Data driven traffic engineering understanding of traffic and applications based on three phase traff

Page 1

Data-Driven Traffic Engineering:

Understanding of Traffic and Applications Based on Three-Phase Traffic Theory - eBook PDF

Visit to download the full and correct content document: https://ebooksecure.com/download/data-driven-traffic-engineering-understanding-of-tr affic-and-applications-based-on-three-phase-traffic-theory-ebook-pdf/

DATA-DRIVEN TRAFFIC ENGINEERING

DATA-DRIVEN TRAFFIC ENGINEERING Understanding ofTrafficand Applicationsbased onThree-Phase TrafficTheory

HUBERTREHBORN

MICHAKOLLER

STEFANKAUFMANN

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-819138-5

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JoeHayton

AcquisitionsEditor: BrianRomer

EditorialProjectManager: LeticiaM.Lima

ProductionProjectManager: OmerMukthar

CoverDesigner: MatthewLimbert

TypesetbySPiGlobal,India

Aimofthebook

Preciselymeasuredtrafficdatafromallroadshaverecentlybecomeubiquitousintransportationandtrafficsciences.Therefore,theempiricalandcomprehensivebasisfortheanalysisandunderstandingofallfeaturesoftrafficis availablenowadays.Wetrytoexplainthelargevarietyandcomplexityof measuredtrafficdataandthosefeaturesonfreewaysaswellasinurbanareas. Manytrafficapplicationswillbesupportedbasedontheavailabledata.

Almost20yearsaftertheinventionofthethree-phasetraffictheoryby BorisKerner,itistimetohaveacloselookatitsconsequencesfortransportationengineeringaswellasitspracticalapplications.Thisbookwillhelp transportationengineersandtechnicianstounderstandboththeapplications andapplicabilityofKerner’sthree-phasetraffictheoryinavarietyofscenarios.Itstartswithmeasurementsoftrafficphenomena,bothwithstationary loopdetectorsandwithconnectedvehicledata.Then,atheoreticalaswellas historicalexplanationofthethree-phasetraffictheoryfollows.Basedonthis theoreticalfundament,anumberofthetheories’conclusionsofferideasfor newapproachesintrafficcontrolaswellasnewvehicularapplicationssuch asdriverinformationanddriverassistance.Moderntrafficengineering methodsarecloselyrelatedtoinformationtechnologyandcomputerscience.Therefore,algorithmsandmethodswillbedescribedwiththeirapplicabilityassoftwareinbothcollectivetrafficmanagementandindividual vehicles.

Today,moreandmorepeoplehaveabandonedprintedmapsinvehicles forrouteguidance.Instead,electronicnavigationhasbecomestateoftheart inallvehicles.Congestedtrafficinfluencesthosenavigationsystemsand theirrelateddynamicroutechoices.BasedonKerner’sthree-phasetraffic theory,weareabletodefinetherequirementsandtestingmethodsfor high-qualitytrafficmessagesusedinnavigationsystems.

vii

Expectedreaders

Wehopeabroaderaudienceisinterestedinscientificexplanationsforthe emergence,propagation,anddissolutionoftrafficcongestion.Inaddition, theaspectsoftrafficphase-dependentfuelconsumption,theinfluenceof weatherontraffic,andaspectsofautomateddrivinginrealtrafficshould attractreaderswhenthesetopicsarediscussedtechnicallyinthescopeof thethree-phasetraffictheory.

ix

Scopeandoutlineofthebook

Empiricalmeasurementsindifferentcountriesandofdifferentkindsillustratethevarietyofcongestedphenomenaintraffic.AhistoryofKerner’s three-phasetraffictheorywillexplainsomehistoricstepsfromthefoundationsofthistraffictheoryanditsconsequencesuntiltoday.Startingfrom trafficmodelingintheearly1990,theintensiveworkwithempiricalmeasuredtrafficdataleadstoadeepunderstandingofthecomplexdynamicprocessesonfreeways.Additionalconsequencesofthethree-phasetraffic theory’sstatementshavebeenboththeproposalofpracticalapplications andtheinventionofimprovedtrafficmodels.

