Following Autoretal.(2022),wedistribute70%oftheprogram’sexpenditurestobusinessownersandthe remaining30%towageearners.Weconstructanovelestimateoftheprogram’sdistributional effectfortheincidenceonwages.Weusethepubliclyavailabledataoneachloan,whichwe matchtotheQCEWdatabasedonthedateoftheloans,theindustry,andthelocationofthe business.Wemanagetomatchabout5,700,000loansto5,500,000QCEWcells.Weestimate bothanextensivemargin(fractionoftheworkforcecovered)andanintensivemargin(fraction ofthewagebillcovered)foreachpercentileofthelaborincomedistribution,whichweuseto simulatetheeffectofthePaycheckProtectionProgramonworkers.
ThethreewavesofCovidreliefpayments(“economicimpactpayments”)areallocatedbased onprogramrulesusingtaxableincomeasreportedintheupdatedPiketty,SaezandZucman (2018)files.Finally,weallocatetheexpandedrefundabletaxcredits(childtaxcreditandearned incometaxcredit)basedonincomeandeligibilityusingourmicro-data.16
4.5SummaryofAlltheSourcesUsedandTimingofRelease
Table1summarizesallthesourcesusedtoconstructourreal-timeestimates,includingfrequency ofpublicationandtimingofavailability.Ourapproachonlyreliesonpublicdatasources. AppendixDdescribesthestructureoftheprogramsusedtoconstructourreal-timeestimates. Theprogramsareavailableonlineat https://realtimeinequality.org,makingitpossible forresearcherstoassessandimproveanyaspectofthemethodology.
5ValidationTests
Sinceweapplyourmethodologybackto1976(thefirstyearoftheQCEW),wehavealarge numberofmonthlymicro-filesthatcanbeusedtotesttheaccuracyofourapproach.
16 Refundabletaxcreditscorrespondingtoincomesearnedinyear t aregenerallypaidoutinyear t +1and countedastransfersinyear t +1inthenationalaccounts,aconventionwefollow.In2021,however,halfofthe expandedchildtaxcreditwaspaidmonthly(inthelast6monthsof2021)andisassignedto2021(not2022).
18
5.1WageDistributionPrediction
Webeginbyexamininghowwellourmonthlywageinequalityseriesmatchtheactualdistributionofwageincome—byfarthelargestcomponentofnationalincome—overthe1976–2021 period.Figure3comparesthewagedistributionintheupdatedPiketty,SaezandZucman (2018)micro-files,whicharebasedonpublictaxmicro-files,tothedistributionconstructedin thispaperusingtheQCEWandtheCPS.Eachpaneldepictstheshareoftotalwageincome earnedbyaspecificgroup(bottom50%,middle40%,next9%,andtop1%)amongadult individualswithpositivewageincome.
Ourmonthlyestimatestracktheannualtax-data-basedstatisticswellforallgroups,includingforthetop1%whichisnotmeasuredwellintraditionalhouseholdsurveys.Thetrendin risingwageconcentrationisaccuratelycapturedbyourcombinationofQCEWandCPSdata. Asintheannualtax-data-basedstatistics,thetop1%gains6.5pointsbetweenthelate1970s and2021andthenext9%gains3points.Themiddle40%loses8pointsandthebottom50% loses1.5point.Short-runvariationsareusuallyaccuratelypredictedaswell.Theseresultsare consistentwiththeanalysisofLee(2020)whofirstusedtheQCEWtocreatequarterlywage distributionsforthemacroeconomicanalysisofthebusinesscycle.
5.2VolatilityofCapitalIncome
Next,weprovidesupportforourtreatmentofcapitalincomebycomparingthevolatilityof aggregatecapitalincomecomponentsandthevolatilityoftheirdistributions.Recallthatfor capitalincome(corporateprofits,rentalincome,proprietors’income,interest),toformournext year(s)projectionweassumethatwithin-componentdistributionsarestable.Forexample,if thetop10%earns70%ofaggregatecorporateprofitsin t,weprojectthatthetop10%still earns70%ofcorporateprofitsin t +1.Ifcorporateprofitsshrinkin t +1,individualsinthe top10%ofthetotalincomedistributionaremoreaffectedthanindividualsinthebottom90% andallelseequal,inequalityfalls.Ifaggregatecorporateprofitssoar,inequalityincreases.
Toassessthemeritsofthisprocedure,AppendixFigureA5comparesthesizeofcapital incomecomponents(asmeasuredbytheirshareofnationalincome)andtheconcentrationof theseincomecomponents(asmeasuredbythesharegoingtothetop10%ofthepretaxincome distribution).Allseriesarenormalizedto100in1976tocontrastvolatilities.Thetopleft panelreportsresultsforcorporateprofits,thelargestformofcapitalincome,andshowsthat aggregateprofitsarehighlyvolatile.Duringorjustbeforerecessions,itiscommonfortheshare ofprofitsinnationalincometofallby10%–20%(e.g.,1980,2000,2008).Theshareofprofits
19
earnedbythetop10%exhibitscomparativelylittleyear-to-yearvariation.Thesameconclusion holdsforothercomponentsofcapitalincome,asreportedintheotherthreepanels.Because changesinaggregatesswampshort-termchangesindistributions,movementsinmacroeconomic aggregatescapturethebulkofthecontributionofcapitalincometochangesininequality.
5.3RetrospectiveValidation
Lastandmostimportantly,weretrospectivelycheckwhetherourmethodologycombiningprioryearannualmicro-fileswithcurrent-yearhigh-frequencydatasourcesprovidesaccurateestimatesofcurrent-yeardistributions.Thistestincorporatesallformsofincome,asopposedto wagesorcomponentsofcapitalincomeonly.
Methodology. Foreachyear t from1975to2019(or2018),westartfromtheyear t updated annualmicro-filesofPiketty,SaezandZucman(2018)andimplementourreal-timemethodology toagethesedataintoayear t +1(oryear t +2)simulatedannualmicro-dataset—usingthe samesources(high-frequencynationalaccountsaggregates,householdandemploymentsurveys, etc.)andassumptionsasinourreal-timemethodology.Usingthesesimulatedmicro-datafor year t +1or t +2,wecancomputeanydistributionalstatisticsandcomparethemwiththe statisticscomingoutoftheactualannualmicro-data.Themostdirectlyrelevantstatisticfor ourpurposesisrealincomegrowth.Foreachgroupofthepopulation,wecomputeactualincome growthusingtheannualdistributionalnationalaccountmicro-filesforbothyears t and t +1 (or t +2),andpredictedincomegrowthratesusingtheactualannualmicro-filesforyear t but thesimulatedmicro-dataforyear t +1(or t +2).The t +2simulationsarerelevantgiventhat ourreal-timeinequalityestimatesforyear t aretypicallybasedonannualmicro-filesforyear t 2,duetothenearly2-yeardelayintheavailabilityoftaxdata.
Results. Figure4comparesactualandpredictedrealincomegrowthratesforthebottom 50%(toppanels)andthemiddle40%(bottompanels)ofthefactorincomedistribution,with incomeequallysplitamongmarriedspouses.Leftpanelsshowactualvs.predictedgrowthfrom year t to t +1andrightpanelsfrom t to t +2.Inallcasesthedotsarecloselyscatteredaround the45-degreeline,showingthatourpredictionsarehighlyinformativeoftheactualgrowthin bottom50%andmiddle40%incomes.Forexample,wecorrectlypredictwhetherbottom50% isrisingorfalling82%ofthetimeoneyearforwardand91%ofthetime2yearsforward.17 One
17 The2-yearforwardpredictionperformsbetterbythatmetricbecausethebottom50%oftenhaslittleannual incomegrowthduringoursampleperiod,sothatinafewcasespredictedgrowthisslightlynegativewhenactual
20
canconditiononcertainactualgrowthratestovisuallyascertainhowwellourmethodology performsindifferentcontexts.Forinstanceifoneconditionsonactualgrowthbelow-2.5%(or below-5%inthe2-yearaheadgraph),typicallycorrespondingtorecessionyears,thecorrelation betweenactualandpredictedgrowthremainsveryhigh.Figure5repeatsthisanalysisfortop 1%incomesandnext9%incomes.Thedotsagainalignwellwiththe45-degreeline.We correctlypredictwhethertop1%incomesarerisingorfalling89%ofthetimeoneyearforward and93%ofthetime2yearsforward.
Onecaveatwhenconsideringthetopofthedistributionisthatpredictingshort-rungrowth duringtaxreformscanbechallenging.Thelargesterrorsareobservedin1987and1988,when predictedgrowth—thoughstronglypositive—issignificantlylowerthanobservedgrowth.As shownbyFigure3,inthoseyearstheQCEWpredictslargegainsinthetop1%wagesharebut failstocapturethefullmagnitudeoftheriseinthistopshare.Onepossibleinterpretationis thattheTaxReformActof1986,whichreducedthetopmarginalincometaxratefrom50%in 1986to28%in1988,ledtoanimmediateandacross-the-boardincreaseintop-endwagesand bonusesforexecutiveswithinindustries × counties(inadditiontogainsinspecifichigh-paying industries × counties,byconstructioncapturedbyourmethodology).Morebroadly,itcan bechallengingtopredictthegrowthoftopincomesinyearsofsignificanttaxreforms,which inadditiontorealresponsescangenerateavoidanceresponses,suchasinter-temporalincome shifting.AsshownbyFigure5,thepredictionerrorsintop1%growthareconcentratedduring taxreformyears(althoughnotalltaxreformyearsleadtoerrors).Innon-tax-reformyearsour methodologydeliversaccuratepredictionsforthetop1%.
Rescalingvs.adjustmentsofdistributions. Tobetterunderstandwhichaspectsofour methodologymattertogenerateaccuratepredictions,AppendixFigureA6reportssimilarfiguresofactualvs.predictedgrowthratesbutusingasimplifiedpredictionmethodologythatonly rescalesmacroeconomicaggregates(followingSection3)withoutincorporatinganychangesin thedistributionoflaborincome.Thesimplifiedmethodologyperformswellinyearsofnormal growth,butdeliverssignificantlyworseresultsthanourfullmethodologyforthebottom50% duringrecessions,whenitsignificantlyover-estimatesgrowth.Thisfindingechoestheresultsof Fixler,Gindelsky,andKornfeld(2021)discussedinSection2.1andshowsthatadjustingthelaborincomedistributioniscriticaltoprojectinequalityduringrecessions.Oncethedistribution oflaborincomeisadjusted,ourmethodologyaccuratelypredictsgrowthduringdownturns. growthisbarelypositive(orvice-versa),aproblemthatattenuateswhenoneconsidersgrowthover2years.
21
Goodnessoffitsummary. Tosummarizetheperformanceofourapproach,Table2reports detailedstatisticsforgoodnessoffitandnoise.Foreachgroup(bottom50%,middle40%, next9%,andtop1%)andincomeconcept(andwealth),wecomputethefractionofyearsin whichwecorrectlypredictwhetherincome(orwealth)isgrowingorfalling,themeandifference betweenpredictedandobserved1-yeargrowth,thestandarderrorofthismean,andtheroot meansquareerror.Forreferencewealsoreportthestandarddeviationofactual1-yeargrowth rates.Weconsiderthreesamplesofyears:all44yearsfrom1976to2019,the34yearswhich arenottaxreformyears,andthe12yearscorrespondingtorecessionsandtheirimmediate aftermath.AppendixTableA1reportsthesamestatisticsforgrowthover2years.Anumber ofresultsareworthnoting.
First,thegoodfitandlimitednoiseobtainedforfactorincome(Figures4and5)extendsto otherincomeconcepts—pretax,disposable,andposttax—andtowealth.Acrossconceptsand samplesofyears,wecorrectlypredictthesignofgrowtharound90%ofthetime.18 Biasin annualgrowthislimitedtoafewtenthofapercentagepoint,whichisreasonableconsidering thesamplesizesinvolved.Thereislittlebiasforthetop1%eventhoughthemethodology doesnotrelyonanytaxdata.Standarderrorsfortop1%predictionsfallwhenexcluding tax-reformyears.Forothergroups(whereavoidancepossibilitiesandincentivestoavoidare morelimited),includingtaxreformsdoesnotmakeadifference.Second,theseresultscarry overtorecessions:ourmethodologyispredictiveofincomedynamicsduringdownturnsandthe ensuingrecoveries.Weunder-estimatedisposableandposttaxincomegrowthforthebottom 50%duringpastrecessions,perhapsbecausewedonotattempttoincorporatethecreationof newgovernmenttransfersduringpastrecessions(e.g., $600individualtaxcreditsin2008)in oursimulatedmicro-files.
6InequalityDuringtheCovid-19Pandemic
ThisSectionusesourreal-timeestimatestoanalyzethemonth-to-monthdynamicsofincome andwealthduringtheCovid-19pandemicandinitsaftermath.Westartbystudyingthedynamicofincomeandwagesbeforegovernmentintervention,thenmovetodisposableincome, beforeturningtowealthinequality.Unlessotherwisenoted,allthestatisticswereportare for“equal-splitadults,”definedasindividualadultswithincomeandwealthequallysplitbetweenmarriedspouses.On https://realtimeinequality.org,wealsoreportstatisticsatthe 18 Asnotedinfootnote17forfactorincome,predictionsareslightlyworseforthebottom50%becausegrowth isoftenclosetozeroforthatgroupinthosedecades.Ifoneconsidersgrowthover2years,wecorrectlypredict thesignofgrowthforthebottom50%about90%ofthetimejustlikeforothergroups(AppendixTableA1).
22
householdlevel,whereahouseholdisataxunitasdefinedbythetaxcode,i.e.,eitherasingle personaged20oraboveoramarriedcouple,inbothcaseswithchildrendependentsifany.All growthnumbersareadjustedforinflationusingtheofficialnationalincomedeflator.Thesame deflatorisusedforallgroupsofthepopulation.
