Teorie pravděpodobnosti (Ukázka, strana 99)

Page 1

17. Limitn v ety Nyns e jiz zacneme za yvat limitnsmi zaksny prs ps ls pns ti nahsonych velicin V o kazech oeme vy zsvat na leo jscs technicke lemma L a am a Koyz ksmplexns cs la an k 2 C prs k = 1 2 kn , kn 2 N , n 2 N pln js kn X

pak plats

k=1

an k ;;;;;; n!+1! a 2 C lim p

kn X

n!+1 k=1

lim+1 n!

kn Y k=1

jan k j < +1 n!lim+1

kn X k=1

jan k j2 = 0

(1 + an k ) = ea :

D uka Psrsvname s cin expsnencials

Y ( kn ) (X ) kn mY kn ;1 X kn (1 + an k ) ; exp X an k an k (1 + an k ) (1 + an m ; expfan mg) exp k=1 m=1 k=1 k=1 ( kn k=)m+1 +1 k m ; 1 j n X XY X ja j (1 + jan k j) (anj!m) exp k=m+1 n k j=2 m=1 k=1 ! (X ) kn mY kn ;1 X jan m j2

expfjan k jg

m=1 k=1 kn 1 X

! (X kn

expfjan m jg exp

2

)

k=m+1

jan k j

= 2 jan m j exp jan k j ;;;;;; n!+1! 0 : m=1 k=1 Tvrzens lemmat je jiz oskazans, ne st' exp

(X kn k=1

2

)

a an k ;;;;;; n!+1! e :

QED

Nyns j me jiz chspni oskazsvat limitns vety V ta am 2 (Ps s s Necht' prs kazoe n 2 N j s oany realne n v Xn insmickym rszoelensm Bi(pn n) Koyz npn ;;;;;; n!+1! , koe 0 < < +1, pstsm D Xn ;;;;;; n!+1! X L(X) = Po( ) : (De nice insmickehs rszoelens Bi(p n) a Psi snsva rszoelens Po( ) j s veoeny v kapitsle 20 )

D uka Prs t 2 R plats

;

;

;

;

P^ Xn (t) = pn eit + qn n = 1 + pn eit ; 1 n :

Pslszme an k = pn eit ; 1 a sverme preopsklaoy lemmat 17 1 n X k=1 n X k=1 n X k=1

;

;

an k = npn eit ; 1 ! eit ; 1

jan k j = npn eit ; 1 ! 2 eit ; 1

jan k j2 = np2n eit ; 1 2 4 n1 (npn )2 ! 0 : 98

Ukázka elektronické knihy, UID: KOS518125


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Teorie pravděpodobnosti (Ukázka, strana 99) by Kosmas-CZ - Issuu