Thisbookwilloutlinethedevelopmentofthethree-phasetraffictheory aswellasexplaintherelevantmilestonesandsteps.Itstartswithahistorical viewontrafficmodelinginthree-phasetraffictheoryandproceedswith thefundamentsofthetheory.ThehistoryofthemodelsASDA/FOTO andsomeotherapplicationsaresummarizedfurtheron.Jamtailwarnings andonboardtrafficstatedetectionmethodsdescribeanapproachthat includesmoreprecisetrafficinformationinvehiclesystems.Thevehicles’ navigationsystemshavetointegratetrafficmessagesinaproperway,and thequalityofthosecongestionmessageshavetobeevaluatedinthescope ofKerner’stheory.

xi

Introduction

Everymorning,thecommutersinmanyurbanareasoftheworldsufferfrom timedelayscausedbytrafficcongestion.Thecongestionisregular,recurring,andpermanentatcertainlocationsoftheroadnetwork.Therefore, beginningfromabetterunderstandingoftheunderlyingphysicalprocesses intraffic,thewishforpreciseandreliabletrafficanalysisarisesformultiple trafficmanagementpurposes,bothcollective(e.g.,trafficcontrol)orindividual(e.g.,dynamicrouteguidanceinnavigationsystems).Toreachthese goals,empiricalcongestionpatternsmustfirstbeanalyzedandunderstood correctly.Thiscanbedoneonlyifsufficientmeasuredtrafficdataareavailable.Today,connectedvehiclessendingtheirpositiondata(i.e.,probevehicledata)areonekeyelementofcollectingtrafficdataoneachroadsegment throughoutthewholeroadnetwork.

Ourbookintroducesmanydifferentcongestedtrafficsituationsmeasuredwithconnectedvehiclefleetsanddiscussesseveralaspectsofpossible trafficapplications.Theinvestigatedvehiclefleetcontainsmorethanone millionvehiclesthathavegiventheirpositiondatatoimprovethequality ofthetrafficservice.Aswewillshowinthebook,about2%ofthetotalflow rateonaroadsectiongivesenoughinformationtoreconstructtherelated trafficsituationwithhigh-enoughquality:onathree-lanefreewaywith about6000vehiclesperhour,about120connectedvehiclesand/ordevices sendingtheirpositiondatatoacentralserverallowatrafficservicewith about500–1000mgranularityofthepositionsofanytrafficcongestion. Thecomplexityofthedifferentcongestedtrafficpatternsatdifferentbottlenecksisillustratedforseveralroadsectionsinseveralcountries.Themeasuredtrafficdatashowthevarietyinmanyheterogeneoussituationsthat emergeduetoourdrivingbehavior:theindividualbreakingandaccelerationleadtocollectiveeffectsthatcanpropagateseveralkilometersupstream. Inaddition,weinvestigateandanalyzemicroscopictrafficwiththehighest possibledetail:droneobservationsallowmeasuringthedrivingofeachindividualvehicleovertime(i.e.,inatimeintervalofabout20min)andspace (i.e.,about400mwithonecamera)simultaneously. Fig.1 illustratessucha dronemeasurementonafreewaysegment,observingallvehiclesbyacameraanddetectingallobjectsonthefreeway.

CHAPTER1
1 Data-DrivenTrafficEngineering © 2021ElsevierInc. https://doi.org/10.1016/B978-0-12-819138-5.00006-8 Allrightsreserved.

2 Data-driventrafficengineering

ThetheoreticalfoundationofthisworkisgivenbyBorisKerner’sthreephasetraffictheory(seeWikipedia [1] andthebooks [2–4]).Trafficcanbe distinguishedintothreedistinctphases:(i)freeflow,(ii)synchronizedflow, and(iii)widemovingjam.Infree-flowingtraffic,eachdrivercanchoosehis individualspeedandcanovertakeonpurpose;insynchronizedflow,there arealmostnopossibilitiestoovertakeandthespeedhasatendencytobe synchronizedamongthedifferentlanesofthesamedrivingdirection;and inthewidemovingjamphase,thevehicleshavecometoanearstandstill andthetrafficflowisinterrupted.Thetrafficbreakdownisassociatedwith aphasetransitionfromfreetosynchronizedflow.Insidethesynchronized flowregion,duetodriverbehaviorwidemovingjamscanprobablyemerge thatthenpropagatefurtherupstreamwithavelocityof 15km/hon average.

