Williams hematology: the red cell and its diseases 1st edition josef prchal - ebook pdf - Discover t

Page 1


Williams Hematology: The Red Cell and Its Diseases 1st Edition Josef Prchal - eBook PDF pdf download

https://ebooksecure.com/download/williams-hematology-the-redcell-and-its-diseases-ebook-pdf/

We believe these products will be a great fit for you. Click the link to download now, or visit ebooksecure.com to discover even more!

Williams Hematology Malignant Lymphoid Diseases 1st edition - eBook PDF

https://ebooksecure.com/download/williams-hematology-malignantlymphoid-diseases-ebook-pdf/

Williams Hematology 10th Edition Kenneth KaushanskyeBook PDF

https://ebooksecure.com/download/williams-hematology-ebook-pdf/

Williams Manual of Hematology Ninth Edition - eBook PDF

https://ebooksecure.com/download/williams-manual-of-hematologyninth-edition-ebook-pdf/

Williams Manual of Hematology 10t Edition- eBook PDF

https://ebooksecure.com/download/williams-manual-ofhematology-10e-april-22-2022_126426920x_mcgraw-hill-pdf-ebookpdf/

Williams Manual of Hematology, Tenth Edition Marshall

A. Lichtman - eBook PDF

https://ebooksecure.com/download/williams-manual-of-hematologytenth-edition-ebook-pdf/

Williams Manual of Hematology [10th Edition] Marshall

A. Lichtman - eBook PDF

https://ebooksecure.com/download/williams-manual-ofhematology-10th-edition-ebook-pdf/

Williams Hematology, 9E (MEDICAL/DENISTRY) 9th Edition

Kenneth Kaushansky - eBook PDF

https://ebooksecure.com/download/williams-hematology-9e-medicaldenistry-ebook-pdf/

Williams Manual of Hematology 9th Edition Marshall A. Lichtman Et Al. - eBook PDF

https://ebooksecure.com/download/williams-manual-of-hematologyebook-pdf/

Allergic and Immunologic Diseases: A Practical Guide to the Evaluation, Diagnosis and Management of Allergic and Immunologic Diseases 1st Edition - eBook PDF

https://ebooksecure.com/download/allergic-and-immunologicdiseases-a-practical-guide-to-the-evaluation-diagnosis-andmanagement-of-allergic-and-immunologic-ebook-pdf/

WILLIAMS HEMATOLOGY Red Cell and Its Diseases THE

Josef T. Prchal Marshall A. Lichtman Hill

WilliamsHematology TheRedCell andItsDiseases

Plate1.ThealphabetmadeofpoikilocytesfromasinglepatientwithsicklecellanemiaandB-thalassemiatrait.Notetheelectrondenseareasin thecellsthatareinthepatientwhoishomozygousforhemoglobinS,asareflectionofthepara-crystallizationofthathemoglobininalowoxygen environment(venousblood).ThepatientwithB-thalassemiatraitfromwhommanyofthesecellswereimagedwasaphysicianwhosefamilyarrived totheUnitedStatesoriginallyfromtheUnitedKingdomwithnoapparentrecentMediterraneanheritage.AsaresultofRome’sinvasionofBritainon severaloccasionsbetween55B.C.E.and43A.D.,troopsfromcurrentItaly,Spain,Egypt,andSyriagarrisonedtheirmarriedlocalBritons.(Reproduced withpermissionfromLichtmanMA,ShaferMS,FelgarRE,etal:Lichtman’sAtlasofHematology2016.NewYork,NY:McGrawHill;2017.)

Plate2.PaulAlfredWeiss(1898-1989)wasanAmericancellandneurobiologistwhohademigratedfromAustriaandspecializedinmorphogenesis, celldevelopment,anddifferentiation.Heencouragedcross-disciplinaryinteractionsamongscientistandwaselectedtotheNationalAcademyof Sciences.Hewasoneoftheearliestscientiststoproposethatthecellmicroenvironment(néstroma)hadimportantinfluencesontheparenchymal cellsitheldinitsgraspashighlightedinthisaphorismhecoined,herespelledoutwithmisshapenredcells.(Reproducedwithpermissionfrom LichtmanMA,ShaferMS,FelgarRE,etal:Lichtman’sAtlasofHematology2016.NewYork,NY:McGrawHill;2017.)

COVERIMAGEDESCRIPTION

Thenineabnormalredcellsdepictedonthecovershowtheamazingplasticityoftheredcell.Considerthemembranereorganization requiredtomaintainthesedeviationsfromabiconcavedisk.

Inveins,theshearrateislow,andnormalredcellsremaincloseto abiconcavediskshape.They,also,mayoverlaptightlyatverylowflow ratesintostacks(rouleaux).Whensubjectedtoincreasedshearratesin thearterialcirculation,rouleauxwouldbedispersedandtheredcells deform.Athighflowvelocitiestheredcelltendstoelongateparallelto thedirectionofflow.Thecytoplasmmovesinwhathasbeenconsiderededdyflow.Thiseddyflowresultsfromtheshearflowoftheblood beingtransmittedtothecytoplasmthroughamotionofthemembrane aroundtheelongatedredcell,calledtank-treadmotionortank-treading. Inabloodcapillarywithdiameterssmallerthantheirowndiameter,red cellsarefolded.

Themarkedlydeformedredcellsshownonthecoverimagewere eachfoundinthebloodofapatientwitharedcelldisease(eg,hemoglobinSS,beta-thalassemia,oranotherredcelldisorder).Afterenucleation,redcellsleavethemarrowthroughverynarrow,temporary, aperturesinthemarrowsinuswallthatseparateshematopoieticcords fromthemarrowsinusnetworkrequiringmarkeddeformationupon egress.Redcellsnavigatetheconfinementsofcapillarydimensions, squeezethroughtheinter-endothelialcellspacesofthesplenicsinus walls,andnavigateotherphysicalconstraints.Abnormalredcellsmay beshuntedaroundthoseconstricteddimensions.

Theshapesofsevenofthenineimagesapproximateananimal form,ifone’simaginationispermittedtooperate.Intheupper-left cornerisaslightlydeformed(thickenededge)discocyteandinits biconcavityrestsatriangular-shapedextremelysmallmicrocytic,but thelatter,strikingly,retainsitsbiconcavity.Theotherimagesarethat ofasimulateddinosaur(akaErythrosurusRochesteriensis),anoctopus (althoughwithmorethaneightlimbs),aseverelydeformedredcell witharetainedconcavityandalargeholeperforatingitscytoplasm,a flyinggoose,asnail,dancingpenguins,ashark,andaduckling,each withtheirownirregularitiesrequiringextraordinarymembraneadaptations.Severalhavepara-crystallizationofhemoglobinSSasadeformingforce(eg,sharkshape).