6.1TheDynamicofFactorIncomeDuringtheCovid-19Recession Dynamicacrosstheincomedistribution. TheCovid-19pandemicledtohighlyheterogenousdeclinesinincomes.BetweenFebruary2020(thelastmonthbeforetherecession)andApril 2020(itstrough),annualizedrealnationalincomeperadultfell15%.Butthefallwasmuch largerfortheworking-class(-33%forthebottom50%),duetothedeclineinemployment.It wasalsostrongerthanaverageforthetoponepercent(-19%)duetothecollapseofbusiness profits,akeysourceofincomeatthetop.Thecrisisaffectedthemiddleclassandupper-middle classrelativelyless,becauseindividualsinthesegroupsweremorelikelytoremainemployed. Therecoverywasalsoheterogenous:topgroupsrecoveredfasterthantheworkingclass.For thetop1%,therecoverytookoneyear,whileittooktwoyearsforthebottom50%.Becausethe bottom50%washitthehardestandrecoveredlast,thepandemicexacerbatedfactorincome inequality.Theshareoffactorincomeearnedbythetop1%was19.5%inDecember2021,its highestlevelinthepost-WorldWarIIera.
ComparingtheCovid-19andGreatRecessionrecessionsandrecoveries. Itiswell knownthatintheaggregate,therecoveryfromtheCovid-19crisis(18months)wasmuchfaster thantherecoveryfromtheGreatRecession(4yearsandamonth).Ourreal-timeestimates allowustomovebeyondaggregatesandcomparerecoverypatternsfortheworking-class.To doso,Figure6bfocusesontheworking-agepopulation(tocontrolforpopulationaginginthe 2010s,duringthelongrecoveryoftheGreatRecession)andnormalizesincometo100inthe monthprecedingeachrecession.Twomainresultsemerge.
First,intheaftermathoftheGreatRecessionithadtakenastaggering8yearsand1months forthebottom50%oftheworking-agepopulationtorecoveritspre-crisisrealfactorincome level.From2008to2012,aperiodduringwhichtheeconomyreboundedandcrosseditspre-crisis outputlevel,thebottom50%ofworking-ageadultsexperiencedvirtuallynogrowth.Income startedgrowingin2013butslowly,sothatitonlyexceededitsDecember2007levelinJanuary 2016.TheslowrecoveryoftheworkingclassisarobustfeatureoftheGreatRecession.19 Itis
19 ThetopfiscalincomesharesofPikettyandSaez(2003),whichhavebeenusedtostudythefractionof growthaccruingtotopincomegroups(seeSaez,2008,andsubsequentupdates),alsorevealedit.
23
notanartifactofpopulationaging(sincewerestricttotheworking-agepopulation),butrather reflectsthestagnationofwagesatthebottomofthedistribution(detailedinSection6.2below).
Secondandbycontrast,realfactorincomeforthebottom50%reboundedmorequickly aftertheCovidrecession.BythetimeaverageincomehadrecoveredfromtheGreatRecession, averageincomeforthebottom50%wasstill10%belowitspre-crisisincomelevelandstillfour yearsawayfromafullrecovery.BythetimeaverageincomehadrecoveredfromtheCovid-19 crisis,bycontrast,thebottom50%wasonly4%belowitspre-crisisincomelevelandwasgrowing fast.TheseresultsillustratethefactthatagiventrajectoryofGDPgrowthiscompatiblewith widelydifferentmarketincomedynamicsfortheworkingclass,highlightingtheusefulnessof timelyanddisaggregatedgrowthstatistics.
6.2WageGrowthAfterRecessions:Covid-19vs.GreatRecession
Intheaftermathofthepandemic,theunemploymentratereachedhistoricallylowlevels.Who benefitedmostfromthetightlabormarket?Toshedlightonthisissuewecanuseourmicro-files tostudythemonth-to-monthdynamicsoflaborincome.ThemainfindingisthatthepostCovidperiodwascharacterizedbysignificantwagegrowthatthebottomofthedistribution—a breakfromthetrendprevailingsincetheearly1980s—butalsoattheverytop,withthemiddle ofthedistributionexperiencingnogains.
Methodologytostudylaborincomeinequality. Toestablishtheseresults,weanalyze changesinlaborincomeinequalityintheworking-agepopulation(includingnon-workers)and computegrowthratesoflaborincomesbypercentilesoflaborincome.20 Ourgoalisnotto characterizewagegrowthforagivenworkerortofixthecompositionoftheworkforce;rather, wewanttodescribetheevolutionofthedistributionoflaborincomeascomprehensivelyas possible.Thegrowthstatisticsbypercentilewecomputecapturetheeffectofchangesinboth employmentandwages.Ourmeasureoflaborincomeincludeswages,supplementstowages andsalaries(suchashealthinsuranceandretirementbenefits)andthelaborincomeofselfemployedindividuals(definedas70%ofself-employmentincome),beforeanytaxordeduction forpensioncontributions.Conceptually,itcorrespondstothetotalcost,foremployers,of employingaworker.Ouranalysis,asalwaysinthispaper,iscross-sectionalinnature:wedo
20 Tobetterconnecttothelaboreconomicsliteratureandbecausewehavegoodmeasuresofindividualwages, fortheanalysisoflaborincomeinequalitywefocusonindividualizedincomeseries,i.e.,wedonotsplitincome equallybetweenmarriedspouses.
24
notfollowindividualsovertime.21
Toprovidethecontextrequiredtointerpretchangesinthedistributionoflaborincome, Figure7adepictstherawmonthlyemployment-to-working-agepopulationratiofromBLSfrom January2019toSeptember2022.Thisratewas78%beforetheCovid-19pandemic,fellto68% atthetroughoftherecession,andbySeptember2022hadreturnedtoitspre-Covidlevel.22
ThismeansthatalthoughthecompositionoftheworkforcemaynotbethesameinSeptember 2022asinJanuary2019,acomparisonoftheleveloflaborincomeinthesetwomonthsisnot confoundedbychangesinthelevelofemployment,whichfacilitatestheinterpretationoflabor incomegrowth.
Thedynamicoflaborincomeinequalityin2019–2022.
Figure7cdepictstheevolution ofaveragelaborincomebylaborincomegroupfromJanuary2019toSeptember2022.Since thebottomquartileoftheworking-agepopulationismostlyunemployed,wefocusonthenext threequartiles.Wealsoreportincomeforthetop1%,whichearnsasizablefractionoftotal laborincomeandcannotbestudiedwithavailablehouseholdsurveys.Averagelaborincome ineachgroupisnormalizedto100inJanuary2019.WecanseethatfromJanuary2019to September2022,reallaborincomegrewsignificantlyinthesecondquartile,thegroupwiththe lowest-wageworkers.Becausethesamenumberofadultswasemployedinbothmonths,this growthdoesnotreflectajobs(i.e.,quantity)effect.Itreflectsthefactthatlow-payingjobspaid moreinSeptember2022thaninJanuary2019,byabout10%inrealterms.Incomegrewmuch lessforthethirdandfourthquartiles:inthesegroupsrealaveragelaborincomeincreasedbya mere3%overthisperiod.Therelativelystronggrowthatthebottomillustratestheequalizing effectsoftightlabormarkets.
Wagesalsogrewevenfasterattheverytop.Averagelaborincomeforthetop1%grew around15%betweenJanuary2019andSeptember2022.Thetop1%grewespeciallyfastinthe firsthalfof2021,beforeplateauinginthesecondsemesterandfallingslightlyinthefirstthree quartersof2022.Thus,althoughwageinequalityfellfrom2019toSeptember2022withinthe bottom99%,theshareoflaborincomeearnedbythetop1%rosesignificantly.
21 Webuildonalonglongtraditioninlaboreconomicsstudyingchangesincross-sectionalwageinequality; see,e.g.,KatzandMurphy(1992).Themaindifferenceisthatourstatisticsincorporatetheentireworking-age populationincludingnon-workers(asopposedtoworkersonly).Thisapproachallowsonetocomprehensively capturehowgovernmentpoliciesaffectthelabormarket,includingchangesintheextensivemargin.Withour micro-files,itisalsopossibletofocusonemployedindividualsonly.Weviewbothapproachesascomplementary.
22 Employmentratesinourmicro-filesarehigherbyabout10percentagepointsthroughoutbecauseourmicrofilesmatchannualemploymentrates,whileFigure7areportsrawactualmonthlyemploymentrates(whichare mechanicallylower);seeappendixFigureA3andSection4.2foradiscussion.
25
Laborincomeinequality:Covidvs.GreatRecession. Thedynamicsoflaborincome inequalityobservedduringandaftertheCovidpandemiccontrastsharplywiththoseobserved duringandaftertheGreatRecession,asdepictedinFigure7.Panel(b)ofthatfigureshows thatittookalmost10yearsfortheemploymentratetogetbacktoitspre-GreatRecessionlevel. Panel(d)showsthatsecondquartilelaborincomesfellthemostduringGreatRecession(as observedduringtheCovid-19pandemic),but—insharpcontrasttotheCovid-19recession— continuedtofallinrealtermsuntilthebeginningof2012,eventhoughtheemploymentrate hadalreadystartedtorecover.Secondquartilesreallaborincomesdidnotrecovertheirreal pre-GreatRecessionlevelsuntil2016.
Finally,Figure8depictsreallaborincomegrowthratesbyvingtilesofthelaborincome distributionabovethe25th percentile,fromtheeveoftheCovidrecession(February2020)to December2022(whichhasanemploymentrateequaltothatofFebruary2020),andfromthe eveoftheGreatRecession(December2007)toMay2017(themonthwhentheemployment raterecovereditsDecember2007level).Inbothcaseswecaptureafullemploymentcycleand laborincomegrowthstatisticsarenotconfoundedbychangesinaggregateemployment.
TheGreatRecessionandensuingrecoverywerecharacterizedbymodestgainsinthemiddle ofthelaborincomedistribution—andastagnationatthebottomandatthetop.TheCovid cycleisthemirrorimage:largeearningsgainsatthebottomandtopofthedistribution—and lossesinthemiddle.Moreprecisely,duringtheCovidcycle,laborincomegrewatannualrates ofabout2%–3%atthebottom.Bycontrast,betweenDecember2007andMay2017,average laborincomeforthesecondquartileoftheworking-agepopulationgrewonly0.2%ayear.By thetimetheemploymentratehadrecovereditspre-GreatRecessionlevel(inMay2017),average earningsforlow-wageworkerswerebarelyhigherthanadecadebefore.Growthwasstronger fromthe75th tothe95th percentileduringtheGreatRecession,whilethesegroupsexperienced reallossesduringtheCovidcycle.Finally,thetop1%grewfastduringCovidwhileitstagnated from2007—apeakyearfortoplaborincomes,whichincludestockoptions—to2017.
6.3TheEffectsofGovernmentIntervention
Governmentinterventionduringrecessionsaffectthelevelanddistributionofdisposableincome, sometimesmassively.In2021,averagerealdisposableincomeperadultintheUnitedStates wasabout10%higherthanin2019duetolargegovernmentdeficits.
Thebottom50%mostbenefittedfromtheincreaseingovernmentspending.Afteraccountingfortaxesandcashandquasi-cashtransfers,averagedisposableincomeforthebottom50%
26
wasnearly20%higherin2021thanin2019.Figure9showsastep-by-stepdecompositionofthis evolution.Tofacilitatetheinterpretationoftheresults,wefocusontheworking-agepopulation (aged20to64)andwealwaysrankbyfactorincomesothatallfiguresforagivenmonthrefer tothesamegroup.23 Thefigurerevealstherelativeimportanceofthedifferentgovernment programsenactedduringthepandemic.
Intheearlymonthsofthecrisis,thePaycheckProtectionProgramliftedincomes.But availableevidenceontheincidenceoftheprogram(Autoretal.,2022)impliesthattheeffect islimited:byourestimates,thePaycheckProtectionProgramincreasedtheaveragemonthly incomeofthebottom50%ofworking-ageadultsbyabout $100.Itreplacedaboutafifth ofthedeclineinfactorincomethatoccurredinthefirstmonthsofthecrisisforthisgroup (fromabout $2,000inFebruary2020toabout $1,500inAprilandMay2020).Unemployment insurance,whichwasexpandedduringthecrisis,hadmuchlargereffects,liftingaveragebottom 50%monthlyincomebyabout $800inMay,June,andJuly2020,andbyupto $400amonth throughtothesummerof2021.
ThethreewavesofCovid-reliefpayments(April2020,January2021,andMarch2021)had massivebuttemporaryeffectsonmonthlyincome.Disposablemonthlyincomeforthebottom 50%peakedinMarch2021followingthethirdpayment,toreach $4,000—twiceasmuchas beforethepandemic($2,000).Forthebottom50%,disposableincomethatmonthwastwice aslargeasfactorincome(about $2,000).Thisgapbetweendisposableandfactorincomewas historicallyhigh:disposableincomeisusuallyclosetofactorincomeforthebottom50%(that is,thisgroupusuallypaysaboutasmuchintaxesasitreceivesincashandquasi-cashtransfers).
Bythefallof2021,disposablemonthlyincomeforthebottom50%haddeclinedto $2,400.The mainreasonwhydisposableincomewashigherfortheworkingclassintheendof2021than beforethepandemicwastheexpandedchildtaxcreditandtheexpandedearnedincometax creditforadultswithchildren.24 Inthebeginningof2022,disposableincomefellastheexpanded taxcreditsexpired.Theonlyreasonwhyitremainedhigherthanpre-Covid(byabout10%) isthatfactorincomewashigher—drivenbytherealwagegainsdocumentedabove.Insum, governmentprogramsenactedduringthepandemicledtoadramaticandunprecedented—but short-lived—improvementsinlivingstandardsforthelowerhalfoftheincomedistribution.25
23 AppendixFigureA7showsdisposableincomeinthefulladultpopulation(i.e.,notrestrictingtoworking-age adults)rankingbyfactorincome;theresultsaresimilar.
24 Asinthenationalaccounts,refundabletaxcredits—i.e.,cashtransfersadministeredthroughthetax system—arecategorizedascashtransfers(notnegativetaxes);thusthechildtaxcreditandtheearnedincometaxcreditsshowupas“regularcashtransfers”inFigure9.