Thebookwillfollowtheprincipleofdiscussingalldata-drivenfactsand featuresbasedonmeasuredtrafficdataonly.Manyvarioustrafficcongestions onfreewaysandinurbanareasarepresentedin Chapter2:time-space diagramsofmeasuredfleetdatafromconnectedvehiclesillustratethecomplexityoftrafficcongestion. Chapters3 (dedicatedtothehistoryofthe three-phasetraffictheoryandcongestedtrafficpatternsonfreeways)and 4 (discussingcongestioninurbanareaswithsignalizedintersections)try togiveacomprehensiveoverviewofallkeyelementsofthethree-phase traffictheoryastheyarerelevantforunderstandingallempiricalexamples.

Fig.1 Snapshotofcameraobservationandobjectdetectionprovidedbyadrone measurementofafreewaysegment.

Thisbackgroundgivesthefoundationofthedifferentapplicationsintransportation;withoutthisbackgroundwecannotdistinguishbetweenpossible andimpossibleapplicationsandwhysomeapplicationsarepossiblewhile othersfailcompletely.

Chapter5 withapplicationsintransportationbeginswithareviewofthe ASDA/FOTOmodelsdevelopedbasedonthethree-phasetraffictheory andimplementedinsoftwaremodules.Wewillshowinadditionthedependencyofthetrafficparametersontheweatherconditions.

Whatthenfollowsisageneralstatisticalanalysisofthedatafromalarge fleetofconnectedvehicles:whatarethemobilityparameterssuchasaverage triptimes,speeds,etc.,andtherefore,howdopeopleusevehiclesinsome differentcountries?Inaddition,whatistheroutechoicebehavioriftraffic informationisusedinnavigationsystems?Dopeoplefollowadvice?Also,in whichtrafficsituationscanatimedelaybesavedwithalternativeroutesin theoccurrenceoftrafficcongestiononthemainroad?Andhowmuchtime canbesaved?

Ifenoughandprecisevehicledataareavailableonaroad,anactivejam tailwarningwillbecomefeasible.Thisannouncessuchaneventinadvance toeachdriver:thepositionovertimeof,forexample,awidemovingjam withasuddenbreakdownfromfreeflowtoacompletestandstillcanbe reconstructedwithin500–1000maccuracy.

Furthermore,detailedmeasurementsinvehiclesallowdiscussingtraffic phasedependentfuelconsumption:duetodecelerationandaccelerationin congestedtraffic,thefuel/energyconsumptionincreases.Wecanrevealfactorsofincreasedaverageconsumptionindependencyoftherelated trafficphase.

Automateddrivingisoneoftherelevantresearchtopicsoftheautomotiveindustryanditcomeswithhighexpectationsforourmobility.Wewill concentratethetechnicaldiscussionofonespecificdifficultexampleforan automatedvehicle:whatarethetimegapsinrealtrafficandhowcansuchan automatedvehiclemergeontoahighwaythroughanon-ramp?

Forvehiclemanufacturerswithembeddednavigationsystemscompetingwithmobiledevicesregardingapplicationsandfeatures,oneremaining possiblefieldofvehicularapplicationisthevehicleitself.Themanufacturer canusethedynamicinformationofthetrafficserviceinthevehicleby,for example,usingupcomingcongestionaheadtotriggerthebehaviorofacontrolunit(e.g.,withabreakingassistsystem)inacertainway.Asanother example,anupcomingjamfrontcanbeusedtoactivelyreducethevehicle speedadvisedtothedriver.

3 Introduction

Finally, Chapter5 willdiscusssomeexamplesandaspectsoftrafficservicesfornavigationsystemsandillustratesomeexamplesofcomplextraffic situations.

