Mathematical Modeling of Infectious Diseases Dynamics M. Choisy, J.-F. Guégan, and P. Rohani

Page 1

◆ CHAPTER 22

◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆

Mathematical Modeling of Infectious Diseases Dynamics M. Choisy,1,2 J.-F. Guégan,2 and P. Rohani1,3 1

Institute of Ecology, University of Georgia, Athens, USA Génétique et Evolution des Maladies Infectieuses UMR CNRS-IRD, Montpellier, France 3 Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, USA

2

“As a matter of fact all epidemiology, concerned as it is with variation of disease from time to time or from place to place, must be considered mathematically (. . .), if it is to be considered scientifically at all. (. . .) And the mathematical method of treatment is really nothing but the application of careful reasoning to the problems at hand.” —Sir Ronald Ross MD, 1911

22.1

INTRODUCTION

The concealed and apparently unpredictable nature of infectious diseases has been a source of fear and superstition since the first ages of human civilization (see Chapters 31 and 40). The worldwide panic following the emergence of SARS and avian flu in Southeast Asia are recent examples that our feeling of dread increases with our ignorance of the disease [48]. One of the primary aims of epidemic modeling is helping to understand the spread of diseases in host populations, both in time and space. Indeed, the processes of systematically clarifying inherent model assumptions, interpreting its variables, and estimating parameters are invaluable in uncovering precisely the mechanisms giving rise to the observed patterns.The very first epidemiological model was formulated by Daniel Bernoulli in 1760 [11] with the aim of evaluating the impact of variolation on human life expectancy. However, there was a hiatus in epidemiological modeling until the beginning of the twentieth century1 with the pioneering work of Hamer [32] and Ross [54] on measles and malaria, respectively.The past century has

1 During the nineteenth century research activity on infectious diseases was dominated by the clinical studies at the Pasteur school.

witnessed the rapid emergence and development of a substantial theory of epidemics. In 1927, Kermack and McKendrick [41] derived the celebrated threshold theorem, which is one of the key results in epidemiology. It predicts – depending on the transmission potential of the infection – the critical fraction of susceptibles in the population that must be exceeded if an epidemic is to occur. This was followed by the classic work of Bartlett [9], who examined models and data to expose the factors that determine disease persistence in large populations. Arguably, the first landmark book on mathematical modeling of epidemiological systems was published by Bailey [8] which led in part to the recognition of the importance of modeling in public health decision making [7]. Given the diversity of infectious diseases studied since the middle of the 1950s, an impressive variety of epidemiological models have been developed.A comprehensive review of them would be both beyond the scope of the present chapter and of limited interest. Instead, here we introduce the reader to the most important notions of epidemic modeling based on the presentation of the classic models. After presenting general notions of mathematical modeling (Section 22.2) and the nature of epidemiological data available to the modeler (Section 22.3), we detail the very basic SIR epidemiological model (Section 22.5). We explain

Encyclopedia of Infectious Diseases: Modern Methodologies, by M.Tibayrenc Copyright © 2007 John Wiley & Sons, Inc.

379


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Mathematical Modeling of Infectious Diseases Dynamics M. Choisy, J.-F. Guégan, and P. Rohani by Klarkkant - Issuu