25 AppendixFigureA8showsthatthesameconclusionholdstruewhenlookingattotalposttaxincome,i.e., includingMedicaidandMedicare,otherin-kindgovernmentspending,collectiveconsumptionexpenditures,and
27
6.4ChangesinWealthConcentration
Last,westudytheeffectoftheCovid-19crisisonwealthinequality.Weproducemonthly anddailyestimatesofwealthlevelsacrossthedistribution.Monthlyestimatesareobtained byrescalingquarterlyFinancialAccountsaggregatestotheirmonthlyvalueusingrealestate andequityindices,anddailyestimatesbyupdatingequityvaluesusingdailystockindices.26 Thismakesitpossibletotrackchangesinwealthinequalityduringperiodsofturmoilinasset markets,whichisvaluabletosimulatewealtheffectsonconsumptioninrealtimeandtoimprove theanalysisandmanagementofthebusinesscycle.
Figure10showsthemonthlydynamicofwealthacrossthedistributionfromJuly2019to March2023,withprojectionstotheJuly1st 2023usingourdailymethodology.Twodistinct phasescanbeobserved.First,untiltheendof2021,wealthgrewstronglyforallgroupsand wealthconcentrationrose.Fromtheendof2019totheendof2021,averagerealwealthper adultgrew26%,primarilyduetotheriseinassetprices,bothinhousingandequitymarkets. Forthetop1%theincreasewas31%andforthetop0.01%itreached34%.Theshareofwealth ownedbythetop0.1%adultsincreased1.2pointfromtheendof2019totheendof2021,to reach18.8%—thehighestlevelrecordedinthepost-WordWarIIera.Wealthgainswerethen partlyerasedbythedeclineinstockpricesin2022.
Ourfindingsonthedynamicsofwealthinequalityareconsistentwithotherexistingevidence. TheFederalReserveDistributionalFinancialAccounts(DFA)showsimilarpatterns,bothfor theCovid-19crisisandoverthelongrun.Ifanything,theDFAsuggestanevenstrongerincrease inwealthconcentrationsince1989.Fromthethirdquarterof1989(thestartoftheDFA)to thesecondquarterof2022,thetop1%wealthsharegrew8.6pointsaccordingtotheFederal Reserve(vs.+5.7inourseriesoverthesameperiodoftime);thenext9%lost-0.4point(-0.6 inourseries);themiddle40%lost-7.4points(-4.3inourseries);thebottom50%lost-0.6 point(-0.7inourseries).Giventhatthesetwoseriesrelyondifferentdistributionalsources(a triennalsurveyofabout6,000familiesinthecaseoftheDFA,annualtaxdatainourcase),this similaritysuggeststhattheriseofwealthconcentrationintheUnitedStatessincethe1980sis highlyrobust.27 InboththeDFAandourseries,thetop1%wealthsharewasatitshighest thegovernmentdeficit.
26 ForhousingwealthweusethequarterlyCase-Schillerindex,projectedtothemostrecentmonthwith theZillowHomeValueindex.Forequities,weusetheWilshire5000TotalMarketIndex,themostextensive representativeindexofUSpubliccompanies.Wealsoadjustthewealthofthetop400dailytomatchthe real-timeestimatespublishedby Forbes.SeeAppendixBforcompletedetails.
27 AsdetailedinSaezandZucman(2020),topwealthshares,althoughtheyexhibitthesametrend,arelower throughoutinlevelintheDFAthaninSaezandZucman(2016);e.g.,thetop1%wealthsharerisesfrom22.5% in1989Q3to31.1%in2022Q2intheDFA(vs.28.6%to34.3%inourseries).ThisisbecauseincontrasttoSaez
28
recordedlevelattheendof2021andfellby1–2percentagepointsinthefirsthalfof2022.
7RacialEconomicDisparities
Thestatisticalmatchbetweensurveyandtaxdataimplementedinthispaperallowsusto studythereal-timedynamicsofracialincomedisparities,inparticularwhetherBlackand whitehouseholdsrecoveredatthesamepaceaftertheCovid-19recession.
7.1AComprehensiveMeasureoftheBlack-whiteIncomeGap
ToprovidecontextfortheanalysisoftheCovid-19pandemic,westartbydescribingthemediumrundynamicsoftheBlack-whiteincomegap.Althoughalargeliteraturestudiesracialincome disparities(e.g.,BayerandCharles,2018;Chettyetal.,2020;DerenoncourtandMontialoux, 2021),todatethereisnoestimateofhowaveragenationalincome—thebroadestnotionof income—differsforBlackvs.whiteAmericans.Duetodatalimitations(thelackofinformation onraceintaxdataandthepoorcoverageofcapitalincomeinhouseholdsurveys,inparticular), mostexistingstatisticsfocusonearningsorsomemeasureofdisposableincome.Ourapproach, bycontrast,allowsusforthefirsttimetoprovideacomprehensivemeasureoftheBlack-white incomegap.Concretely,in2021averagenationalincomeperadultintheUnitedStateswas around $79,000;withourfileswecanask:Howdoesthisnumberdifferacrossracialgroups?
Figure11showstheaveragepretaxnationalincomeofBlackadultsrelativetowhiteadults. OnaverageBlackAmericansearnhalfofwhatwhiteAmericansdo: $48,000in2021vs. $95,000. ThisgapissignificantlylargerthantheBlack-whiteearningsgapthatisthetraditionalfocus oftheliterature.AsFigure11shows,BlackAmericans(includingnonworkers)aged20to64 onaverageearn65%ofwhatworking-agewhiteAmericansdo.28 TheBlack-whitenational incomegapisevenlargerbecauseracialdisparitiesincapitalincomearelargerthandisparities inlaborincome:onaverageBlackadultsearnonlyabout20%oftheaveragecapitalincome ofwhiteadults.Thisgapitselfprimarilyreflectsthemajordisparitiesinwealthreported inFigure11andrecentlystudiedin,e.g.,Derenoncourtetal.(2022).29 Propertyownership andZucman(2016)andthispaper,theDFAincludeunfundeddefinedbenefitpensionsandvehiclesinwealth, bothofwhicharerelativelyequallydistributed.Oncethesamedefinitionofwealthisused,thelevel,trend, andcompositionoftopwealthsharesarenearlyidenticalinthetwoprojects(see,e.g.,SaezandZucman,2020, Figure1).
28 Restrictingtoworkers,theBlack-whiteearningsgapislower(Blackworkersearnabout75%ofwhatwhite workersdo).AsshownbyBayerandCharles(2018),takingnonworkersintoaccountiscriticaltoanalyzethe dynamicsoftheBlack-whiteearningsgap,duetodifferentialtrendsinemployment.
29 TheBlack-whitewealthgapdisplayedinFigure11isclosetotheoneintheFederalReserveDistributional FinancialAccounts,themostcomparablestatistics.In2019theaveragewealthofBlackhouseholdsis22%of
29
remainsmuchmoreunequalthanlabormarketincomesandthisinequalityisakeycontributorto thepersistentracialincomedisparitiesthatcharacterizetheUnitedStates.30 Capitalincomeis evenmoreunequallydistributedthanwealthbecauseofdifferencesinyields,inturncomingfrom differencesinassetcomposition.Relativetowhitehouseholds,agreaterfractionofthewealth ofBlackhouseholdsisinrelativelylow-yieldassets,namelyhousingandpensions.Business assetsandcorporateequity,whichhaveahigheryield,aremoreconcentratedamongwhite households.
Figure11alsoshowsthattherehasbeennoreductionintheBlack-whiteincomegapsince thelate1980s.Ifanything,racialdisparitiesareslightlyhigherin2022thanin1989.Inequality increasedfrom1989to2013;itthenstartedfallinginthemid-2010s,inbothcasesdrivenby changesinlaborincomedisparities.Therecentdeclineininequalitywasnotenoughtooffset thepreviousincrease,sothattheaveragepretaxincomeofBlackadultsrelativetowhiteadults remainslowerin2022thanin1989.
7.2RacialDisparitiesOvertheBusinessCycle
Turningtotherecentdynamic,Figure12contrastsincomegrowthatthequarterlyfrequency duringtheGreatRecessionanditsaftermathandduringtheCovidcrisis.DuringtheGreat Recession,theaverageincomeofBlackpeopleexperiencedaprolongeddeclineof4years.In thethirdquarterof2011,itwas8%lowerthanontheeveoftheGreatRecession,whileaverage incomeforwhiteworking-ageadultshadalreadyfullyrecovered.Thisyearcorrespondstothe peakinBlack-whiteincomedisparitiesoverthelastthreedecades.AverageBlackincomethen startedrecovering,firstatthesamepaceasforwhites,thenfasterafter2014,leadingtoa declineintheBlack-whiteincomegapthatcontinueduntiltheCovidpandemichit.Thetrend forHispanicsmirrorstheoneseenforBlacks,exceptthatgrowthwasevenstrongerfrom2014.
DuringCovid,racialdisparitieswerelesspronouncedthanduringtheGreatRecession.The collapseinincomeinthesecondandthirdquarterof2020wasbroadlysimilarforthedifferent racialgroups.Theythenrecoveredatroughlythesamepace:bythefirstquarterof2021all theaveragewealthofwhitehouseholdsintheDFAvs.25%inFigure11.Thedifferenceisduetotheunitof observation(householdsinDFAvs.adultindividualsinFigure11).Becauseofdifferencesinhouseholdsize, racialwealthdisparitiesareslightlylargeratthehouseholdlevel.Usingourmicrofilesonecanalsostudyracial wealthdisparitiesatthehouseholdlevel;resultsareidenticaltotheDFA.IntheSurveyofConsumerFinances (used,e.g.,byDerenoncourtetal.,2022),racialwealthdisparitiesarehigherthanintheDFAandourseries becauseofthedifferentwealthtotals(inparticularthehighertotalforprivatebusinesswealth,whoseownership isconcentratedamongwhitehouseholds).Trendsaresimilarinallseries.
30 Similarly,FigureA9showthateventhoughBlackindividualsaccountfor12%oftheentireadultpopulation, theyaccountforlessthan8%ofthetop10%ofthewagedistributionand4.5%ofthetop10%ofthewealth distribution.
30
hadrecoveredtheirpre-crisispretaxincomelevel.Wethusagainseeanillustrationofthefact thattheCovid-19recoverywasmuchmoreequalthantheGreatRecessionrecovery.31
8Conclusion
Macroeconomicgrowthstatisticsarenotnecessarilyinformativeofhowincomegrowsformost socialgroups.Yetgovernmentstatisticscurrentlyavailablegloballydonotmakeitpossibleto knowwhobenefitsfromeconomicgrowthinatimelymanner.Ourpaperattemptstoaddress thisgapintheUnitedStatesbycreatingmonthlyincomedistributions,availableshortlyafter thepublicationofofficialhigh-frequencynationalaccountsaggregates.Ourmethodology,which weretrospectivelytestandvalidatebackto1976,combinesallpubliclyavailablehigh-frequency datainaunifiedframework.
Real-timedistributionalgrowthstatisticscouldplayacriticalroleinguidingstabilization policiesduringandintheaftermathofrecessions.Forexample,followingarecession,theycould beusedtoestimate“distributionaloutputgaps,”thatistheextenttowhichincomeremains belowitspre-recessionlevelortrendforthebottom50%ofthedistribution,thenext40%,and thetop10%.Sinceourfilesincorporatealltaxesandgovernmenttransfers,theycouldbeused tostudywhetherfiscalpolicyenactedduringacrisismitigatesincomelossesfortheworking classonamonth-to-monthbasis.
Thisprojectonlyusespubliclyavailabledatasetsandourprogramsareavailableonlineat https://realtimeinequality.org,makingitpossibleforinteresteduserstoexamineallthe aspectsofourapproachandrefineit.Althoughourestimationprocedureappearstodeliver reliableresults,ourestimatescouldbeimprovedbycomplementingthedataweusewithrealtimeprivatesectordata(Chettyetal.,2023),byleveraginginternaladministrativedata,orby collectingnewadministrativedata.
Anumberofpotentialdataimprovementsareworthhighlighting.First,high-frequencynationalaccountstotalsare—likeallimportanteconomicstatistics—stillaworkinprogressand couldberefined.Itwouldbevaluabletodevelopprocessestoremovethestatisticaldiscrepancy betweenGDIandGDP,i.e.,tosystematicallyreconciletheincomeandexpenditureapproach. ThiswouldallowBEAtoproduceasingleunifiedestimateofquarterlygrowth,asmanycountriesdo.Progressinthatdirectioncouldbefacilitatedbyamoresystematicexploitationof high-frequencydataoncorporateprofits,suchaslistedcompanies’quarterlyearningsstate-
31 AppendixFigureA11reportssimilarcomparisonsofaverageincomeformenvs.womeninthetwodownturns andrecoveries.
31
ments.32 Thenationalaccountscouldalsobeimprovedbyreportingseparateprofitsestimates forpublicvs.privatecompanies(orC-corporationsvs.S-corporations).Becauseprofitsofprivatecompaniestendtobemoreconcentratedtowardsthetopoftheincomedistribution,this additionalbreakdownwouldimprovetheaccuracyofdistributionalestimates.33 Last,governmentagenciescouldproduceadditionalhigh-frequencyinequalityestimates.Mostimportantly, theBureauofLaborStatisticscouldcomputeaquarterlyindividual-levelwagedistributionusingtheadministrativeunemploymentinsurancemicro-datathatunderlytheQCEW.Weview ourreal-timestatisticsasaprototypewhichwehopewillberefined,enriched,andeventually incorporatedintoofficialnationalaccountstatistics.
32 PubliccompaniesmustsubmitquarterlyearningstotheSecuritiesandExchangeCommissionwithin40 days.Ifthisdelaywasreducedtolessthan30days,thesedatacouldbeusedbyBEAasakeyinputtoform anestimateofcorporateprofitswithinamonthoftheendofeachquarter.Inturn,thiswouldmakeitpossible forBEAtosimultaneouslyestimategrowthfromboththeincomeandexpenditureapproach,makingiteasier tointegratedatafromthesetwoapproachesintoasinglenumber.
33 Krakoweretal.(2021)presentprototypeNIPAestimatesofprofitsforS-corporations,butthereareno quarterlyestimatestodate.TheCensusBureauQuarterlyFinancialReport—whichserveasakeyinputfor theestimationofquarterlyprofitsbyBEA—couldincludetabulationsforpublicvs.privatefirmsseparately.