Allthetheoreticalworkandthetrafficdataanalysisworkhavebeensupportedbyseveralcolleagueswhomwewanttothank:BorisKernerandSergeyKlenovfortheirsupportonalltheoreticalandapplicationquestions; JochenPalmerforhisalgorithmicworkonASDA/FOTOwithprobevehicledata;PeterHemmerleforhisworkwithurbantrafficdataanddrone experiments;MarkusAuerforhisanalysisofthemobilitydataofthevehicle fleet;Sven-EricMolzahnforhisinvestigationofjamtailwarningapplications;andYildirimD € ulgarforhisanalysisoftimegapsofvehiclesandthe preparationofdiagramsforfleetdata.Thisbookwouldnotbepossible withoutsomefundedpublicresearchprojectsoverseveralyears(e.g., “MECView—ObjectdetectionforautonomousdrivingbasedonMobile EdgeComputing”and“LUKAS—Localmodelforcooperativeandautonomousdrivingincomplextrafficsituations”fundedbytheGermanFederal MinistryofEconomicAffairsandEnergy)aswellasthesupportofthe Mercedes-Benzresearchanddevelopmentfacilities.

References

[1]Anon, https://en.wikipedia.org/wiki/Three-phase_traffic_theory

[2] KernerBS.Thephysicsoftraffic.Berlin,NewYork:Springer;2004.

[3] KernerBS.Introductiontomoderntrafficflowtheoryandcontrol.Berlin,NewYork: Springer;2009.

[4] KernerBS.Breakdownintrafficnetworks:fundamentalsoftransportationscience.Berlin:Springer;2017.

4 Data-driventrafficengineering

Howtrafficdataaremeasured

Westructurethedescriptionofthemostcommontechnologiesformeasuringtrafficdataonroadsintothreeseparatesections: Section2.1 describesthe historicallyandcurrentlystillwidelyusedmeasurementswithfixedinstalled sensorsintheroadnetwork.Trafficdatafrommovingobjectsintrafficflow, called“probevehicledata,”areincreasingnowadayswithconnectedvehiclesandothermobiledevices;thisisexplainedin Section2.2.Dueto recentlyavailabledronetechnologiesandobjectreconstruction,theaerial observationoftrafficflowisanewlyreinventedandinterestingapproach togetcomprehensivespatial-temporaltrafficdatasets(Section2.3).

2.1Loopdetectordata

Empiricaltrafficmeasurementsaretodaystillverycommonlyperformed withfixedinductiveloopdetectorsinstalledonlanes,bothonfreeways andinurbannetworks.Typically,theyhavefixedmeasurementintervals of1minandaggregatetwotrafficflowvariables:(i)theaveragespeedof allpassingvehiclesinkilometresperhour,and(ii)thetrafficflowrate countedinvehiclesperhour.Infreeflowconditions,typicalflowrates ononefreewaylanegoupto2500vehiclesperhourandtheaveragespeed isapproximately100km/hormore.Fortrafficcontrolpurposes,thespeed andflowratebreakdownofthemeasuredvariablesisusedtoidentifycongestion.Inaddition,doubleloopsensorscandistinguishamongdifferent vehicletypessuchaslongvehicles,passengercars,andtrailers.

Anexamplefortypicalempiricalmeasurementswithalocalloopdetectorisillustratedin Fig.1.Onfreewaysegmentswithvariablemessagesigns (VMS),thecontrolofthespeedsshowntodriversisderivedfromdatameasuredbytheloopdetectorscoveringeachlane(oneofthemmeasuresbelow eachVMS). Fig.1Apresentstheschemeofthefreewayandthepositionsof loopdetectors.Incolour,twodifferentkindsofverycommonbreakdowns aremarked:(i)inaspeedandflowdiagram,thered(darkgreyinprintversion)markedtimeintervalischaracterizedbyasuddendropinbothspeed andflowmeasurements,and(ii)in Fig.1B–C,theyellow(lightgreyinprint

Data-DrivenTrafficEngineering ©

https://doi.org/10.1016/B978-0-12-819138-5.00003-2 Allrightsreserved.