Thedistortionsthatcanbemaintainedbyabnormalredcellsare extraordinarytoconsiderandcertainpatterns,discernedonacareful examinationofthebloodfilmcanbe,andfrequentlyare,important diagnosticcluestothenatureoftheunderlyingdisease.Intheabsence ofacrystallizinghemoglobinoramutantgenethatresultsinamembraneproteinmisconfiguration,itispossiblethatacquiredalterations inthespectrin-basedmembraneproteinnetworkisalteredsoasto maintainabnormalbendsanddistortionsoftheredcellsurface.

TheseimagesandthoseinPlates1and2werecapturedby PatriciaA.Santillo,SeniorTechnologist,ElectronMicroscopyLaboratory, HematologyUnitattheUniversityofRochesterMedicalCenterand havebeenusedwithpermissionfromLichtman’sAtlasofHematology. www.accessmedicine.com

WilliamsHematology TheRedCell andItsDiseases

JosefT.Prchal,MD

ProfessorofHematologyandMalignant Hematology

AdjunctinGeneticsandPathology UniversityofUtah&HuntsmanCancerInstitute SaltLakeCity,Utah

1.interníklinikaVFNaÚstavpatologickéfyziologie

1.LFSchoolofMedicine UniversitaKarlova,Prague,CzechRepublic

MarshallA.Lichtman,MD,MACP

ProfessorEmeritusofMedicineandofBiochemistry andBiophysics DeanEmeritus,SchoolofMedicineandDentistry JamesP.WilmotCancerInstitute UniversityofRochesterMedicalCenter Rochester,NewYork

Copyright©2022byMcGrawHill.Allrightsreserved.ExceptaspermittedundertheUnitedStatesCopyrightActof1976,nopartof thispublicationmaybereproducedordistributedinanyformorbyanymeans,orstoredinadatabaseorretrievalsystem,withoutthe priorwrittenpermissionofthepublisher.

ISBN:978-1-26-426908-2

MHID:1-26-426908-0

ThematerialinthiseBookalsoappearsintheprintversionofthistitle:ISBN:978-1-26-426907-5, MHID:1-26-426907-2.

eBookconversionbycodeMantra Version1.0

Alltrademarksaretrademarksoftheirrespectiveowners.Ratherthanputatrademarksymbolaftereveryoccurrenceofatrademarked name,weusenamesinaneditorialfashiononly,andtothebenetofthetrademarkowner,withnointentionofinfringementofthe trademark.Wheresuchdesignationsappearinthisbook,theyhavebeenprintedwithinitialcaps.

McGraw-HillEducationeBooksareavailableatspecialquantitydiscountstouseaspremiumsandsalespromotionsorforuseincorporatetrainingprograms.Tocontactarepresentative,pleasevisittheContactUspageatwww.mhprofessional.com.

Notice

Medicineisanever-changingscience.Asnewresearchandclinicalexperiencebroadenourknowledge,changesintreatmentanddrug therapyarerequired.Theauthorsandthepublisherofthisworkhavecheckedwithsourcesbelievedtobereliableintheireffortsto provideinformationthatiscompleteandgenerallyinaccordwiththestandardsacceptedatthetimeofpublication.However,inview ofthepossibilityofhumanerrororchangesinmedicalsciences,neithertheauthorsnorthepublishernoranyotherpartywhohasbeen involvedinthepreparationorpublicationofthisworkwarrantsthattheinformationcontainedhereinisineveryrespectaccurateorcomplete,andtheydisclaimallresponsibilityforanyerrorsoromissionsorfortheresultsobtainedfromuseoftheinformationcontainedin thiswork.Readersareencouragedtoconrmtheinformationcontainedhereinwithothersources.Forexampleandinparticular,readers areadvisedtochecktheproductinformationsheetincludedinthepackageofeachdrugtheyplantoadministertobecertainthatthe informationcontainedinthisworkisaccurateandthatchangeshavenotbeenmadeintherecommendeddoseorinthecontraindications foradministration.Thisrecommendationisofparticularimportanceinconnectionwithneworinfrequentlyuseddrugs.

TERMSOFUSE

ThisisacopyrightedworkandMcGraw-HillEducationanditslicensorsreserveallrightsinandtothework.Useofthisworkissubject totheseterms.ExceptaspermittedundertheCopyrightActof1976andtherighttostoreandretrieveonecopyofthework,youmay notdecompile,disassemble,reverseengineer,reproduce,modify,createderivativeworksbasedupon,transmit,distribute,disseminate, sell,publishorsublicensetheworkoranypartofitwithoutMcGraw-HillEducation’spriorconsent.Youmayusetheworkforyour ownnoncommercialandpersonaluse;anyotheruseoftheworkisstrictlyprohibited.Yourrighttousetheworkmaybeterminatedif youfailtocomplywiththeseterms.

THEWORKISPROVIDED“ASIS.”McGRAW-HILLEDUCATIONANDITSLICENSORSMAKENOGUARANTEESORWARRANTIESASTOTHEACCURACY,ADEQUACYORCOMPLETENESSOFORRESULTSTOBEOBTAINEDFROMUSING THEWORK,INCLUDINGANYINFORMATIONTHATCANBEACCESSEDTHROUGHTHEWORKVIAHYPERLINKOR OTHERWISE,ANDEXPRESSLYDISCLAIMANYWARRANTY,EXPRESSORIMPLIED,INCLUDINGBUTNOTLIMITED TOIMPLIEDWARRANTIESOFMERCHANTABILITYORFITNESSFORAPARTICULARPURPOSE.McGraw-HillEducation anditslicensorsdonotwarrantorguaranteethatthefunctionscontainedintheworkwillmeetyourrequirementsorthatitsoperationwillbeuninterruptedorerrorfree.NeitherMcGraw-HillEducationnoritslicensorsshallbeliabletoyouoranyoneelseforany inaccuracy,errororomission,regardlessofcause,intheworkorforanydamagesresultingtherefrom.McGraw-HillEducationhasno responsibilityforthecontentofanyinformationaccessedthroughthework.UndernocircumstancesshallMcGraw-HillEducationand/ oritslicensorsbeliableforanyindirect,incidental,special,punitive,consequentialorsimilardamagesthatresultfromtheuseofor inabilitytousethework,evenifanyofthemhasbeenadvisedofthepossibilityofsuchdamages.Thislimitationofliabilityshallapply toanyclaimorcausewhatsoeverwhethersuchclaimorcausearisesincontract,tortorotherwise.