References
Aspachs,Oriol,RubenDurante,AlbertoGraziano,JosepMestres,Jos´eGarciaMontalvoandMartaReynal-Querol. 2020.“Real-TimeInequalityandtheWelfareState inMotion:EvidencefromCOVID-19inSpain.”BSEWorkingPaper:No.1202.
Autor,David,ArinDube,andAnnieMcGrew. 2023.“TheUnexpectedCompression: CompetitionatWorkintheLowWageLaborMarket,”NBERworkingpaper#31010.
Autor,Davidetal. 2022.“The $800BillionPaycheckProtectionProgram:WhereDidthe MoneyGoandWhyDiditGoThere?,” JournalofEconomicPerspectives, 36(2),55–80.
Alvaredo,Facundo,AnthonyAtkinson,LucasChancel,ThomasPiketty,Emmanuel Saez,andGabrielZucman. 2016.“DistributionalNationalAccounts(DINA)Guidelines: ConceptsandMethodsusedintheWorldWealthandIncomeDatabase.”WIDWP2016/1. Batty,Michaeletal. 2019.“IntroducingtheDistributionalFinancialAccountsoftheUnited States,”FinanceandEconomicsDiscussionSeries2019-017.Washington:BoardofGovernors oftheFederalReserveSystem.
Bayer,PatrickandKerwinKofiCharles. 2018.“DivergentPaths:ANewPerspectiveonEarningsDifferencesBetweenBlackandWhiteMenSince1940,” QuarterlyJournalof Economics, 133(3):1459–1501.
Blanchet,Thomas,LucasChancel,IgnacioFlores,MarcMorgan. 2021.“DistributionalNationalAccountsGuidelines:MethodsandConceptsusedintheWorldInequality Database.”Technicalpaper,2021.
Blanchet,Thomas,LucasChancel,IgnacioFlores,MarcMorgan. 2022.“Generalized ParetoCurves:TheoryandApplications,” ReviewofIncomeandWealth, 68(1),263–288.
Bounie,David,YoussoufCamara,EtienneFize,JohnGalbraith,CamilleLandais, ChloeLavest,TatianaPazem,B.Savatier. 2020.“ConsumptionDynamicsintheCOVID Crisis:RealTimeInsightsfromFrenchTransactionBankData.” CovidEconomics 59:1-39. Card,David,RajChetty,MartinFeldstein,andEmmanuelSaez.2010“Expanding AccesstoAdministrativeDataforResearchintheUnitedStates”,NSFwhitepaper.
Chetty,Raj,JohnN.Friedman,NathanielHendren,MichaelStepner,andthe OpportunityInsightsTeam. 2023.“TheEconomicImpactsofCovid-19:Evidencefrom aNewPublicDatabaseBuiltUsingPrivateSectorData.” QuarterlyJournalofEconomics, forthcoming.
Chetty,Raj,JohnN.Friedman,NathanielHendren,MaggieR.Jones,andSonya R.Porter. 2020.“RaceandEconomicOpportunityintheUnitedStates:AnIntergenerational Perspective,” QuarterlyJournalofEconomics 135(2):711–783.
Derenoncourt,Ellora,andClaireMontialoux. 2021.“MinimumWagesandRacialInequality,” QuarterlyJournalofEconomics, 136(1):169-228.
Derenoncourt,Ellora,ChiHyunKim,MoritzKuhn,andMoritzSchularick. 2022. “WealthofTwoNations:TheU.S.racialwealthgap,1860-2020.”NBERWP#30101. DalyMary,BartHobijn,andTheodoreWiles. 2011.“DissectingAggregateRealWage Fluctuations:IndividualWageGrowthandtheCompositionEffect,”FRBSFWP2011-23. Denton,FrankT..1971.“AdjustmentofMonthlyorQuarterlySeriestoAnnualTotals:An ApproachBasedonQuadraticMinimization,” JASA 66(333):99–102. Fixler,Dennis,DavidJohnson,AndrewCraig,KevinFurlong. 2017.“AConsistent
33
DataSeriestoEvaluateGrowthandInequalityintheNationalAccounts,” ReviewofIncome andWealth, 63:437–459.
Fixler,Dennis,EvadeFrancisco,andDanitKanal. 2021.“TheRevisionstoGross DomesticProduct,GrossDomesticIncome,andTheirMajorComponents,” SurveyofCurrent Business. 101(1):1–40.
Fixler,Dennis,MarinaGindelsky,andRobertKornfeld. 2021.“TheFeasibilityofa QuarterlyDistributionofPersonalIncome,”BEAWorkingPaperSeries,WP2021-8.
Gould,EliseandJoriKandra. 2022.“Inequalityinannualearningsworsensin2021,” EconomicPolicyInstitutereport.
InternationalMonetaryFund 2017.“QuarterlyNationalAccountsManual,2017Edition.” Katz,LawrenceF.andKevinM.Murphy. 1992,“ChangesinRelativeWages,1963-1987: SupplyandDemandFactors,” QuarterlyJournalofEconomics 107(1),35–78.
Kopczuk,Wojciech,EmmanuelSaez,andJaeSong. 2010,“EarningsInequalityand MobilityintheUnitedStates:EvidencefromSocialSecurityDatasince1937,” Quarterly JournalofEconomics 125(1),91–128.
Krakower,Howard,JenniferLee,KatePinard,andMarlynRodriguez. 2021.“PrototypeNIPAEstimatesofProfitsforSCorporations.”BureauofEconomicAnalysis. Lee,Byoungchan. 2020.“BusinessCyclesandEarningsInequality.”workingpaper. Mishel,LawrenceandJoriKandra. 2021.“Wageinequalitycontinuedtoincreasein2020,” EconomicPolicyInstitutereport.
Parolin,Zachary,MeganCurran,JordanMatsudaira,JaneWaldfogel,andChristopherWimer. 2022.“EstimatingMonthlyPovertyRatesintheUnitedStates.”forthcoming JournalofPolicyAnalysisandManagement Piketty,Thomas,andEmmanuelSaez. 2003.“IncomeInequalityintheUnitedStates, 1913-1998,” QuarterlyJournalofEconomics 118(1),1–39.
Piketty,Thomas,EmmanuelSaez,andGabrielZucman. 2018.“DistributionalNational Accounts:MethodsandEstimatesfortheUnitedStates,” QuarterlyJournalofEconomics 133(2),553–609.
Rodgers,WillardL. 1984.“AnEvaluationofStatisticalMatching,” JournalofBusiness& EconomicStatistics 2(1),91–102.
Saez,Emmanuel. 2008.“StrikingItRicher:TheEvolutionofTopIncomesintheUnited States,” PathwaysMagazine,StanfordCenterfortheStudyofPovertyandInequality,6-7. Saez,EmmanuelandGabrielZucman. 2016.“WealthInequalityintheUnitedStatessince 1913:EvidencefromCapitalizedIncomeTaxData,” QuarterlyJournalofEconomics 131(2). Saez,EmmanuelandGabrielZucman. 2020.“TheRiseofIncomeandWealthInequality inAmerica:EvidencefromDistributionalMacroeconomicAccounts,” JournalofEconomic Perspectives,34(4):3-26.
Saez,EmmanuelandGabrielZucman. 2020b.“TrendsinUSIncomeandWealthInequality:RevisingAftertheRevisionists,”NBERworkingpaper#27921.
Shiskin,J.,A.H.YoungandJ.C.Musgrave. 1967.“TheX-11VariantoftheCensus MethodIISeasonalAdjustmentProgram,”TechnicalReport15,BureauoftheCensus. Stantcheva,Stefanie. 2022.“InequalitiesintheTimesofaPandemic,”NBERWP#29657.
34
StiglitzJoseph,AmartyaSen,andJean-PaulFitoussi. 2009. ReportbytheCommission ontheMeasurementofEconomicPerformanceandSocialProgress,INSEEFrance. UnitedNations. 2009.“SystemofNationalAccounts2008,”EuropeanCommunities,InternationalMonetaryFund,OECD,UnitedNationsandWorldBank. USCensusBureau. 2022.“QuarterlyFinancialReport:U.S.Manufacturing,Mining,WholesaleTrade,andSelectedServiceIndustries”onlineat https://www.census.gov/econ/qfr/
35
(a)GenderbyWageEarnings
(b)RacebyWageEarnings
(c)RacebyIncome
(d)RacebyWealth
Notes:Thisfigurecomparesthedemographiccompositionalongonekeyincomeorwealthvariableofinterest intheoriginalsurveydatavs.thesamekeyincomeorwealthvariablefromthetaxdatainourstatistically matcheddataset.Panel(a)considersgendercompositionbyannualwageearningsbracketsintheCPSvs. matcheddata.Panel(b)considersracialcompositionbyannualwageearningsbrackets.Inbothpanels(a)and (b),thesampleincludeszeros(individualswithnowageearnings)butonlyincludesworking-ageindividuals (20–64).Panel(a)usesindividualearnings,whilepanel(b)dividesearningsequallyamongmarriedspouses. Panel(c)considersracecompositionbyannualtotalincomebracketintheCPS,theSCF,andmatcheddata. Forthepurposeofthatexercise,totalincomeisthesumofwages,pensions,SocialSecuritybenefits,business income,interest,dividends,andrents.Panel(d)considersthesameracecompositionbywealthbracketinthe SCFvs.matcheddata.Inbothpanels(c)and(d),weconsidertheentireCPS(and/orSCF)samples.
Figure1:TestingtheOne-to-OneStatisticalMatch
Top 10% Bottom 50% 0% 10% 20% 30% 40% 50% 60% 70% 80% % of women 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 DINA (matched) CPS
Top 10% Bottom 50% 0% 5% 10% 15% 20% 25% 30% 35% 40% % of blacks & hispanics 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 DINA (matched) CPS
Top 10% Bottom 50% 0% 5% 10% 15% 20% 25% 30% 35% 40% % of blacks & hispanics 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 DINA (matched) CPS SCF
Top 10% Bottom 50% 0% 5% 10% 15% 20% 25% 30% 35% 40% % of blacks & hispanics 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 DINA (matched) SCF
36
Figure2:Top1%WageShare:AdjustingtheQCEW
Notes:Thisfiguredepictsthetop1%wageshare(amongindividualswithpositivewages)intheannualtaxdata(inredcircles)andintherawbut de-seasonalizedQCEWdata(orangeseriesfortheoldQCEWbasedonSICindustrycodes,andgreenseriesforthemodernQCEWbasedonmoregranular NAICSindustrycodes).Thetop1%wageshareissubstantiallylowerintherawQCEWbecausethedataisaggregatedbycounty×industrycells,butthe trendsaresimilar.AdjustingtheQCEWserieswithamultiplierpluslevelshiftconstantovertheperiod(basedonatimeseriesregressionapproachas describedinthetext)generatestheblueadjustedQCEWseriesthatalmostperfectlyalignswiththetaxdatabothinlevelsandtrendsoverthefullperiod.
Data version)
37
Figure3:WageDistributions:TaxDatavs.QCEW&CPSBasedEstimates
Notes:ThisfigurecomparesthewagedistributionsintheannualdistributionalnationalaccountsofPiketty,SaezandZucman(2018,updated),which arebasedonpublictaxmicro-data,andthoseobtainedinourmonthlymicro-filesusingtheQCEWandtheCPSasdescribedinSection4.3.Eachpanel depictstheshareoftotalwageincomeearnedbyaspecificgroup(bottom50%,middle40%,next9%,andtop1%)ofindividualswithpositivewageincome. Wagesareindividualized(theyarenotequallysplitbetweenmarriedspouses).ThemonthlyseriesestimatedfromtheQCEWandCPStracktheannual micro-datacloselyforallgroups,includingthetop1%whichisnotmeasuredwellintraditionalsurveydata.
2000m1 2020m1 2000m1 2020m1 40% [Monthly]
38
Figure4:Actualvs.PredictedGrowthattheBottom
(c)Middle40%,1year
• Regularyear Taxreformyear
Notes:Thisfigurecomparespredictedtoactualgrowthinaveragerealfactorincomeperadult(withincome equallysplitamongmarriedspouses)forthebottom50%(toppanels)andthenext40%(bottompanels). Growthiscomputedfromyear t to t +1(leftpanels)andfrom t to t +2(rightpanels)foreachyear t from1975 to2018(2017intherightpanels).Actualgrowthisobtainedusingtheannualdistributionalnationalaccount micro-dataforbothyears t and t +1(or t +2).Predictedgrowthisobtainedusingtheannualmicro-datafor year t buttheprojectedmicro-datausingourmethodologyfor t +1(or t +2).Yearsofsignificanttaxreforms (whichcangenerateincomeshifting)areshowninred.Years t +1(or t +2)withsignificantpredictionerrorsare labelled.Overall,thedotsalignwellwiththe45-degreelinedepictedonthegraphs:ourmethodologyaccurately predictsgrowthatthebottomandinthemiddleofthedistribution.
(a)Bottom50%,1year 1984 2017 2012 -10 -5 0 5 10 Actual growth rate (%) -10 -5 0 5 10 Predicted growth rate (%) (b)Bottom50%,2years 1985 -10 -5 0 5 10 Actual growth rate (%) -10 -5 0 5 10 Predicted growth rate (%)
2009 1987 1988 1991 2012 -4 -2 0 2 4 6 Actual growth rate (%) -4 -2 0 2 4 6 Predicted growth rate (%) (d)Middle40%,2years 1994 2009 1988 1991 1992 1993 -4 -2 0 2 4 6 8 Actual growth rate (%) -4 -2 0 2 4 6 8 Predicted growth rate (%)
39
Figure5:Actualvs.PredictedGrowthattheTop
• Regularyear Taxreformyear
Notes:Thisfigurecomparespredictedtoactualgrowthinaveragerealfactorincomeperadult(withincome equallysplitamongmarriedspouses)forthetop1%(toppanels)andthenext9%(bottompanels).Growthis computedfromyear t to t +1(leftpanels)andfrom t to t +2(rightpanels)foreachyear t from1975to2018 (2017intherightpanels).Actualgrowthisobtainedusingtheannualdistributionalnationalaccountmicro-data forbothyears t and t +1(or t +2).Predictedgrowthisobtainedusingtheannualmicro-dataforyear t but theprojectedmicro-datausingourmethodologyfor t +1(or t +2).Yearsofsignificanttaxreforms(whichcan generateincomeshifting)areshowninred.Years t +1(or t +2)withsignificantpredictionerrorsarelabelled. Overall,thedotsalignwellwiththe45-degreelinedepictedonthegraphs:ourmethodologyaccuratelypredicts thegrowthoftopincomes.
