100135227

Page 1


Spistreúci

1.Granicaicią głość funkcjijednejzmiennej

1.1.Granicaicią głość funkcji.....................................3

1.1.1.Granicawłaściwafunkcjiwpunkcie.........................3

1.1.2.Granicejednostronnefunkcji..............................

1.1.3.Cią głość

1.1.4.Graniceniewłaściwefunkcjiwpunkcie,asymptotypionowe.........

1.1.5.Granicefunkcjiwnieskończoności,asymptotyukośne.............28

1.2.Własnościgranicyfunkcji.....................................

1.3.Własnościfunkcjicią

1.6.Zadaniadosamodzielnegorozwiązania............................92

2.Rachunekróżniczkowyfunkcjijednejzmiennej

2.1.Pierwszapochodna—definicjaiwłasności.........................

2.1.3.Pochodnazłożeniafunkcji................................

2.2.Interpretacjageometrycznapochodnej,twierdzeniaowartości średniej......

2.3.Reguładel’Hospitala.......................................

2.4.Pochodnewyższychrzędów.Wypukłość iwklęsłość funkcji..............

2.5.Badanieprzebieguzmiennościfunkcji.............................

2.6.Zastosowaniepochodnejfunkcjijednejzmiennej......................

2.7.Krzywenapłaszczyźnie......................................197

2.8.SzeregTaylora............................................225

2.8.1.WzórTaylora........................................

2.8.3.Szeregifunkcyjne......................................

2.8.4.Szeregipotęgowe......................................236

2.8.5.SzeregTaylora.......................................240

2.9.Zadaniatrudniejsze.........................................

2.10.Zadaniadosamodzielnegorozwiązania............................260

IIFunkcjewieluzmiennych

3.Granicaicią głość funkcjiwieluzmiennych

3.1.Elementyteoriiprzestrzenieuklidesowych..........................269

3.2.Granicaicią głość funkcji.....................................

3.2.1.Granicafunkcjiwieluzmiennych...........................

3.2.2.Cią głość funkcjiwieluzmiennych...........................

4.Rachunekróżniczkowyfunkcjiwieluzmiennych

4.1.Pochodnekierunkoweicząstkowerzędupierwszego;różniczkowalność funkcji..

4.2.Pochodnecząstkowewyższychrzędów.WzórTaylora..................343

4.3.Zastosowaniepochodnejfunkcjiwieluzmiennych.....................

4.3.1.Ekstremalokalneiglobalnefunkcji..........................

4.3.2.Funkcjeuwikłane......................................385

4.3.3.Ekstremawarunkowe...................................406

4.4.Zadaniatrudniejsze.........................................

4.5.Zadaniadosamodzielnegorozwiązania............................437

Wprowadzenie

Książka,którą oddajemydorąkCzytelników,zawierakilkasetrozwiązanych ćwiczeń orazzadań dosamodzielnegorozwiązania.Jejzakresobejmujemateriał poświęconygranicomipochodnymfunkcjijednejiwieluzmiennychobowiązujący nauniwersytetach,politechnikach,akademiachekonomicznychiinnychuczelniach wyższych,naktórychwykładanajestmatematyka.Został przygotowanyzmyślą ostudentachstudiówdziennych,zaocznych,wieczorowych,atakżee-learningowych.

Książkaskładasię zdwóchgłównychczęścipodzielonychnarozdziałyipodrozdziały.Napoczątkukażdegoznich,oilebyłotokonieczne,zostałypodane wiadomościteoretyczne(definicjeitwierdzenia)niezb ędnedozrozumienia ćwiczeń wnichzawartych.Nakońcukażdegorozdziałuumieszczonozestawzadań do samodzielnegorozwiązania,doktórychodpowiedzipodanonakońcuksiążki.

Podręcznikstanowipołączeniezbioruzadań zteorią dotyczącą zagadnień, wktórychwystępują graniceipochodne.Główną jegozaletą itym,coodróżnia goodinnychksiążekotejtematyce,jestdużaliczbarozwiązanychzadań,zktórych większość jestzilustrowanarysunkamiobrazującymiomawianezagadnienia. Wksiążceomówiliśmymiędzyinnymitakiezagadnienia,jak: —granicaicią głość funkcjiwpunkcie; —granicaniewłaściwaiasymptotyfunkcji; —pochodnafunkcjiwpunkcieijejzastosowania; —ekstremafunkcjiorazbadanieprzebieguzmiennościfunkcjijednejzmiennej; —rozwijaniefunkcjiwszeregpotęgowy; —funkcjedaneparametrycznieibiegunowo—szkicowaniewykresów; —granicaicią głość funkcjiwieluzmiennych; pochodnecząstkowefunkcjiwieluzmiennych,różniczkowalność funkcji; —ekstremalokalneiglobalnefunkcjiwieluzmiennych; —ekstremawarunkoweiuwikłanefunkcjiwieluzmiennych.

Założyliśmy, żeCzytelnikznapodstawowepojęciazmatematykielementarnej,takiejak:rachunekzdań izbiorów,indukcjamatematyczna,cią giiszeregi liczbowe.Wksiążcestosujemyogólnieprzyjętą symbolikę.Cią giliczboweoznaczamy (xn )nœN ,cią gipunktówpłaszczyzny ((xn ,yn ))nœN ,apochodnecząstkowe funkcjidwóchzmiennychsymbolami f Õ x (x,y ), f ÕÕ x,x (x,y ), f ÕÕÕ x,y,y (x,y ).

Jakowstęporazkontynuację materiałuprezentowanegowniniejszympodręcznikupragniemypolecić Czytelnikomnaszedwiepoprzednieksiążki,również wydaneprzezWydawnictwoNaukowePWN: Matematykadlastudentówikandydatównawyższeuczelnie.Repetytorium oraz Całki.Metodyrozwiązywaniazadań.

Serdecznepodziękowaniakierujemypodadresemwszystkichosób,którychpomocokazałasię niezb ędnaprzypisaniupodręcznika.Zawkładpracywkorektę treścipodręcznikadziękujemydr.RafałowiKamockiemuorazPanuKamilowiPajek.Ichcenneuwagiiwskazówkipozwoliłynamusunąć wielenieścisłościiusterek zpodręcznika.

Ponadtochcielibyśmypodziękować PaniIreniePuchalskiejzWydawnictwa NaukowegoPWNzawyrozumiałość imiłą współpracę przyopracowywaniuniniejszejksiążki.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.