KarlE.Anderson,MD ProfessorofMedicine DivisionofGastroenterology

TheUniversityofTexasMedicalBranchatGalveston Galveston,Texas

KeltyR.Baker,MD,FACP[52] President

KeltyR.Baker,M.D.P.A. Houston,Texas

MarijeBartels,MD,PhD PediatricHematologist VanCreveldkliniek UniversityMedicalCenterUtrecht UtrechtUniversity Utrecht,TheNetherlands

JaimeCaro,MD ProfessorofMedicine,Emeritus DivisionofHematology CardezaFoundationforHematologicalResearch SidneyKimmelMedicalCollege Philadelphia,Pennsylvania

TheresaL.Coetzer,PhD DepartmentofMolecularMedicineandHaematology SchoolofPathology FacultyofHealthSciences UniversityoftheWitwatersrand Johannesburg,SouthAfrica

ClaudiaS.Cohn,MD AssociateProfessor LaboratoryMedicineandPathology UniversityofMinnesota Minneapolis,Minnesota

RossM.Fasano,MD CenterforTransfusionandCellularTherapies DepartmentofPathologyandLaboratoryMedicine EmoryUniversitySchoolofMedicine Atlanta,Georgia

TomasGanz,PhD,MD DepartmentsofMedicineandPathology DavidGeffenSchoolofMedicine UniversityofCalifornia,LosAngeles LosAngeles,California

VictorR.Gordeuk,MD ProfessorofMedicine UniversityofIllinois Chicago,Illinois

CONTRIBUTORS

RalphGreen,MD,PhD,FRCPath ProfessorofPathologyandMedicine DepartmentofPathologyandLaboratoryMedicine UniversityofCalifornia,Davis Sacramento,California

XylinaT.Gregg,MD UtahCancerSpecialists SaltLakeCity,Utah

MichaelR.Grever,MD ProfessorEmeritus DivisionofHematology DepartmentofInternalMedicine TheOhioStateUniversity Columbus,Ohio

AmelHamdi,PhD DepartmentofPhysiology LadyDavisInstitute McGillUniversity Montreal,Quebec,Canada

XiangrongHe,MD ClinicalFellow LaboratoryMedicineandPathology MayoClinic Rochester,Minnesota

JeanneE.Hendrickson,MD Professor DepartmentsofLaboratoryMedicineandPediatrics YaleUniversitySchoolofMedicine NewHaven,Connecticut

PaulC.Herrmann,MD,PhD ProfessorandChair DepartmentofPathologyandHumanAnatomy LomaLindaUniversitySchoolofMedicine LomaLinda,California

AchilleIolascon,MD,PhD ProfessorofMedicalGenetics DepartmentofMolecularMedicineandMedicalBiotechnology UniversityofNaplesFedericoII Naples,Italy

RamiKhoriaty,MD AssistantProfessor,DepartmentofInternalMedicine AssistantProfessor,DepartmentofCellandDevelopmentalBiology SectionHead,ClassicalHematology CoreMember,RogelCancerCenter UniversityofMichigan AnnArbor,Michigan

Contributors x

AbdullahKutlar,MD ProfessorofMedicine AugustaUniversity Augusta,Georgia

MarshallA.Lichtman,MD,MACP ProfessorEmeritusofMedicineandofBiochemistryandBiophysics DeanEmeritus,SchoolofMedicineandDentistry JamesP.WilmotCancerInstitute UniversityofRochesterMedicalCenter Rochester,NewYork

ChristineLomas-Francis,MSc,FIBMS ImmunohematologyandGenomics NewYorkBloodCenter LongIslandCity,NewYork

GerardLozanski,MD ProfessorofPathologyClinical DepartmentofPathology TheOhioStateUniversity Columbus,Ohio

NaomiL.C.Luban,MD ProfessorofPediatricsandPathology SchoolofMedicineandHealthSciences GeorgeWashingtonUniversity; MedicalDirector,OfficeofHumanSubjectsProtection SeniorHematologist Children’sNationalHospital Washington,DC

JeffreyMcCullough,MD GlobalBloodAdvisor Edina,Minnesota; EmeritusProfessor LaboratoryMedicineandPathology UniversityofMinnesota Minneapolis,Minnesota

AnanyaDattaMitra,MD SectionofHematopathology DepartmentofPathologyandLaboratoryMedicine UniversityofCalifornia,DavisHealth,SchoolofMedicine Sacramento,California

JoelMoake,MD ProfessorofMedicineEmeritus BaylorCollegeofMedicine SeniorResearchScientist DepartmentofBioengineering RiceUniversity Houston,Texas

MohandasNarla,DSc LaboratoryofRedCellPhysiology NewYorkBloodCenter NewYork,NewYork

DianaMorlote,MD AssistantProfessor HematopathologyandMolecularGeneticsPathology DivisionofGenomicsandBioinformatics DepartmentofPathology TheUniversityofAlabamaatBirmingham Birmingham,Alabama

SrikanthNagalla,MBBS,MS ChiefofBenignHematology MiamiCancerInstitute Miami,Florida

CharlesH.Packman,MD ProfessorofMedicine DepartmentofHematologicOncologyandBloodDisorders LevineCancerInstitute UniversityofNorthCarolinaSchoolofMedicine Charlotte,NorthCarolina

CharlesJ.Parker,MD ProfessorofMedicine DepartmentofMedicine DivisionofHematologyandHematologicMalignancies UniversityofUtahSchoolofMedicine SaltLakeCity,Utah

JohnD.Phillips,PhD DivisionofHematology DepartmentofMedicine UniversityofUtahSchoolofMedicine SaltLakeCity,Utah

JosefT.Prchal,MD ProfessorofHematologyandMalignantHematology AdjunctinGeneticsandPathology UniversityofUtah&HuntsmanCancerInstitute SaltLakeCity,Utah 1.interníklinikaVFNaÚstavpatologickéfyziologie,1.LFSchoolof Medicine UniversitaKarlova,Prague,CzechRepublic

VishnuV.B.Reddy,MD SectionHead,UABHospitalHematologyBoneMarrowLab Director,HematopathologyFellowshipProgram DivisionofLaboratoryMedicine Professor,DepartmentofPathology TheUniversityofAlabamaatBirmingham Birmingham,Alabama

RobertaRusso,PhD AssistantProfessorofMedicalGenetics DepartmentofMolecularMedicineandMedicalBiotechnology CEINGE

BiotecnologieAvanzate UniversityofNaplesFedericoII Naples,Italy

GeorgeB.Segel,MD

EmeritusProfessorofPediatric ProfessorofMedicine

JamesP.WilmotCancerInstitute UniversityofRochesterMedicalCenter Rochester,NewYork