(a)Top1%,1year 1979 1994 1987 1988 1991 1993 2012 -10 -5 0 5 10 15 20 Actual growth rate (%) -10 -5 0 5 10 15 20 Predicted growth rate (%) (b)Top1%,2years 1994 1988 1991 1992 1993 -15 -10 -5 0 5 10 15 20 25 30 35 Actual growth rate (%) -15 -10 -5 0 5 10 15 20 25 30 35 Predicted growth rate (%) (c)Next9%,1year 2000 2009 2013 -4 -2 0 2 4 6 Actual growth rate (%) -4 -2 0 2 4 6 Predicted growth rate (%) (d)Next9%,2years 2000 2009 2013 -4 -2 0 2 4 6 8 Actual growth rate (%) -4 -2 0 2 4 6 8 Predicted growth
(%)
rate
40
Figure6:FactorIncome:Covid-19vs.GreatRecession
(a)RealFactorIncomeAroundtheCovid-19Pandemic
(b)IncomeDynamics:Covid-19vs.GreatRecession
Months after recession started
Notes:Panel(a)showsthemonthlydynamicofrealfactorincomeperadult(withincomeequallysplitamong marriedspouses)aroundtheCovid-19pandemic.Thepandemicledtothestrongestincomedeclinesforthe bottom50%andtoalesserextentforthetoponepercent.ByOctober2021allgroupshadrecoveredtheir pre-crisisincomelevel.Panel(b)comparesthegrowthofrealfactorincomeperworking-ageadult(withincome equallysplitamongmarriedspouses)onaverageandforthebottom50%oftheworkingagepopulationduring theGreatRecessionandtheCovid-19recession.Werestricttotheworking-agepopulation(20to64)tocontrol forpopulationaginginthe2010s.Incomeisnormalizedto100inDecember2007fortheGreatRecessionand February2020fortheCovid-19recession,correspondingtothemonthimmediatelyprecedingeachrecession. Thex-axiscountsthenumberofmonthssincethestartofeachrecession.
70 80 90 100 110 Average income per adult (constant) 07/2019 = 100 2019m7 2020m1 2020m7 2021m1 2021m7 2022m1 2022m7 Top 1% Next 9% Middle 40% Bottom 50%
Bottom 50% (Great recession) Working-age adults (Great recession) Bottom 50% (COVID recession) Working-age adults (COVID recession) 70 80 90 100 110 Real average factor income per working-age adult (Index, 100 in the month preceding the recession) 0 12 24 36 48 60 72 84 96 108 120
RealLaborIncomebyGroup
Notes:Thetoppanelsdepicttheevolutionofthemonthlyemploymenttoworking-agepopulationratio,defined asseasonally-adjustednonfarmemployment(fromtheBLSCurrentEmploymentStatisticsestablishmentsurvey) dividedbythenumberofadultsaged20to64duringCovidinpanel(a)andtheGreatRecessioninpanel (b).Thismeasureofemploymentexcludesproprietors,privatehouseholdemployees,unpaidvolunteers,farm employees,andtheunincorporatedself-employed.Thebottompanelsdepicttheaveragereallaborincomefor variousfractilesofthelaborincomedistributionamongadultsaged20to64(includingnon-workers)during Covidinpanel(a)andtheGreatRecessioninpanel(b),withbase100atthestartofeachperiod.Labor incomeisindividualized(i.e.,notequallysplitbetweenmarriedspouses)andincludesallwagesandsalaries, supplementstowagesandsalaries,and70%ofself-employmentincome.
GreatRecession
(a)Covid 67 68 69 70 71 72 73 74 75 76 77 78 79 Employment to working-age population ratio (%) 2019m1 2019m7 2020m1 2020m7 2021m1 2021m7 2022m1 2022m7 (b)GreatRecession 67 68 69 70 71 72 73 74 75 76 77 78 79 Employment to working-age population ratio (%) 2008m1 2010m1 2012m1 2014m1 2016m1 2018m1
Figure7:EmploymentandEarningsGrowth:Covidvs.
MacroEmploymentRates
(c)Covid 2nd quartile 3rd quartile 4th quartile Top 1% 80 90 100 110 120 Average real labor income Index (2019m1 = 100) 2019m1 2019m7 2020m1 2020m7 2021m1 2021m7 2022m1 2022m7 (d)GreatRecession 2nd quartile 3rd quartile 4th quartile Top 1% 80 90 100 110 120 Average real labor income Index (2019m1 = 100) 2008m1 2010m1 2012m1 2014m1 2016m1 2018m1
Great recession and recovery (12/2007 to 05/2017)
Figure8: EarningsGrowthAcrosstheDistribution:Covid-19vs.GreatRecession
Notes:Thisfigureshowstheannualizedgrowthrateofreallaborincomebyvingtileoftheworking-agepopulation(withazoomonthetop1%),fromthe eveoftheCovidrecession(February2020)toDecember2022,andfromtheeveoftheGreatRecession(December2007)toMay2017.Inbothcases,we captureafullemploymentcycle(i.e.,May2017isthemonthwhentheemploymentratehadreturnedtoitspre-GreatRecessionlevel;andbyDecember 2022theemploymentratehadreturnedtoitspre-Covidlevel).Laborincomeisindividualized(i.e.,notequallysplitbetweenmarriedspouses)andincludes wages,supplementstowagesandsalaries,and70%ofself-employmentincome.Weincludeallworking-ageadults(aged20to64),includingnon-workers. Thegraphstartsatthe25th percentilesincethebottomquartileofworking-ageadultsismostlyunemployed.Thefigureshowsthatthebottom(and top)ofthelaborincomedistributionexperiencedfastgrowthfromthebeginningof2020toDecember2022,incontrastwiththerecoveryfromtheGreat Recession.
70-75% 75-80% 80-85% 85-90% 90-95% 95-99% Top
population)
1%
43
Post-tax disposable income
COVID stimulus checks
Regular cash transfers (net of taxes)
Subsidized pretax national income
Other benefits (net) (pensions & DI, minus contributions)
Unemployment insurance benefits
Subsidized factor national income
Paycheck Protection Program
Factor national income (matching national income)
Notes:Thisfiguredecomposestheaveragerealmonthlyincomeofthebottom50%workingage(20-64)adults fromJuly2019toMarch2023.Individualadultsarerankedbytheirfactorincome,andincomeisequally splitbetweenmarriedspouses.Thefigurerevealstherelativeimportanceofthedifferentgovernmentprograms enactedduringtheCovid-19pandemic,mostimportantlythethreewavesofCovid-reliefpayments(April2020, January2021,andMarch2021),theexpansionofunemploymentinsurance,theexpansionofrefundabletax credits(EITCandchildtaxcredit),andthePaycheckProtectionProgram.Bythebeginningof2022allofthese programshadexpired,andtheonlyreasonwhyaveragebottom50%disposableincomeremainedhigherthan pre-Covid(byabout10%)wasthehigherleveloffactorincome.
Figure10: WealthGrowthDuringandAfterCovid
Notes:Thisfigureshowstheevolutionofaveragerealwealthperadult(withwealthequallysplitbetween marriedspouses)inthemiddle40%ofthewealthdistribution(i.e.,fromthemediantothe90th percentile),the top10%,thetop1%,andthetop0.1%,fromJuly2019toMarch2023(plainline)andprojectedvaluesforJuly 1st ,2023(dottedline)usingourmethodologyforproducingdailyestimates.Theaveragewealthofeachgroup isnormalizedto100inJuly2019.Thefigureshows,e.g.,thatthewealthofthetop0.1%increasedbycloseto 40%(adjustedforinflation)fromJuly2019toDecember2021andthatmoretwothirdsthesegainswereerased in2022.
Figure9: IncomeoftheBottom50%duringtheCovidCrisis 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 Monthly income per adult (constant USD) 2019m6 2019m12 2020m6 2020m12 2021m6 2021m12 2022m6 2022m12
100 110 120 130 140 150 Average wealth per adult (constant USD) 07/2019 = 100 2019m6 2019m12 2020m6 2020m12 2021m6 2021m12 2022m6 2022m12 Top 0.1% Top 1% Top 10% Middle 40%
44
Figure11:
Notes:ThisfigureshowsBlack-whitedifferencesinincomeandwealth.Theunitofobservationistheindividual adult.Thelaborincomelinerestrictstotheworking-agepopulation(individualsaged20to64);otherseries includetheentireadultpopulation.Theseriespresentedarequarterlyandstartin1989,thefirstyearofthe SurveyofConsumerFinances.
Notes:ThisfigureshowstheevolutionofaveragerealpretaxnationalincomebyracialgroupduringtheCovid recessionanditsaftermath(leftpanel)andtheGreatRecessionanditsaftermath(rightpanel).Incomeis normalizedto100inthequarterprecedingeachrecession.
Black-WhiteEconomicDisparities Labor income (working-age population) Pretax income Pretax capital income Wealth 0 10 20 30 40 50 60 70 80 90 100 Black average / White average (%) 1990q1 1995q1 2000q1 2005q1 2010q1 2015q1 2020q1
IncomeDynamicsbyRace:Covidvs.GreatRecession 90 95 100 105 110 2020q1 2020q3 2021q1 2021q3 2022q1 2007q3 2010q3 2013q3 2016q3 COVID
Great Recession
Non-hispanic whites Blacks Hispanics Pretax income (constant USD, pre-recession peak = 100)
Figure12:
Recession (2020-2022)
(2007-2016)
45
Table1:OverviewofSources
UsageSourceProducerUsageFrenquencyLagNotes
Public-usetaxdataInternalRevenue Service
SocialSecurityWage Statistics
SocialSecurity Administration
Constructionof annualmicrodata
Intra-annual distribution adjustments
CurrentPopulation Survey(ASEC)
SurveyofConsumer Finances
QuarterlyCensusof Employmentand Wages(QCEW)
CurrentEmployment Statistics(Stateand Area)
CurrentEmployment Statistics(National)
Unemployment InsuranceWeekly Claims
CurrentPopulation Survey(Monthly)
CensusBureau(via IPUMS)
Mainmicrodatasource.Yearly1–2yearsThelastpublic-usemicrofiledatesfrom2014.Forlateryears,we updatethemicrodatausingIRStabulationsofincome.
Complementarydataonthewage incomedistribution.
Integrationofsocio-demographic informationintothetaxdata(bottom 95%).
FederalReserveIntegrationofsocio-demographic informationintothetaxdata(top 5%).
BureauofLabor Statistics(BLS)
BureauofLabor Statistics(BLS)
BureauofLabor Statistics(BLS)
Estimationofthewageincome distribution.
Estimationofthewageincome distribution.
Estimationofthenumberofwage earners.
DepartmentofLaborEstimationofthenumberof unemploymentinsuranceclaims.
CensusBureau(via IPUMS)
Estimationofthewageincome distribution,andtheranksinthe earningsdistribution,andofthe numberofwageearnersbyage, gender,education,raceandmarital status.
Yearly6monthsWeusethewageincomedistributionfromtheSSAbecauseitis betteratcapturinglowwages.
Yearly6monthsWematchtheCPStothetaxdatausingoptimaltransporton detailedincomevariables.
Triennial1yearWematchtheSCFtothetaxdatausingoptimaltransporton detailedincomeandwealthvariables.
Quarterly5monthsThewagedataintheQCEWisquarterlybuttheemployment dataismonthly.ThereforewetreattheQCEWasamonthly dataset.
Monthly3weeksThisdataissimilartotheQCEWbutcoarserandreleasedmore frequently.WematchittotheQCEWtoextrapolatethe evolutionofearningsandemploymentinthemostrecentmonths.
Monthly3weeksWeuseaggregatenonfarmemploymentstatisticstoadjustthe numberofwageearnersmonthly.
Weekly1weekWeaveragetheseriesbymonth,adjustforseasonalvariations, anduseittoadjustthenumberofunemploymentinsurance recipientsbymonth.
Monthly2weeksWeusetheCPStoestimatewageincomeforthebottom90%of thedistributiononly(becauseoftop-coding),andaveragethat estimatewiththeonefromtheQCEW.Forthetop10%weonly relyontheQCEW.
Real-timeBillionairesForbesMagazineWealthforthe400richestAmericans.DailyNoneWeadjusttheoverallwealthofthe400wealthiesthouseholdsto matchthereal-timeForbesestimate.
NationalIncomeand ProductAccounts (NIPA)
Estimationand rescalingtomacro aggregates
BureauofEconomic Analysis(BEA)
Estimationofmonthlyincome aggregates.
FinancialAccountsFederalReserveEstimationofquarterlywealth aggregates.
Wilshire5000Total MarketIndex WilshireAssociates (viaFRED)
Case-ShillerNational HomePriceIndex
Standard&Poor’s (viaFRED)
Disagreggationofthevalueofstocks atthemonthlyfrequency.
Disagreggationofthevalueofhousing atthemonthlyfrequency.
ZillowHomeValue Index ZillowDisagreggationofthevalueofhousing atthemonthlyfrequency.
Monthly/ Quarterly
1monthWhenneeded,wedisagreggatethequarterlyoryearlydataatthe monthlyfrequencyusingDenton’s(1971)method.Withthe exceptionofcorporateprofits,themostimportantincome componentsareavailablemonthly.
Quarterly2monthsWhenneeded,wedisagreggateyearlydataatthequarterly frequencyusingDenton’s(1971)method.Themostimportant wealthcomponentsareavaialblequarterly.
DailyNoneWeusetheindextodisagreggatethequarterlyestimateofstocks valuesatthemonthlylevelusingDenton’s(1971)method.
Monthly2monthsWeusetheindextodisagreggatethequarterlyestimateofhousing valuesatthemonthlylevelusingDenton’s(1971)method.
