Hvad er matematik? A, Opgavebog

Page 12

Opgave 4.38 Et kar med saltvand tilføres løbende en saltopløsning, mens der samtidig løber saltvand ud af karret. I en model kan udviklingen i saltmængden i karret beskrives ved en funktion S, der er løsning til differentialligningen dS = 1,5 − 2 ⋅ S 100 + t

dt

hvor S(t) er saltmængden (målt i kg) til tidspunktet t (målt i minutter). Det oplyses, at der er 30 kg salt i karret til tidspunktet t = 0.

a) Bestem en forskrift for S.

b) Bestem det tidspunkt, hvor der er 60 kg salt i karret.

(stx A eksamen maj 2012 med)

Opgave 4.39 I en model er en persons vægt som funktion af tiden en løsning til differentialligningen dm k 42 = − ⋅m dt

7000

7000

hvor m(t) er personens vægt (målt i kg) til tidspunktet t (målt i døgn), og k er personens kostindtag (målt i kcal/døgn). En bestemt person vejer 85 kg og indtager 3300 kcal/døgn.

a) Hvad er væksthastigheden for denne persons vægt?

Om en anden person oplyses, at personen vejer 87 kg til tidspunktet t = 0. Bestem personens vægt udtrykt ved t og k.

b)

c) Bestem k, så personen vejer 80 kg efter 100 døgn.

(stx A eksamen august 2012 med)

Opgave 4.40 I en model for farten af en raket, der skydes lodret op, er rakettens fart som funktion af tiden en løsning til differentialligningen dv dt

1 15 − t

⋅v =

300 15 − t

− 9,81, 0 ≤ t ≤ 14

hvor v(t) er rakettens fart (målt i m/s) til tidspunktet t målt i sekunder efter affyring. Til tidspunktet t = 0 er rakettens fart 0 m/s. Bestem en forskrift for v, og bestem det tidspunkt, hvor rakettens fart når op på 1000 m/s. (stx A eksamen december 2012 med)

16

Hvad er matematik? A, opgavebog

© 2014 Lindhardt og Ringhof Uddannelse, København


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Hvad er matematik? A, Opgavebog by Alinea - Issuu