VivienA.Sheehan,MD,PhD AssistantProfessorofPediatrics

BaylorCollegeofMedicine Houston,Texas

SujitSheth,MD DepartmentofPediatrics

WeillCornellMedicine NewYork,NewYork

SweeLayThein,MD

NationalHeart,Lung,andBloodInstitute TheNationalInstitutesofHealth Bethesda,Maryland

PerumalThiagarajan,MD ProfessorofMedicineandPathology

BaylorCollegeofMedicine DirectorofTransfusionMedicineandHematologyLaboratory MichaelE.DeBakeyVAMedicalCenter Houston,Texas

EduardJ.vanBeers,MD,PhD Hematologist VanCreveldkliniek UniversityMedicalCenterUtrecht UtrechtUniversity Utrecht,TheNetherlands

RichardvanWijk,PhD AssociateProfessor CentralDiagnosticLaboratory UniversityMedicalCenterUtrecht UtrechtUniversity Utrecht,TheNetherlands

NealS.Young,MD Chief,HematologyBranch NationalHeart,Lung,andBloodInstitute MarkHatfieldClinicalResearchCenter NationalInstitutesofHealth Bethesda,Maryland

PREFACE

Thediscoveryoftheruddyglobules(redcells)isattributedtoJan Swammerdam(1637-1680)inAmsterdam;but,itwasAntonjvan Leeuwenhoek(1632-1723)ofDelft,whoasaresultofhisabilitytogrind lenseswithgreatermagnifyingpower(x275),madeamoredetailed descriptionofredcells,delineatingtheirgrossstructure.

Thebiochemistry,physiology,andbiophysicsoftheredcellhave beenstudiedintensivelyoverthreecenturiesand,althoughconsidered a“simple”structure,sinceitisanucleateandafteronedayinthecirculationhasnocytoplasmicorganelles,itsmysterieshavebeenslow tobeunraveled.Theprocessofenucleationoftheerythroblastinthe hematopoieticspaceandthemovementoftheanucleatecellfromthe hematopoieticspacetothemarrowsinusandfromtheretothesystemiccirculation,accomplishedbyacellwithoutanintrinsicapparatus tosupportamoeboidmotility,andthedeterminantsofitsaveragelife spanofapproximately120daysarestillbeingelucidated.Itsstructural andbiophysicalproperties,biochemicalpathways,andtherelationship amongthosefeatureshavebeenofcontinuedinteresttoscientists.Its absenceofinterferinggranules,containingproteolyticenzymes,organelles,andothercomplexitieshaveallowedtheisolationofhighlypurifiedredcellmembranesandtheearlyexplorationofthebiochemical andbiophysicalfeaturesofcellmembranes,applicabletoothercells, includingthecharacteristicsofmembranetransportofvariousmolecules.Thenatureofthestructureandfunctionofhemoglobinandthe explorationoftheglycolyticpathway,thehexosemonophosphateshunt, andtheLuebering-Rapoportpathwaywereotherrewardsreapedfrom thestudyofredcells.

Muchisknown,butasourmentor,friend,andcolleague,Ernest Beutler,cautionedPh.D.graduatesataScrippsInstitutedoctoralgraduation,oneshouldnotassumethatourunderstandingofthebiomedical sciencesissoprofoundthatwhatisleftforusistofillinsomegaps. Hearguedthatmuchfundamentalbiomedicalknowledgewasstill undiscoveredandwaitingtobeilluminated.Amonghismanycontributionstothepathogenesisofdiseaseandapplicationoftherapy,his contributionstounderstandingtheredcellandanemiawerenotable. Theseobservationsincludedaclassicseriesofpapersdescribingthe effectsofoxidantstressonindividualswithredcellglucose-6-phosphate dehydrogenasedeficiencyandalife-longinterestintheenzyme’svariantsandepidemiology.Hismonographonmethodsformeasuringred cellenzymeswasanearlycontributiontoenhancingthespecificityof thediagnosisofhemolyticanemia.Publishedoverfivedecadesago, itremainsanunsurpassedsourceofmethodsfortheassayofredcell enzymes.Beutler,also,usedredcellenzymemeasurementasasurrogate fordiagnosisofsystemic,untilthendifficulttodiagnosediseases,such asgalactosemia,glycogenstoragedisorders,andothers.Hefoundthat redcellglucose-6-phosphatedehydrogenasedeficiencywasinherited asanXchromosome-linkeddisorderanddescribedthemosaicismof normalanddeficientredcellsinheterozygousfemales.Thisfindingof mosaicismprovidedthebasisforanintellectualjumptothehypothesis ofXchromosomeinactivationinhumans,coincidentwithMaryLyon’s descriptionofthephenomenoninmice.He,also,madeseminalcontributionstounderstandingtheeffectsofirondeficiencyinnon-anemic womenandtheexpressionofironoverloadinthosehomozygousfor theHFEmutationandthevalueofadditivesforprolongedstorageof redcells,stillincurrentuse.

WithnoDNAorRNAsynthesis,nomitochondriaandtheir relatedenzymaticbiochemicalenergygeneratingpathways,andwith arelativelyshortlifespan,thisamitoticcellissustainedatanormal

concentrationinthebloodbyarobustdailyproductionofnewcellsin themarrow,theprocessoferythropoiesis.Thisprocessdeliverstwoto threemillionnewredcellstothebloodpersecond.Althoughremarkable,itisalsoavulnerabilityshouldredcellproductionbedampenedby diseaseorsubstrateinsufficiency:thelatter,aprincipalcauseofanemia.