Monthly2weeksWeusetheZillowindextoextrapolatetheCase-Shillerinthe latestmonths.
46
Table2:PredictionErrorsforGrowthRatesofIncomeandWealth
ConceptBracket
FactorIncome
PretaxIncome
DisposableIncome
Post-taxIncome
Wealth
AllyearsExcl.taxreformsRecessions
Std.Dev.CorrectsignRMSEBiasStd.Err.CorrectsignRMSEBiasStd.Err.CorrectsignRMSEBiasStd.Err.
Bottom50%4.0pp.82%2.1pp.-0.8pp.2.0pp.85%2.1pp.-0.9pp.1.9pp.92%1.7pp.-0.4pp.1.7pp. Middle40%1.5pp.82%0.9pp.-0.3pp.0.9pp.91%0.7pp.-0.2pp.0.7pp.83%1.2pp.-1.0pp.0.7pp.
Next9%1.8pp.93%1.1pp.-0.7pp.0.9pp.100%1.1pp.-0.8pp.0.8pp.83%1.1pp.-0.6pp.0.9pp.
Top1%6.0pp.89%3.4pp.-0.2pp.3.4pp.91%2.5pp.-0.2pp.2.5pp.92%3.6pp.1.4pp.3.3pp.
Bottom50%3.0pp.75%2.0pp.-1.0pp.1.7pp.76%2.0pp.-1.0pp.1.7pp.83%1.8pp.-1.3pp.1.3pp.
Middle40%1.5pp.80%1.0pp.-0.2pp.0.9pp.88%0.8pp.-0.2pp.0.7pp.83%1.1pp.-0.9pp.0.7pp.
Next9%2.3pp.91%1.2pp.-0.7pp.0.9pp.100%1.1pp.-0.8pp.0.9pp.75%1.0pp.-0.3pp.0.9pp. Top1%6.2pp.89%3.4pp.-0.1pp.3.4pp.91%2.6pp.-0.2pp.2.6pp.92%3.7pp.1.4pp.3.4pp.
Bottom50%2.4pp.70%2.5pp.-1.6pp.1.9pp.68%2.3pp.-1.4pp.1.8pp.75%3.3pp.-2.8pp.1.7pp. Middle40%1.4pp.86%0.9pp.-0.2pp.0.9pp.91%0.8pp.-0.2pp.0.8pp.83%0.8pp.-0.5pp.0.6pp. Next9%2.2pp.91%1.4pp.-0.6pp.1.3pp.88%1.4pp.-0.7pp.1.1pp.100%1.1pp.0.2pp.1.1pp. Top1%6.4pp.89%4.0pp.0.7pp.3.9pp.91%3.2pp.0.6pp.3.1pp.83%4.5pp.2.1pp.3.9pp.
Bottom50%2.4pp.75%1.9pp.-1.2pp.1.5pp.79%1.8pp.-1.0pp.1.5pp.75%2.5pp.-2.0pp.1.4pp. Middle40%1.7pp.93%0.9pp.-0.2pp.0.8pp.97%0.7pp.-0.2pp.0.7pp.92%0.7pp.-0.5pp.0.5pp. Next9%2.6pp.89%1.3pp.-0.6pp.1.1pp.97%1.2pp.-0.7pp.1.0pp.75%0.9pp.0.0pp.0.9pp. Top1%6.7pp.84%3.9pp.0.2pp.3.9pp.88%2.9pp.0.2pp.2.9pp.67%4.1pp.1.4pp.3.8pp.
Middle40%4.9pp.82%1.8pp.0.0pp.1.8pp.88%1.7pp.-0.2pp.1.7pp.75%1.4pp.0.1pp.1.4pp.
Next9%3.9pp.95%1.2pp.-0.2pp.1.2pp.97%1.1pp.-0.1pp.1.0pp.100%1.4pp.-0.3pp.1.4pp.
Top1%5.8pp.82%2.8pp.-1.5pp.2.4pp.82%2.5pp.-1.4pp.2.1pp.75%2.9pp.-1.4pp.2.5pp.
Notes:Thistablereportsstatisticsforgoodnessoffitandnoiseofour1-yearaheadrealincomeandrealwealthgrowthpredictions.“Std.dev.”isthe standarddeviationofobserved1-yeargrowth.“Correctsign”isthefractionofyearsinwhichwecorrectlypredictwhetherincome(orwealth)isgrowingor falling.“Bias”isthemeandifferencebetweenpredictedandobserved1-yeargrowth,“Std.Err”isthestandarderrorofthismean,and”RMSE”istheroot meansquareerrorcapturingtotalerror(RMSE 2 = bias2 + std.err.2 ).“Allyears”includes44observations(growthrelativetotheprecedingyearin1976, 1977,...,2019).“Allyearsexcludingtaxreforms”includes34observations(itexcludes1987,1988,1991,1992,1993,2001,2003,2012,2013).“Recessions” includes12observations,correspondingtorecessionyears(1980,1981,1982,1990,1991,2001,2008,2009)andtheirimmediateaftermath(1983,1992, 2002,2010).
47
Appendix(forOnlinePublication)
ALinkBetweenNIPANationalIncomeComponentsand DINAConcepts
Ourmonthlymicro-filesdistributeBEA’shigh-frequencynationalincomeaccounts,starting fromtheannualdistributionalnationalaccountsmicro-filesofPiketty,SaezandZucman(2018). Thesefilesarebasedoninternationallyharmonizedguidelines(Blanchetetal.,2021),which themselvesarebasedontheUNSystemofNationalAccountsanddefinitionsofincomecomponentsthatmaximizeconsistencywithcomponentsofhouseholdwealth.Theconceptsusedby theBureauofEconomicAnalysisfortheUSnationalaccountsarelargelyconsistentwiththe SystemofNationalAccounts,butsometimesslightlydiffer.Toclarifyhowthemainvariable inourmicro-filesrelatetotheheadlineaggregatesoftheofficialUSnationalaccounts,this SectionprovidesamappingofthemaincomponentsofnationalincomeaspublishedbyBEA (henceforthNIPA)intothemaincomponentsoffactornationalincomeinourdistributional nationalaccountsmicro-files(henceforthDINA).
RecallthatnationalincomeaspublishedbyBEA(NIPATable1.12)isdecomposedinto compensationofemployees,proprietors’income,rentalincomeofpersons,corporateprofits, netinterestandmisc.payments,taxesonproductionandimportslesssubsidies,netbusiness transferpayments,andcurrentsurplusofgovernmententerprises.Themaindifferenceswith DINAarethefollowing:
• InDINA,businesstransferpaymentsareallocatedtocorporateprofits(forcorporate transfers),toproprietors’income(fornon-corporatebusinesses’transfers)andtorental income(forhousingtransfers).
• inDINA,thesmallcurrentsurplusofgovernmententerprisesistreatedasataxonproduction.
• InDINA,propertytaxes(businessandrealestate)arenottreatedastaxesonproduction butasdirecttaxes(likewealthtaxeswouldbe),henceallocatedtocorporateprofits(for propertytaxespaidbycorporations),proprietors’income(forpropertytaxespaidby non-corporatebusinesses),andrentalincome(forresidentialpropertytaxes).
• IntheNIPAs,therearevariousimputationsofinterestincome(e.g.,dividendsreceived bylife-insurancecompanies;notionalinterestonunderfundedpensionplans)thatare re-classifiedinDINAforconsistencywithhouseholdwealth.
Asaresultoftheseandotherminorotherreclassificationstoimproveconsistencywithhousehold wealthaggregates,NIPAnationalincomeconceptsmapontoDINAfactorincomeconceptsas follows(NIPATablenumbersandDINAvariablenamesinparenthesis):34
34 Themappingforcompensationofemployees,corporateprofits,netinterest,andtaxesonproductionand importslesssubsidiesisexact.Themappingforproprietors’incomeandrentalincomeisalmostexact(witha discrepancyoflessthan0.1%ofnationalincome).
48
NIPAcompensationofemployees(Table1.12line2)=DINAcompensationofemployees(flemp)
NIPAproprietors’income(Table1.12line9)=DINAbusinessassetincome(fkbus)
+DINAlaborcomponentofmixedincome(flmil)
–DINAbusinesspropertytaxesallocatedtonon-corporatebusinesses(non-corporatebusiness shareof propbustax)
+NIPArentalincomeincludedinproprietors’income(Table7.4.5line20)
–NIPAnetnon-corporatebusinesstransferspaid(Table1.12line21–Table1.14line10–Table7.4.5line19)
–NIPAroyalties(Table7.9line7)
NIPArentalincomeofpersons(Table1.12line12)=DINAhousingassetincome(fkhou)
-NIPAresidentialpropertytaxes(Table7.4.5line15= proprestax)
-NIPAmortgageinterestpayments(Table7.4.5line18)
-NIPAhousingnetcurrenttransferpayments(Table7.4.5line19)
-NIPArentalincomeincludedinproprietors’income(Table7.4.5line20)
+NIPAtenant-occupiedrentalincomeofnonprofits(Table7.9line14)
+NIPAroyalties(Table7.9line7)
NIPAcorporateprofits(Table1.12line13)=DINAequityassetincome(fkequ)
+DINAequityincomeearnedthroughpensionplans(equityshareof fkpen)
–DINAbusinesspropertytaxesallocatedtocorporations(corporateshareof propbustax)
+NIPAdividendsreceivedbygovernment(Table3.1line14)
+NIPAdividendsreceivedbynonprofits(Table2.9line51)
–NIPAnetcorporatebusinesstransferspaid(Table1.14line10)
–NIPAimputedinterestpaidbycorporationsonunderfundedpensionplans(Table7.12line 192)
–NIPAdividendreceiptsoflife-insurancecompaniesincludedunder“imputedinterestreceived fromlife-insurancecarriers”(partofTable7.11line68,notseparatelyreported).
NIPAnetinterestandmisc.payments(Table1.12line18)=DINAcurrency,deposits,and bondincome(fkfix)
+DINAinterestincomeearnedthroughpensionplans(interestshareof fkpen)
–DINAnon-mortgageinterestpaid(fknmo)
+NIPAmisc.corporatepayments(Table1.14line9–Table7.11line101)
+NIPAimputedinterestpaidbycorporationsonunderfundedpensionplans(Table7.12line 192)
+NIPAdividendreceiptsoflife-insurancecompaniesincludedunder“imputedinterestreceived fromlife-insurancecarriers”(partofTable7.11line68,notseparatelyreported)
+NIPAinterestreceivedbynonprofits(Table2.9line50)
–NIPAnetinterestpaidbygovernment,otherthanimputedforunfundedpensionplans(Table 7.11line107-line50)
NIPAtaxesonproductionandimportslesssubsidies(Table1.12line19–line20)=DINA
49
salesandexcisetaxes(fkprk + flprl)
+DINAresidentialpropertytaxes(proprestax)
+DINAbusinesspropertytaxes(propbustax)
–DINAsubsidiesonproductionandimports(fksubk + flsubl)
–NIPAcurrentsurplusofgovernmententerprises(Table1.12line25)
BReal-TimeWealthDistributions
Toconstructquarterlywealthdistributions,westartfromthePiketty,SaezandZucman(2018) micro-files,lastupdatedinFebruary2022,35 andre-scalethemaincomponentsofhousehold wealthtotheirend-of-quartervalue,usingthelatestquarterlyreleaseoftheFinancialAccounts.
Thewealthcomponentsweconsiderare,ontheassetside,tenant-occupiedhousing,owneroccupiedhousing,S-corporationequity,C-corporationequity,equityinnon-corporatebusinesses,fixed-incomeassets,pensionassets;andontheliabilityside,tenant-occupiedmortgages, owner-occupiedmortgages,andnon-mortgagedebt.TheaggregatevalueofallofthesecomponentsarepublishedquarterlybytheFederalReserveintheFinancialAccountsoftheUnited States,around70daysaftertheendofeachquarter.FollowingSaezandZucman(2016),our estimatesexcludeunfundedpensions(suchaspromisesoffutureSocialSecuritybenefits),consumerdurables(whicharenotassetsintheSystemofNationalAccountsandthusexcludedfrom wealthinothercountries;seeUnitedNations,2009),andtheassetsandliabilitiesofnon-profit institutionssuchasprivatefoundations.
Wethenassumethatdistributionsarestablewithineachofthesecomponentsfromone quartertotheotherandcomputetheimplieddistributionofwealth.Weusereal-time Forbes datatoadjustthewealthofthetop400taxunitssothatitmatchesthe Forbes estimateat theendofeachquarter.Thusourestimatesofwealthinequalitybyconstructionmatch Forbes attheverytop,liketheannualestimatesconstructedinSaezandZucman(2020b)andthe SCF-yearestimatesofBattyetal.(2019).TheForbesestimatescontainvaluableinformation onhigh-frequencywealthdynamicsatthetop-endbecausetheycombinepublicinformationon ownershipofstockinlistedcompanies(frommandatorySecuritiesandExchangeCommission filings)withdailystockpricechangesforthesecompanies.Closetohalfofthewealthofthe Forbes 400isinpublicequityinrecentyears.Thelimitationsofannual Forbes estimates(lack ofpublicinformationondiversifiedportfoliosandondebts,imperfectinformationonthevalue ofprivatebusinesses)carryovertothereal-time Forbes estimates.
Additionally,weconstructmonthlyanddailywealthdistributionsasfollows.Startingfrom thequarterlywealthtotalsbycomponentsdescribedabove,weusehousingandequityprice indicestoupdatetotalhousingwealthandtotalequitywealthatthemonthlyfrequency.Wedo sousingtheDenton(1971)methodforavailablequarters,andextrapolatingusingtheindexes’ growthrateinthemostrecentmonths,beforethelastquarterbecomesavailable.Thestock marketindexthatweuseistheWilshire5000,acomprehensiveindexofthestockperformance ofpubliclytradedU.S.firms.Forhousingprices,weusetheCase-Shillerindex,extrapolated
35 Themicro-filesareupdatedannually.Adescriptionofeachupdateisavailableat http://gabriel-zucman. eu/usdina,asarecurrentmicro-files,computercode,andtabulationsofkeyfindings.Allvintagereleasesand correspondingcodearealsopublishedatthisaddress.