CHAPTER2
5
2021ElsevierInc.

Fig.1 (A)schemeofafreewaywithloopdetectors,(B)averagedvehiclespeedatthe leftlaneofdetectorD1,(C)flowrateattheleftlaneofdetectorD1. (AdaptedfromKerner BS,RehbornH.Experimentalpropertiesofphasetransitionsintrafficflow.PhysRevLett, 1997;79:4030.)

version)markedtimeintervalshowsadropinthevehiclespeedwhilethe flowrateremainsabove1200vehiclesperhour(fordetailsee[12]).

Adetailedpictureofloopdetectormeasurementsshowingeachindividuallaneisillustratedin Fig.2:themeasurementsforeachlaneofthefreeway indicatethehigherspeedontheleftlaneandthelowestspeedontheright lane(inGermanyduetotherightdrivinglawafterovertakingandlong vehiclesontherightlanes).Anuparrowshowsthetimemomentwhen attheloopdetector,thespeeddecreasesandbecomessimilarinalllanes (atdetectorsD1toD4).

Fig.2Ashowsaclearsynchronizationofthevehicle speedsonthethreelanesafter7:16a.m.Incontrasttofreeflow,overtakingis thennolongerpossibleatthereducedspeedofabout60km/h.Froma driver’sperspective,thismightbecalledslowand/orqueuingtraffic.The correspondingflowrateatdetectorsD3andD4(Fig.2E)showshighvalues ofabout2400vehiclesperhour.Inaddition,theinvestigationoftheD2 on-rampmeasurementsrevealsabreakdownintheaveragespeedsonthe rampbetween7:12a.m.and9:12a.m.(Fig.2G)whileafterashort

: Breakdown of speed and flow rate Time Traffic flow Time : Breakdown of speed only x (km) 6:43am 8:43am 10:43am 6:43am 8:43am 10:43am v (km/h) q (vehicles/h) (A)
(B)(C)
6 Data-driventrafficengineering

Fig.2 (A)–(D)Vehiclespeedsatloopdetectorsfromafreewaysegmentshownin Fig.1Aforeachlane;(E,F)correspondingflowratesatD3,D4,andD2on-ramps;(G, H)D2on-rampmeasurementsforalargertimeinterval. (AdaptedfromKernerBS, RehbornH.Experimentalpropertiesofphasetransitionsintrafficflow.PhysRevLett, 1997;79:4030.)

breakdownintheflowrateatapprox.7:40a.m.(Fig.2F),theflowrateatthis on-rampremainsonahighlevelatabout500vehiclesperhourmerging ontothefreeway.

Inadditiontofreeways,loopdetectorsareusedinurbanareastomeasure vehiclespeedsandflowrates.AnexampleforanurbanroadinD € usseldorf, Germany,isgivenin Fig.3:630maheadofthetrafficsignal“TS,”thefixed detector“D”measuresaggregatedtrafficvariables.Similartothetimeintervalsmarkedin Fig.1B–C,thedropinvehiclespeedandflowratecanbe observedattheurbandetectoraswell(fordetailsee[11]).Between 7:45a.m.and9:15a.m.onApril10,2013(andfrom8:00a.m.to9:15a.m. onFeb.5,2013),thereisasignificantspeeddropwithalmostnodropin

Time Time 7:16am 7:22am 7:12am 7:20am 7:28am 7:12am 7:20am 7:28am 7:38am 7:28am 7:34am 7:40am 7:17am 7:16am 7:16am 7:12am 7:20am 7:28am 7:12am 7:20am 7:28am 7:12am 7:20am 7:28am 7:12am 8:32am 9:52am 8:32am 9:52am 7:12am v (km/h) v (km/h) v (km/h) v (km/h) q (vehicles/h) q (vehicles/h) q (vehicles/h) v (km/h) A (A)(B)(C)
D
(D) (G)(H) (E)(F)
7 Howtrafficdataaremeasured

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.