In1929,3yearsafterobtaininghisM.D.degreeattheUniversityof Manitoba,hisfamilyhavingimmigratedtoCanadafromAustria,Maxwell MyerWintrobe,obtainedhisPh.D.atTulaneUniversity,hisdoctoral thesisentitled“TheErythrocyteinMan.”Wintrobeisconsideredthe fatherofclinicalhematologyhavingpublishedthefirstcomprehensive textintheEnglishlanguage,ClinicalHematology,in1942.Heintroducedthetechniqueofthehematocritdevicetomeasurethepacked redcellvolumeatatimewhenhemoglobinandredcellcountmeasurementswereneitheraccuratenorreproducible.Theword“hematocrit”wassoappealingthatitbecameasynonymforthepackedred cellvolumeratherthantheinstrumentofmeasurementasintendedby Wintrobe.Initially,the“Wintrobe”tube,asitbecameknown,wasfilled bypipettewithbloodtothe1mLmarketchedonthetubeandthegradationsonthetubeallowedonetoreadthefractionofbloodthatwas composedofredcellsaftercentrifugation.Later,themicrohematocrit centrifuge,whichreachedG-forcesthatremovedplasmatrappingasa significantconsiderationinthemeasurementincapillarytubesfilled withblood,couldbefoundoneverywardandclinicallaboratoryasthe principalmeanstomeasurethepackedredcellvolumeand,thereby, identifyanemiaorerythrocytosis.Achartallowedthedetermination ofthepackedcellvolumewhenthecapillarytube,regardlessofthe volumeofblooditcontained,wasplacedagainstitsscales.Wintrobe institutionalizedtheredcellindices,meancellvolume(MCV),mean cellhemoglobin(MCH),andmeancellhemoglobinconcentration (MCHC)andshowedintwoclassicpaperin1930and1934thatone couldclassifytheanemiasfordiagnosticpurposesbydistinguishing amongmacrocytic,normocytic,simplemicrocytic,andhypochromic microcyticanemias,amethodofdifferentialdiagnosisstillusedtoday. AftermovingtotheUniversityofUtahfromJohnsHopkinsUniversity, Wintrobeestablishedoneofthemostesteemedhematologyclinicaland researchtrainingprogramsintheworld.Healsodescribedalongwith hiscolleagueGeorgeCartwrightthattheaveragehematocritandhemoglobinconcentrationwashigherinresidentsofSaltLakeCity(elevation4300feet)thanthevalueobservedatJohnsHopkinsinBaltimore (elevation480feet).Hededucedfromthatprescientobservationthat hypoxia,inthatinstancefromhigheraltitude,isaprincipalregulatorof normalerythropoiesis.

In1953,F.WilliamSundermanandcolleaguesenhancedtheaccuracyofbloodhemoglobinmeasurementbyintroducingthecyanmethemoglobinmethod.In1956,WallaceCoulterintroducedhishigh-speed, automaticbloodcellcountermakingbloodcellcountingaccurate, reproducible,andcapableofmeetingthedemandsofabusyclinicand hospitalenvironment.The“CoulterPrinciple”heldthatcellsarepoor conductorsofelectricityinasaltsolution.Thus,whencellsarediluted insalineandaredrawnthroughatinyaperturecarryingacurrent,each cellproducesaslightimpedancetocurrentflowasitpassesthroughthe narrowaperture.Thepulsecreatedbythisimpedancecanbeamplifiedandcounted.Moreover,thesizeofthepulseisproportionaltocell volume.Thus,thenumberandvolumedistributionofredcellsina measuredvolumeofsolutioncanbeconvertedtoredcellcountand volumeelectronically.Theirproduct,redcellcountandredcellvolume, providedthehematocrit,nowaderivedvalue.Thousandsofcellscan

becountedpersecond.Sincetheredcells,leukocytes,andplateletsare sufficientlydifferentinsize,theycanbediscriminated.Theelectronic particlecounter’sderivativetechnologyofcellflowanalysis,dependent onlaserlight,providedoneofthemostpowerfuldiagnostictechnologiesinmedicine,capableofmeasuringcellDNAcontentorthesurface antigenarrayofaspecificcelltype.Onecouldusethedevicetoisolate purified,specificcellpopulationsforanalysis.TheCoulterPrinciple anditsderivativetechnologiesrevolutionizeddiagnosticmedicine,biomedical,andindustrialresearchand,morespecifically,thediagnosis andmanagementofredcelldiseases.

Agiantofstudiesoftheredcell,perhapslittleknowntoyounger scientists,wasEricPonder(d.1970),anoriginalmemberoftheRed CellClub(seefurther),whosetreatiseHemolysisandRelatedPhenomenain1948,reissuedin1971byGruneandStrattonwithaforwardby RobertI.Weed,isanextraordinarycompilationofhisresearchonthis cell.Manyofhisstudiesarestillrelevant.Allscientistinterestedinthe redcellshouldbefamiliarwiththiswork.Weed,anothergiftedcontributortoourunderstandingoftheredcell,diedprematurelyin1976, attheageof48years,ofaglioblastoma.Hewaslargelyresponsiblefor convincingtheNationalInstitutesofHealthtoexpandthedesignation oftheHeartandLungInstitutetotheHeart,LungandBloodInstitute in1976,facilitatingresearchsupportforbloodcells,especiallyredcell research.In1976,inrecognitionofhisleadershipinthatinitiativeand hiscontributionstoresearchontheredcell,hewasnamedthethird recipientoftheWilliamDameshekAwardoftheAmericanSocietyof Hematology.Atthetime,theSocietyhadtwoprizes,TheHenryStratton LectureandTheWilliamDameshekPrize.StrattonandDameshekwere veryclosefriends.DameshekwasamongtheverytopacademicclinicalhematologistsintheUnitedStatesandStrattonwastheco-owner ofGruneandStrattonPublishers.Theyweretheprimemoversofthe establishmentoftheAmericanSocietyofHematologyandstartedBlood in1946.DameshekwasthefoundingeditorandGruneandStrattonthe publisher.UnderDameshek’seditorshipBloodbecamethemostprestigiousjournalofclinicalandresearchhematologyintheworld.In1976, thejournalbecametheofficialpublicationoftheAmericanSocietyof Hematology;however,thepublisherstillownedthetitleand,technically,editorialcontrol,butsomeofitwascededtotheSociety.In1989, theAmericanSocietyofHematologyboughtthetitletoBloodfromits thenpublisherSaunders,Inc.anditbecameBlood,TheJournalofthe AmericanSocietyofHematology.Thepurchaseoftitlewasaninitiative ledbyH.FranklinBunn,adistinguishedhematologistatHarvardUniversityandaworld’sauthorityonthestructureandfunctionofhemoglobin.ThepurchaseoftheJournalhasprovidedtheSocietywithan enormouslysuccessfuleconomicenginetosupportitseducationaland researchprograms,fullcontrolofitseditorialpolicies,andanoutletfor themostimpactfulresearchinthefield,includingthatoftheredcell anditsdiseases.