50
usingtheZillowhousepriceindexinthemostrecentmonths.Fordailyestimates,wesimply updatetotalequity(includingS-corporationsequity)usingthedailyWilshire5000.Forboth monthlyanddailyestimates,wekeepdistributionsconstantwithincomponentsandrescalethe wealthofthetop400taxunitstomatchreal-time Forbes numbers.
CAdjustmentofEmploymentStatusandWages
C.1AdjustmentofEmploymentandUIRecipients
Inourmonthlymicrofiles,weadjustatthemarginwhethersomeone(i)isemployedand(ii) receivesUIbenefitsbasedontheinformationdescribedinSection4.2,namely(i)Bureauof LaborStatistics(BLS)monthlyreleasesofnon-farmemploymentatthenationallevel,(ii)the DepartmentofLabor’sweeklyunemploymentclaimsstatistics,and(iii)laborforcestatusby race × education × gender × 5-yearagegroup × maritalstatuscellintheCPS.Hereweprovide detailsonouradjustmentprocedure.
Consideranannualmicrofilefordate t,whichwasconstructedasaweightedaverageof year y1 (withwealth1 λ)and y2 (withweight λ,with y2 =2019and λ =1forthemost recentyears)torepresenttheaveragedistributionoverthe12-monthperiod {tmin,...,tmax} Letususetheletter i todenoteagivencellofrace × education × gender × 5-yearagegroup × maritalstatus.Let xit ∈ [0, 1]betheemploymentrateofcell i,andlet nit ∈ [0, 1]bethe relativesizeofcell i,andlet xt ≡ i nitxit betheaggregateemploymentrateinthemicrofile. IntheCPS-basedemploymentseriesconstructedabove,let yit ∈ [0, 1]betheemploymentrate ofcell i attime t.FromtheBLS-basedaggregateemploymentseries,let zt betheaggregate employmentrateattimet.
Let yi ≡ 1 12 tmax t=tmin yit betheaverageemploymentratefromtheCPSseriesovertheperiod notionallycoveredbythesyntheticmicrofile.Let∆yit ≡ yit yi yi(1 yi) betherelativedifference betweenintheseries’valuesatdate t andtheiraverageover {tmin,...,tmax}. 36 Wecalculate thenewemploymentrateforcell i inthemicrofileas xit + xit(1 xit)(∆yit + zt xt γ) where γ = i nitxit(1 xit)∆yit i nitxit(1 xit) isarenormalizationtermthatensuresthatwematchtheaggregate employmentrate.Thismethodhasthedesirablepropertyofreproducingtherelativechangesin employmentbetweencellswhilematchingaggregateemploymentoverallandwithoutmodifying employmentwithinagivencellunlesstheCPS-basedwarrantssuchachange.37
Usingthisnewlycalculatedemploymentrate,weadjustthenumberofemployedindividuals withineachcellasfollows.Iftheemploymentratehasincreased,werandomlyselectnonemployedunitsandmarkthemasemployedtomatchthenewrate.Conversely,iftheemploymentratehasdecreased,werandomlyselectemployedunitsandmarkthemasnon-employed. Ifemploymenthasnotchanged,wedonothing.Wegiveawagetoalltheobservationswe markedasemployed,usingtheproceduredescribedinSection4.3.
Wefollowtheexactsameprocedureasabove,usingtheunemploymentratestoadjustthe
36 Notethatwenormalizebyafactor yi (1 yi )andnot yi togetrelativechangessinceweareworkingwith ratiosbetween0and1.
37 Inrarecaseswheretheadjustedemploymentrateisbelow0orabove1,wetruncateitandrepeatthe procedureuntiltheconstraintissatisfied.
51
numberofUIrecipients.WhenweneedtoincreasethenumberofUIrecipientswithinacell, weselectinpriorityindividualswhoarenotemployed.
C.2AdjustmentofWageIncome
Toattributeawagetoeveryindividualmarkedasemployedinourmonthlymicrofiles,we combine(i)themarginalwageincomedistributionestimatedbyaveragingQCEWandCPS predictions(asdescribedinSection4.3)with(ii)therankofeachindividualinthewage distribution,whichweadjustasexplainedbelow.
Estimationoftheaveragewagerankbyindividualcharacteristic. Weestimatethe averagewagerankbyrace × education × gender × 5-yearagegroup × maritalstatusin theCPS.Sincethemonthlywagedataistop-codedintheCPS,weuseaninterval-censored regressionmodel.IneachmonthlyCPSfile,weestimatethewagerankofeachobservation(or, fortop-codedobservations,thelowerboundoftherank).Wetransformtheseranksusingthe logisticfunctionandthenrunaninterval-censoredregressionoftherankagainstrace,education, 5-yearagegroups,andmaritalstatusinteractedwithgender,andassumingnormalresiduals. Weusethepredictionfromthatregressiontoconstructmonthlyseriesoftheaveragewagerank foreachcell.WecorrecttheseseriesforseasonalvariationsusingtheX11procedure.
Adjustmentofwageincomeinthemicrofiles. Inthemonthlymicrofiles,(i)weadjust eachobservation’swagerankatthemarginusingtherelativevariationsinwagerankfromthe CPS,andthen(ii)weattributethewageincomecorrespondingtotheirrank.
Consideranannualmicrofilefordate t,whichwasconstructedasaweightedaverageof year y1 (withwealth1 λ)and y2 (withweight λ,with y2 =2019and λ =1forthemost recentyears)torepresenttheaveragedistributionoverthe12-monthperiod {tmin,...,tmax}. Forindividualswithapositivewage,define xikt thewagerankofindividual k incell i atdate t IntheCPS-basedwagerankseriesconstructedabove,let yit ∈ [0, 1]betheaveragewagerank ofcell i attime t.
Let yi ≡ 1 12 tmax t=tmin yit betheaveragewagerankfromtheCPSseriesovertheperiodnotionallycoveredbythesyntheticmicrofile.Define∆yit ≡ yit yi yi(1 yi) betherelativedifferencebetween intheseries’valuesatdate t andtheiraverageover {tmin,...,tmax}. 38
Wecalculatetheanewrankforobservation i,k as xikt + xikt(1 xikt)∆yit.Ifanobservation doesnothaveaninitialrankbecauseitwaspreviouslynon-employed,wedirectlygiveitthe averagewagerankofitscell.39 Thenweinterpolatethemonthlywagedistributionestimated bypercentileusingthegeneralizedParetointerpolation(Blanchetetal.,2022)andattributeto eachobservationthewageincomethatcorrespondstoitsrank.Weadjustrankssimilarlyin theUIbenefitsdistributionanddistributeUIbenefitsbykeepingtheirmarginaldistribution identical.
38 Notethatwenormalizebyafactor yi (1 yi )andnot yi togetrelativechangessinceweareworkingwith ranksbetween0and1.
39 Wesortobservationsaccordingtothenewrank,andre-computetherankfromthisorder,toensurethat thedistributionofranksisuniform.
52
DStructureofProgramsandFiles
Thesectiondescribestheoverallstructureoftheprogramfilesusedinthispaper.Theprograms (aswellasamoredetailedandup-to-dateversionofthefollowingdescriptionandinstructions) areavailableonlineat https://github.com/thomasblanchet/real-time-inequality.
D.1Descriptionofprograms/code
• Thefolder raw-data containstherawinputdata,primarilyincaseswheredirectdownload/scrapingisnotpossibleornotjustified,orincaseswheredatafilesareheavy(like theQCEW)andthereforedownloadingthemovertheinterneteverytimeisnotdesirable.
• Thefolder work-data containsintermediarydatafilesthatareproducedbythecode.It isdividedintosubfolderscorrespondingtoeachcodefile,andnointermediarydatafileis maybechangedbytwodistinctcodefiles.
• Thefolder graphs containstheallthefigures(andafewtables)generatedbythecode. Itisdividedintosubfolderscorrespondingtoeachcodefile.
• Thefolder programs containsthecodes(exceptthoseperformingtheoptimaltransport).
– Thecodesnamed programs/01-* handletheretrievaloftherawdata,eitherdirectly fromtheinternetorfromthefolder raw-data
– Thecodesnamed programs/02-* handlepreliminarytreatmentsofthedata.
– Thecodesnamed programs/03-* producethesyntheticmicrofilesandrelatedoutputs.
– Thecodesnamed programs/04-* producethefiguresandtablesusedfortheanalysis.
• Thefolder transport containsthecodeanddataspecificallyrelatedtotheoptimaltransport:itismeanttorunseparatelyfromthemaincodeonacomputingcluster.
D.2LicenseforCode
ThecodeislicensedundertheModifiedBSDLicense.
D.3InstructionsforReplication
• Editthe $root globalin programs/00-setup.do tocorrespondtotheproject’sdirectory.
• Runthefile programs/00-run.do
• Toalsorunthetransport,runprogramsuntil programs/02-export-transport-dina.do andthenexecutethePythoncodeunder transport/transport.py preferablyusing SlurmandtheShellscript transport/transport.sh.Thenresumetheexecutionof programs/00-run.do
53
Programsareorganizedasfollows:
• programs/01-*
– Thecodesretrievethedatafromtheinternetdirectlytotheextentthatitispossible.
– Unlesstherehasbeenchangesinthestructureofthedata,theyshouldrunwithout anychangeforeachupdate.
–
Insomecases,thedataneedstobemanuallyupdatedinthe raw-data folderateach update.
– Instructionforeachfileinincludedin 00-run.do.
• programs/02-*
– Thecodesprimarilygeneratedatainthe work-data folderthatisusedtogenerate thesyntheticmicrofiles.
• transport
– Thisfolderincludesthedataandcodenecessaryfortheoptimaltransport.
– Thesecodesaremeanttorunonthecomputingcluster.
– Theydonotneedtobeupdatedeverytime(onlywhennewtaxmicrodataisavailable).
– TheCSVdatafilesincludedinthisfolderareproducedbythecodesbefore.
• programs/03-*
– Thecodesinthatfolderproducethesyntheticmicrofiles,includingbacktestingversionsofthemicrofilesthatuseoldertaxdata,andrescalingversionsthatonlyuse informationonmacroaggregates.
– Theglobals $date begin and $date end atthebeginningofthesefilescanbeused togenerateonlythefilesforspecificmonths.Thiscanbeusefulsincenotallthefiles needtobeconstructedforeveryupdate.
– Codesinthatsectionalsoproducetheaggregatedversionofthedatabasebygroup thatisusedforthewebsite http://realtimeinequality.org/.Thesefilesare storedinthefolder website
• programs/04-*
– Usethemicrofilesandrelatedoutputstocreatethetablesandfiguresincludedin thepaper.
54
D.4DescriptionofMicrofilesandCodebook
Oneoutputofthispaperisasetofharmonizedmonthlymicro-filesinwhichanobservationis asyntheticadult(obtainedbystatisticallymatchingpublicmicro-data)andvariablesinclude income,wealth,andtheircomponents.Thesevariablesadduptotheirrespectivenational accountstotalsandtheirdistributionsareconsistentwiththoseobservedintherawinputdata. Withthesemicro-filesonecanreproducealltheresultsofthepaperandthestatisticsshown at https://realtimeinequality.org exactly.Thefilesareavailablehere.40
ThereisonefilepermonthstartinginJanuary1976.Thefilesareattheadultindividual (aged20andabove)level,sothesumofweights(variable weight)addsuptothetotaladult population,248.9millioninMay2022.Thevariable id identifiesahousehold(asdefinedby thetaxcode,i.e.,eitherasinglepersonaged20oraboveoramarriedcouple,inbothcases withchildrendependentsifany).Incomeisindividualized.Tocomputeourbenchmarkequalsplitadultstatistics,computeaverageincomeorwealthby id.Tocomputestatisticsatthe householdlevel,takethesumofincomeorwealthby id andtheaverageweightby id
Thefilesincludesocio-demographicinformation: age, sex,maritalstatus(married), race, educationalattainment(educ),andthefollowingincomeandwealthvariables:
• princ:factornationalincome
• peinc:pretaxnationalincome
• poinc:posttaxnationalincome
• dispo:disposableincome
• flemp:compensationofemployees
• proprietors:proprietors’income
• rental:rentalincome
• profits:after-taxcorporateprofits
• corptax:corporateincometax
• fkfix:interestincome
• govin:governmentinterestincome
• fknmo:non-mortgageinterestpayments
• prodtax:productiontaxes
• prodsub:productionsubsidies
• contrib:contributionstopensions,disabilityinsurance,&unemployment
• penben:pensionanddisabilityinsurancebenefits
• uiben:unemploymentinsurancebenefits
• taxes:currenttaxesonincomeandwealth
• estatetax:estatetax
• othercontrib:contributionsforgovernmentsocialinsuranceotherthanpension,unemployment,anddisability
• govcontrib:totalcontributionsforgovernmentsocialinsurance
• vet:veterans’benefits
• othcash:othercashbenefits
• medicare:Medicarespending
40 Fulllinkincasehyperlinksbreak: https://www.dropbox.com/home/SaezZucman2014/RealTime/ repository/real-time-inequality/work-data/03-build-monthly-microfiles/microfiles
55
• medicaid:Medicaidspending
• otherkin:otherin-kindgovernmentspending
• colexp:collectiveconsumptionexpenditure
• covidrelief:covid-19economicimpactpayments
• covidsub:paycheckprotectionprogram
• surplus:surplus/deficitofgovernmentandprivatesocialinsurance
• surplus ss:surplus/deficitofgovernmentsocialinsurance
• prisupenprivate:surplus/deficitofprivatepensionsystem
• prisupgov:primarysurplus/deficitofgovernment
• hweal:netwealth
• housing tenant:tenant-occupiedhousingwealth
• housing owner:owner-occupiedhousingwealth
• equ scorp:equityinS-corporations
• equ nscorp:equityincorporationsotherthanS-corporations
• business:equityinnon-corporatebusinesses
• pensions:pensionwealth
• fixed:currency,deposits,andinterest-bearingassets
• mortgage owner:mortgagesonowner-occupiedhousing
• mortgage tenant:mortgagesontenant-occupiedhousing
• nonmortage:non-mortgagedebt
• top400:dummyifobservationisinthetop400ofhouseholdsbywealth
• acs:dummyifobservationlivesingroupquarters(nursinghomes,dormitories,etc.)