BobWeed’sclosecolleaguesattheUniversityofRochester,Claude ReedandScottSwisher,werepioneersinforecastingthekeyroleof amembraneproteinabnormalityastheprimarylesioninhereditary spherocytosis,whereasothersweredistractedbyepiphenomena,such assubstratetransport.Theyshowedthatthemembranelipidcompositionofredcellsinhereditaryspherocytosiswasnormalbutafter 24hoursofincubation,lipids(cholesterolandphospholipids)werelost tothemediumintheirexactmolarproportionasintheredcellmembraneandthisphenomenoncouldbedecreasedbyaddingglucoseto themedium.Thisfindingstronglysuggestedthatthelossofsurfacearea oftheredcellsandthedisctospheretransformationdecreasingtheir surfaceareatovolumeratioandmovingtowardtheircriticalhemolytic volumewasrelatedtolossofpiecesofmembrane.Thisworkpublished in1966waswellbeforemethodsformembraneproteinanalysiswere available.Later,theabilitytocharacterizetheproteincompositionof

“pure”redcellmembranes(ghosts)incasesofspecificdisordersofthe redcell(eg,hereditaryspherocytosisversushereditaryelliptocytosis) allowedtheassignmentoffunctionalcharacteristicstothemissingor mutantproteins.Redcellghostsareapreparationofredcellmembranes freedoftheirinternalcontents,notablehemoglobinandenzymesand substratesandcolorless(ghostlypale)ratherthanredandarebasically pureredcellmembranes,akeyspecimenforstudy.

Alongstandingfocusontheredcellbybasicandclinicalinvestigatorshasbeenhighlightedbytheinteractionsofagroupofscientists, referredtoas“TheRedCellClub,”whichstartedin1958throughthe initiativeofJosephHoffmanandDanielTosteson,thenyoungscientists attheNationalInstitutesofHealth.ThespenttheircareersatYaleand Harvard,respectively.Themeetingsaresmall,informal,andanideal milieutofocusonnewscienceandtheexchangeofideas.TheClub, inits63rdyearin2021,meetsnowonceayearonthecampusofa membertodiscussnewinsightsintotheredcellandtosharetheircurrentresearch.Itisacollegialgroupwithnew“blood”beingcycledin fromlaboratoriesthroughouttheUnitedStatesandCanadaasmentors introducetheiracolytestotheredcell’scharms.Usually,apreceding roundofgolfisheldforthosedevoteesofthegame,weatherpermitting. Members,whoforreasonsofageorachangeofinterestsleavethefold, areneverdroppedfromtheinvitationlist.Nonparticipantsaretenderly referredtoas“redcellghosts.”Inthelastseveralyears,scientistsfrom Europeand,occasionallyJapan,haveparticipatedinthesemeetings. AEuropeanRedCellClubhasbeenestablishedhighlightingthatthe mysteriesofthecellhavenotallbeenuncovered,confirmingBeutler’s admonition.

Inthisvolume,webringtothereaderthemostup-to-dateconsiderationofthestructureandfunctionoftheredcell.Aftertwo introductorychaptersonthestructureandbiologyoftheredcelland erythropoiesis,thefocusturnstothecomprehensivesetofdiseases, eitheracquiredorinherited,inwhichaquantitative(deficiencyor excess)orqualitative(membrane,enzyme,hemoglobin)abnormalityof theredcellresultsindisease.Thesechapters,also,mayincludeimportant,relevantbasicscientificaspectsoftheclinicalproblemunderdiscussion.Theroleofcertainplasmaconstituents,iron,folicacid,and cobalamin,criticaltonormalredcellproductionandhemoglobinsynthesis,isdescribedaswell.

Webelievetheauthorshavebroughttoourreaderaninsightful expositionoftheredcellanditsdisorderstoenlightentheclinicians facedwiththeirchallengesandtothebenefitofthecareoftheirpatients. Inaddition,wehopethistextprovidesscientistsacleardelineationof theremainingmysteriesofthecellandprovidesthemwithnewfoundationsfordevelopmentoftherapyofredcelldiseases.Wehopethatthis textwillfillthevacuumthathasexistedsincethemonographpublished in1970devotedtotheredcellbyJohnW.Harris,andRobertW. Kellermeyer:TheRedCell:Production,Metabolism,Destruction:NormalandAbnormal.

TheauthorsacknowledgeandthankKarenEdmonson,Senior Editor,formerlyatMcGraw-Hill,Education,forsupportingtheproductionofthistextandconvincingmanagementofitsmerits,Susan DaleyattheUniversityofRochesterMedicalCenterforheradministrativeassistance,HarrietLebowitz,SeniorProjectDevelopmentEditor atMcGraw-HillEducationforstewardingthefinalpreparationofthe manuscriptandJasonMalley,editorandRichardRuzycka,production supervisor,eachatMcGraw-HillEducation,andWarishreePant,the ProjectManageratKnowledgeWorksGlobal,Ltd.

MarshallA.Lichtman,Rochester,NY JosefT.Prchal,SaltLakeCity,UT

PartIStructureandPhysiology oftheRedCell

1.StructureandCompositionofthe Erythrocyte...........................3 2.ErythropoiesisandRedCellTurnover.....21

SUMMARY

Collectively,theerythroidprogenitors,terminallydifferentiatingerythroblasts (precursors),andadultredcellsaretermedtheerythrontoreinforcetheidea thattheyfunctionasanorgan.Thewidelydispersedcellscomprisingthis organarisefrompluripotentialhematopoieticstemcells.Followingcommitmenttotheerythroidlineage(unipotentialprogenitor),furthermaturation givesrisetotheerythroidprogenitors,burst-formingunit–erythroid(BFU-E) and,subsequently,colony-formingunit–erythroid(CFU-E),thatcanbeidentifiedbytheirdevelopmentintorepresentativeclonalcoloniesofredcellsin vitro.TheCFU-Ethenundergoesterminaldifferentiation,progressingthrough fourtofivemorphologicstages,eachhavingcharacteristiclightmicroscopic andultrastructuralfeatures.Duringterminalerythroiddifferentiation,there isanincreasingamountofhemoglobinsynthesisaccompaniedbynuclear chromatincondensation,andatthefinalstageofdifferentiation,thereis nuclearextrusiontogenerateananucleatepolychromatophilicmacrocyte (reticulocytewithsupravitalstaining).Thehumanpolychromatophilicmacrocyte(reticulocyte)maturesover2to3days,firstinthemarrowandthen incirculationintothediscoiderythrocyte.Duringreticulocytematuration, cytoplasmicinclusions,includingresidualmitochondriaandribosomes,are degraded,andthereticulocytelosessurfaceareatoachievethemeancell volumeandsurfaceareaofadiscoidalerythrocyte.Matureerythrocytesare approximately7to8μmindiameterandundergoextensivedeformationto passthrough3-μm-diametercapillariesandthe1-μm-wideand0.5-μm-thick endothelialslitsintheredpulpofthespleen.Theabilityoftheredcellto undergoextensivereversibledeformationisessentialforbothitsfunctionand itssurvival.Redcelldeformabilityisafunctionofitsgeometry,theviscosity

ofthecytoplasm,largelydeterminedbytheconcentrationofhemoglobin. Decreaseddeformabilityisafeatureofredcellsinvariouspathologicstates. Theerythrocyteisuniqueamongeukaryoticcellsinthatitsprincipalphysicalstructureisitscellmembrane,whichenclosesaconcentratedhemoglobin solution.Thus,allstructuralpropertiesofthiscellareinsomewaylinkedtothe cellmembrane.Incontrasttoothercells,theerythrocytehasnocytoplasmic structuresororganelles.Amonghumancells,onlyredcellsandplateletsdo nothaveanucleus.