56
FigureA1:GDPvs.GDIGrowth
Notes:ThisfigurecomparesthequarterlygrowthofrealannualizedGDPtothequarterlygrowthofrealannualizedGDIfrom1947Q2to2022Q1. ObservationscorrespondingtotheCovid-19recessionandrecoveryareshowninredtriangles.Thepointcorrespondingto2020Q2(anoutlierwitharound -35%annualizedGDPgrowthand-35%annualizedGDIgrowth)isomitted.DuringtherecoveryfromCovid-19,GDIhasrecoveredfasterthanGDP.
2020Q3 30 %)
57
FigureA2:ComparingWageEarningsRanksintheOneto-OneStatisticalMatch
45deg line mean CPS rank 90% interval
Notes:ThisfigurecomparestheranksinwageearningsbetweenthewageearningsintheDINAdataand thewageearningsintheCPSdataintheone-to-onestatisticallymatcheddataset.Thex-axisistheDINA wageearningspercentileandy-axisistheaveragepercentileintheCPSdata.Thefigureshowaveragesover 1976–2019.Thedatareferstohouseholdearningsandthesampleislimitedtohouseholdsthatearnatleasta full-timeFederalminimumwage.Thefigureshowsthatranksinwageearningsareverycloseimplyingthatthe one-to-onestatisticalmatchrespectsrankswellalongthecrucialwageearningsvariable.
0 20 40 60 80 100 0 20 40 60 80 100 DINA wage percentile
58
FigureA3:Monthlyvs.AnnualEmploymentRates
Notes:Thisfiguredepicts,fortheworkingagepopulation20-64,therawmonthlyemploymentratesfromtheBLSbasedonthemonthlyCPS(indashed blueline),theannualemploymentratesfromtheSocialSecuritytaxdata(inredcircles),andthemonthlyemploymentratesadjustedtomatchannual rates(insolidblueline).Employmentratesinourmonthlydataisgivenbythebluesolidseries.Quantitatively,inrecentdecades(whenthecatching-up femalelaborforceparticipationtrendstabilizes),rawmonthlyemploymentratesarearound75%whileadjustedmonthlyemploymentrates(thattrack annuallevels)are10pointshigheraround85%becauseofpart-yearworkers.
2011m1 2023m1 (adjusted) DINA
59
FigureA4:CapturingMostRecentMonthsUsingCESinsteadofQCEW
(a)Bottom50%WageShare 2019m12
Extrapolation from CES
(b)Top10%WageShare
Notes:ThisfiguredepictsthequalityoftheprojectionusingthemonthlyCurrentEmploymentStatistics(CES)datatoextrapolatetheQCEWdatafor thelast2quarters(whentheQCEWisnotyetavailablebuttheCESis).Theblueseriesdepictsthebottom50%wageshareinpanel(a)andthetop10% wageshareinpanel(b)usingtheraw(de-seasonalized)QCEWdata.Foreachquarter,thefigurealsodepictsindashedlinetheprojectedsharesusingthe CESdatatoextrapolatetheQCEWdataupto6monthsout.Bydefinition,theprojectionmatchestheQCEWlevelinthelastmonthofthequarter,and thenprojectsoutoverthenexttwoquarters.Tocarryouttheprojection,wematcheachQCEWcelltothreeCESseries.Thefirstmatchesthelocationof theQCEWcellaspreciselyaspossible,thesecondmatchesitatthestatelevel,andthethirdatthenationallevel.Weaveragethetrendfromthesethree seriesineachcellandusethisaveragetrendtoextendtheQCEWdatainthemostrecentquarters.Overall,theCESprojectioncomesprettyclosetothe QCEW.Thefitisbetterforthebottom50%sharethanforthetop10%wageshare.
Extrapolation from CES
2020m6 2020m12 2021m6 2021m12 QCEW
2019m12 2020m6 2020m12 2021m6 2021m12 QCEW
60
FigureA5:CapitalIncomeVolatility
(a)CorporateProfits
(b)Interest
(c)RentalIncome
(d)Proprietor’sIncome
Notes:Thisfigurecomparesthevolatilityofthesizeofcapitalincomecomponents(corporateprofits,interest, rentalincome,proprietor’sincome),asmeasuredbytheirshareofnationalincome,andthevolatilityoftheir concentration,asmeasuredbytheshareofeachcomponentgoingtothetop10%ofthepretaxincomedistribution.Forexamplethetopleftpanelshowstheshareofpretaxcorporateprofitsinnationalincomeandthe shareofpretaxcorporateprofitsaccruingtothe10%ofadultsatthetopofthepretaxincomedistribution, from1976to2019.Allseriesaredepictedrelativetoabase100in1976tocomparevolatility.Thefigureshows thatthesizeofcapitalincomecomponentscanbehighlyvolatileathigh-frequencywhiletheirconcentration isslow-moving.Thislendssupporttoourmethodologywhichcaptureshigh-frequencychangesinaggregate capitalincomeandassumesthattheirconcentrationisunchangedintheshortrun.
National income’s share of pretax corporate profits Share of pretax corporate profits earned by the top 10% 70 80 90 100 110 120 130 140 Index (1976 = 100) 1980q1 1990q1 2000q1 2010q1
National income’s share of interest income Share of interest income earned by the top 10% 70 80 90 100 110 120 130 140 150 160 170 Index (1976 = 100) 1980q1 1990q1 2000q1 2010q1
National income’s share of rental income Share of rental income earned by the top 10% 0 100 200 300 400 Index (1976 = 100) 1980q1 1990q1 2000q1 2010q1
National income’s share of proprietors’ income Share of proprietor's income earned by the top 10% 70 80 90 100 110 120 Index (1976 = 100) 1980q1 1990q1 2000q1 2010q1
61
FigureA6:PredictedGrowth:OurMethodvs.SimplifiedMacroMethod
(a)Bottom50%
Full Methodology Rescaling Only (b)Top1%
• Fullmethodology • Rescalingonly
Notes:Thisfigurecomparesthequalityofourbaselineestimateswiththequalityofsimplerestimatesthatonlyrescalesmacroeconomicaggregateswithout adjustingwithin-componentdistributions.Thisfiguredepictspredictedtoactualgrowthinaveragerealfactorincomeperadult(withincomeequallysplit amongmarriedspouses)fromyear t to t +1forthebottom50%(leftpanel)andthetop1%(rightpanel)foreachyearfrom1976to2019.Actualgrowthis obtainedusingtheannualdistributionalnationalaccountmicro-dataforbothyears t and t +1.Predictedgrowthisobtainedusingtheannualmicro-data foryear t buttheprojectedmicro-datausingourfullmethodologyfor t +1(bluefulldots)orasimplifiedmethodologythatonlyrescalesmacroeconomic aggregateswithoutadjustingwithin-componentdistributions(redemptydots).Thesimplifiedmethodologyperformsworse,especiallyinrecessionsyears forthebottom50%,showingthatadjustingdistributionsiscriticaltoaccuratelyprojectreal-timeinequalityduringrecessions.
5 10 rate (%)
15 20 (%)
62
FigureA7:RealDisposableIncomeAroundtheCovid-19Pandemic
Notes:ThisfigureshowsthemonthlyevolutionofrealdisposableincomeperadultfromJuly2019toSeptember2022inthefulladultpopulation(not restrictingtoworking-ageadults).Individualadultsarerankedbytheirfactorincome,andincomeisequallysplitbetweenmarriedspouses.Thefigure showsthatforthebottom50%ofthefactorincomedistribution,monthlydisposableincomewasnearlytwiceaslargeinMarch2021asinJuly2019(asa resultofthethirdwaveofEconomicImpactPayments).Bythespringof2022,disposableincomehadreturnedtoitspre-Covidlevelforallgroupsexcept forthebottom50%forwhichitwasabout15%higher.
2021m1 2021m7 2022m1 2022m7 Middle
Bottom
40%
50%
63
FigureA8:IncomeoftheBottom50%DuringtheCovidCrisis
Post-tax national income
(matching national income)
Government deficit government spending
Medicaid and Medicare
Post-tax disposable income
COVID stimulus checks
Regular cash transfers taxes)
Subsidized pretax national income
benefits (net)
(pensions & DI, minus contributions)
Unemployment insurance benefits
Subsidized factor national income
Paycheck Protection Program national income
(matching national income)
Notes:Thisfiguredecomposestheaveragerealmonthlyposttaxnationalincomeofthebottom50%oftheworking-agepopulationrankedbyfactorincome fromJuly2019toMarch2023.ThisisthesameFigureasFigure9butaddingMedicaidandMedicare,othergovernmentspending,andthegovernment deficit,soastogoallthewaytoposttaxnationalincome.SeenotestoFigure9.
64
FigureA9:ShareofBlackadultsintheFullPopulationvs.Top10%
Notes:ThisfigureshowsthefractionofBlackadultsinthefulladultpopulation,inthetop10%ofthewagedistribution,10%ofthepretaxincome distribution,andtop10%ofthewealthdistribution.Theseriesstartin1989,thefirstyearoftheSurveyofConsumerFinances.
wealth 2007q1 2013q1 2019q1
65
(working-age population)
FigureA10:CollegePremium
Notes:Thisfigureshowsdifferencesinincomeandwealthbetweenpeoplewithnocollegeeducationandpeoplewithatleastsomecollegeeducation.The unitofobservationistheindividualadult.Thelaborincomelinerestrictstotheworking-agepopulation(individualsaged20to64);otherseriesinclude theentireadultpopulation.Theseriesstartin1989,thefirstyearoftheSurveyofConsumerFinances.
income
Pretax income capital income Wealth 2010q1 2015q1 2020q1
Labor
66
FigureA11:IncomeDynamicsbyGender:CovidRecessionvs.GreatRecession
2010q3 2013q3 2016q3 Recession (2007-2016)
Notes:ThisfigureshowstheevolutionofaveragepretaxnationalincomebygenderduringtheCovidrecessionanditsaftermath(leftpanel)andtheGreat Recessionanditsaftermath(rightpanel).Incomeisnormalizedto100inthequarterprecedingeachrecession.
67
ConceptBracket
FactorIncome
PretaxIncome
DisposableIncome
AllyearsExcl.taxreformsRecessions
Std.Dev.CorrectsignRMSEBiasStd.Err.CorrectsignRMSEBiasStd.Err.CorrectsignRMSEBiasStd.Err.
Bottom50%6.6pp.91%2.4pp.-0.7pp.2.3pp.91%2.4pp.-1.0pp.2.2pp.92%1.4pp.-0.4pp.1.4pp.
Middle40%2.3pp.93%1.3pp.-0.2pp.1.3pp.97%1.0pp.-0.1pp.1.0pp.83%1.6pp.-1.2pp.1.0pp. Next9%3.0pp.98%1.2pp.-0.6pp.1.0pp.100%1.1pp.-0.6pp.0.9pp.92%0.9pp.-0.5pp.0.8pp. Top1%9.1pp.93%5.1pp.-1.0pp.5.0pp.94%3.8pp.-1.1pp.3.6pp.83%4.8pp.1.5pp.4.5pp.
Bottom50%4.9pp.88%2.5pp.-1.2pp.2.2pp.88%2.5pp.-1.1pp.2.3pp.83%2.2pp.-1.8pp.1.4pp. Middle40%2.4pp.95%1.3pp.-0.1pp.1.3pp.100%1.1pp.-0.0pp.1.1pp.83%1.4pp.-1.1pp.0.9pp.
Next9%3.7pp.98%1.2pp.-0.4pp.1.1pp.97%1.1pp.-0.5pp.1.0pp.92%0.7pp.0.1pp.0.7pp.
Top1%9.4pp.88%5.2pp.-1.0pp.5.1pp.94%3.8pp.-1.1pp.3.7pp.75%4.9pp.1.5pp.4.6pp.
Bottom50%3.8pp.88%3.5pp.-2.2pp.2.7pp.91%3.1pp.-1.9pp.2.5pp.75%4.8pp.-4.2pp.2.4pp. Middle40%2.2pp.95%1.3pp.-0.2pp.1.2pp.94%1.1pp.-0.2pp.1.1pp.92%1.1pp.-0.5pp.1.0pp. Next9%3.3pp.93%1.6pp.-0.0pp.1.6pp.91%1.4pp.-0.2pp.1.4pp.83%1.5pp.1.2pp.0.9pp. Top1%9.3pp.93%6.4pp.0.3pp.6.3pp.97%4.4pp.-0.0pp.4.4pp.83%6.7pp.1.9pp.6.5pp.
Post-taxIncome
Bottom50%3.8pp.88%2.7pp.-1.6pp.2.2pp.97%2.3pp.-1.2pp.2.0pp.92%3.5pp.-2.9pp.1.9pp. Middle40%2.9pp.93%1.2pp.-0.2pp.1.2pp.97%1.0pp.-0.2pp.1.0pp.83%0.9pp.-0.5pp.0.8pp. Next9%4.1pp.95%1.4pp.-0.2pp.1.4pp.94%1.2pp.-0.4pp.1.2pp.83%1.0pp.0.7pp.0.7pp. Top1%10.0pp.91%6.2pp.-0.4pp.6.2pp.94%4.3pp.-0.7pp.4.3pp.83%6.0pp.1.2pp.5.9pp. Wealth Middle40%8.2pp.88%2.1pp.0.6pp.2.0pp.97%1.8pp.0.1pp.1.8pp.92%1.8pp.0.5pp.1.8pp. Next9%6.6pp.93%1.9pp.0.2pp.1.9pp.97%1.7pp.0.2pp.1.7pp.83%2.3pp.0.1pp.2.3pp. Top1%9.9pp.93%4.7pp.-3.1pp.3.5pp.94%4.1pp.-2.7pp.3.1pp.83%4.5pp.-2.8pp.3.5pp.
Notes:Thistablereportstatisticsforgoodnessoffitandnoiseofour2-yearaheadrealincomeandrealwealthgrowthpredictions.SeenotestoTable2.
TableA1:PredictionErrorsforGrowthRatesofIncome&Wealth(2Years)
68