ERYTHRON

Themassofcirculatingerythrocytesconstitutesanorganresponsible forthetransportofoxygentotissuesandtheremovalofcarbondioxidefromtissuesforexhalation.Collectively,theprogenitors,precursors, andadultredcellsmakeupanorgantermedtheerythron,whicharises frompluripotentialhematopoieticstemcells.Followingcommitment totheerythroidlineage,unipotentialprogenitorsmatureintotheerythroidprogenitors,theburst-formingunit–erythroid(BFU-E)and, subsequently,thecolony-formingunit–erythroid(CFU-E),whichthen undergoesfurthermaturationtogenerateanucleatepolychromatophilic macrocytes(reticulocytesonsupravitalstaining).TheBFU-Eand CFU-Eareidentifiedbytheirdevelopmentintomorphologicallyidentifiableclonalcoloniesofredcellsinvitro.Thereticulocytefurther matures,firstinthemarrowfor2to3daysand,subsequently,inthe circulationforapproximately1day,togeneratediscoiderythrocytes.1-5 Theproerythroblast,thefirstmorphologicallyrecognizableerythroid precursorcellinthemarrow,typicallyundergoes5mitoses(range4-6) beforematurationtoanorthochromaticerythroblast,whichthenundergoesnuclearextrusion.Afeatureoferythropoiesisisthataftereachcell division,thedaughtercellsadvanceintheirstateofmaturationwith significantchangesingeneandproteinexpressioncomparedwiththe parentcelland,ultimately,becomefunctionalasmatureerythrocytes.4 Inthisprocess,theyacquirethehumanbloodgroupantigens,transport proteins,andallcomponentsoftheerythrocytemembrane.4,6

Intheadultstageofdevelopment,thetotalnumberofcirculatingerythrocytesisinasteadystate,unlessperturbedbyapathologic orenvironmentalinsult.Thiseffectdoesnotholdduringgrowthof theindividualinutero,particularlyintheearlystagesofembryonic developmentandduringneonataldevelopmentasthetotalbloodvolumeincreasesmarkedly.Consequently,erythrocyteproductioninthe embryoandfetusdiffersmarkedlyfromthatintheadult.

THEEARLIESTERYTHRON

AcronymsandAbbreviations:BFU-E,burst-formingunit–erythroid;CFU-E, colony-formingunit–erythroid;cP,centipoise;DIC,disseminatedintravascular coagulation;EMP,erythroblastmacrophageprotein;ICAM-4,intercellular adhesionmolecule-4;IL,interleukin;MCH,meancellhemoglobincontent;MCHC, meancorpuscularhemoglobinconcentration;MCV,meancellvolume;MDS, myelodysplasticsyndrome;SA:V,surfacearea-to-volumeratio;TTP,thrombotic thrombocytopenicpurpura.

*ThischaptercontainstextwrittenforpreviouseditionsofthisbookbyBrianBull, PaulHerrmann,andErnestBeutler.

Intheveryearlystagesofhumangrowthanddevelopment,thereare twoformsoferythroiddifferentiation:primitiveanddefinitive.7-10 Chapters2and17providedetailedinformationofembryonicand fetalhematopoiesis.Theprimitiveerythronsuppliestheembryowith oxygenduringthephaseofrapidgrowthbeforethedefinitiveformof maturationhashadachancetodevelopandseedanappropriateniche. Thehallmarkofthisprimitiveerythronisthereleaseofnucleatederythroidprecursorscontainingembryonichemoglobin.Althoughprimitiveinthesensethatthecellscontainnucleiwhenreleasedintothe circulation,thisformofmaturationdiffersfromavianandreptilian erythropoiesisinthatthenucleusiseventuallyexpelledfromthemammaliancellsastheycirculate.Thetransientpresenceofanucleusinthe cellsofthecirculatingprimitiveerythroncandecreasetheefficiency ofgasexchangeinthelungsandmicrovasculaturebecausethenucleus

preventstheredcefrombehavingasafuiddropet.11Thedefinitive stageofmaturationmakesitsappearancearoundweek5ofembryogenesiswhenmutipotentiastemcesdeveopandseedtheiver, whichmaintainstheerythronformostoffetaife.Inaterfetaife, skeetadeveopmentprovidesmarrownichestowhicherythropoiesisreocates,beingsustainedintheformoferythrobasticisands,a centramacrophagewithcircumferentiaayersofdeveopingerythroidces.12Thedefinitivestageoferythroidmaturationpredominatesduringtheremainderoffetadeveopmentandistheonytype oferythroidmaturationpresentthroughchidhoodandadutife. Anormahumanerythropoiesisoccursinthemarrowintheform oferythrobasticisands.13

ERYTHROIDPROGENITORS

Burst-FormingUnit–Erythroid

Theeariestidentifiabeprogenitorcommittedtotheerythroidineage istheBFU-E(Chap.2,Fig.2-1).ABFU-Eisdefinedinvitrobyitsabiity tocreatea“burst”onsemisoidmedium,thatis,acoonyconsistingof severahundredtothousandsofcesby10to14daysofgrowth,during whichtimesmaersateitecustersofcesformaroundaargercentra groupoferythroidces,givingrisetothedesignationofa“burst.”The generationofBFU-Efromhematopoieticstemcesrequiresintereukin (IL)-3,stemcefactor,anderythropoietinfordifferentiation,proiferation,preventionofapoptosis,andmaturation(Chap.2).5,13

Colony-FormingUnit–Erythroid Aserythroidmaturationprogresses,aaterprogenitor,theCFU-E, derivedfromtheBFU-E,canbedefinedinvitro.TheCFU-Eisdependentonerythropoietinforitsdeveopmentandcanundergoonyafew cedivisions.5,14,15Thus,theCFU-Eformsasmaercoonyofmorphoogicayrecognizabeerythroidcesin5to7days(seeChap.2, Fig.2-1).Adhesionbetweenerythroidcesandmacrophagesoccursat theCFU-Estageofmaturation.

Usingce-surfacemarkers,IL-3receptor,CD34,andCD36,highy purifiedpopuationsofBFU-EandCFU-Ecanbeisoatedfromhuman marrow.5Geneexpressionprofiingshowsdistinctivechangesingene expressionprofiesinhematopoieticstemces,BFU-E,andCFU-E.5 Someofthemarrowfaiuresyndromesaretheresutofdefectsindifferentiationofstemcesintoerythroidprogenitors.

ERYTHROBLASTICISLAND

Theanatomicaunitoferythropoiesisinthenormaadutistheerythrobasticisandoriset.13,16,17Theerythrobasticisandconsistsof acentrayocatedmacrophagesurroundedbymaturingterminay differentiatingerythroidces(Fig.1-1A).Severabindingproteins areimpicatedinthece–ceadhesionsimportanttothisprocess. Theseincudeα4β1integrin,erythrobastmacrophageprotein(EMP), andinterceuaradhesionmoecue-4(ICAM-4)ontheerythrobasts andvascuarceadhesionmoecue(VCAM-1)EMP,αVintegrinon macrophages.16AdditionamacrophagereceptorsincudeCD69(siaoadhesin)andCD163,butthecounterreceptorsfortheseonerythrobastsremainstobedefined.16Phase-contrastmicrocinematography reveasthatthemacrophageisfarfrompassiveorimmobie.Evidence suggeststhateithertheerythrobasticisandsmigrateorthaterythroid precursorsmovefromisandtoisand,becauseisandsnearsinusoids arecomposedofmorematureerythrobasts,whereasisandsmore distantfromthesinusoidsarecomposedofproerythrobasts.18The macrophage’spseudopodium-ikecytopasmicextensionsmoverapidyovercesurfacesofthesurroundingwreathoferythrobasts.On phase-contrastmicrographs,thecentramacrophageoftheerythrobasticisandappearsspongeike,withsurfaceinvaginationsinwhich theerythrobastsie(Fig.1-1B).Astheerythrobastmatures,itmoves aongacytopasmicextensionofthemacrophageawayfromthemain body.Whentheerythrobastissufficientymaturefornucearexpusion,theerythrobastmakescontactwithanendotheiace,passes throughaporeinthecytopasmoftheendotheiace,andenters thecircuationasapoychromatophiicmacrocyte(reticuocyte).19-21 Thenuceusisejectedbeforeegressfromthemarrow,phagocytized, anddegradedbymarrowmacrophages.22Inadditiontotheunique cytoogicfeaturesjustdescribed,themacrophageoftheerythrobasticisandisasomoecuarydistinctasdemonstratedbyaunique immunophenotypicsignature.23Inaddition,themacrophageofthe erythrobasticisandappearstopayastimuatoryroeinerythropoiesis;independentoferythropoietin.Theanemiaofchronicinfammationandofthemyeodyspasticsyndrome(MDS)mayresutparty frominadequatestimuationoferythropoiesisbythesemacrophages (Chaps.2and6).

Despitethecentraroeoferythroidisandsinerythropoiesis invivo,morphoogicaynormadeveopmentoferythroidcescanbe

Figure1–1.Erythroblasticisland.A.ErythroblasticislandasseeninWright-Giemsa–stainedmarrow.Notecentralmacrophagesurroundedbya cohortofattachederythroblasts.B.Erythroblasticislandinthelivingstateexaminedbyphase-contrastmicroscopy.Themacrophageshowsdynamic movementinrelationtoitssurroundingerythroblasts.(A,reproducedwithpermissionfromLichtmanMA,ShaferMS,FelgarRE,etal:Lichtman’sAtlasof Hematology2016.NewYork,NY:McGrawHill;2017.)

recapituatedinvitrowithoutthesestructures,assumingdeveoping cesareprovidedwithsupraphysioogicconcentrationsofappropriate cytokinesandgrowthfactors.Suchgrowthinvitro,however,ismuch essoptimathanwhenerythrobastsformerythrobasticisands.24The erythrobasticisandisafragiestructure.Itisusuaydisruptedinthe processofobtainingamarrowspecimenbyneedeaspirationbutcanbe seeninmarrowbiopsies.

Macrophagesinerythrobasticisandsnotonyaffecterythroid differentiationand/orproiferationbutasoperformotherfunctions, incudingrapidphagocytosis(<10min)ofextrudednuceiasaresut ofexposureofphosphatidyserineonthesurfaceofthemembranesurroundingthenuceus.22Thisphagocytosisisthereasonfortheinabiity tofindextrudednuceiinmarrowaspiratesdespitethefactthat2miion nuceiareextrudedeverysecondduringsteady-stateerythropoiesis. Aprotectivemacrophagefunctioninkedtoefficientphagocytosishas beendescribed.Innormamice,DNaseIIinmacrophagesdegradesthe ingestednucearDNA,butinDNaseII-knockoutmice,theinabiityto degradeDNAresutsinmacrophagetoxicity,witharesutantdecrease inthenumberofmarrowmacrophagesandinconjunctionwithsevere anemia.25Macrophagescanpaybothpositiveandnegativereguatory roesinhumanerythropoiesis,butthemechanisticbasisforthesereguatoryprocessesarenotcompeteyunderstood.16,24Theseprocesses maypayaroeintheineffectiveerythropoiesisindisorderssuchas MDS,thaassemia,andmaariaanemia.

Anotherpotentiayimportantroeoriginayproposedforthe centramacrophageisdirecttransferofirontodeveopingerythrobasts mediatedbyferritinexchangebetweenmacrophagesanderythrobasts

(Chap.10).13Thisisaninterestingevovingconceptwithidentification ofvarioustransportproteinsinvovedinthisexchange.

ERYTHROIDPROGENITORSANDPRECURSORS EarlyProgenitors

A“progenitor”inthehematopoieticsystemisdefinedasamarrowce thatisaderivativeofthepuripotenthematopoieticstemcethroughthe processofdifferentiation,andisantecedenttoa“precursor”ce,theatter beingidentifiabebyightmicroscopybyitsmorphoogiccharacteristics. Inerythropoiesis,theeariestprecursoristheproerythrobast.Erythroid progenitorcesareidentifiedasmarrowcescapabeofformingerythroid cooniesinsemisoidmediuminvitrounderconditionsinwhichtheappropriategrowthfactorsarepresent.Progenitorcesasomaybeidentifiedby characteristicprofiesofsurfaceCDantigensusingfowcytometry.Numericay,erythroidprogenitors,BFU-E,andCFU-Erepresentonyaminute proportionofhumanmarrowces.BFU-Erangefrom300to1700× 106mononucearcesandCFU-Erangefrom1500to5000×106mononucearces.5InvitrocuturesusingCD34+cesfrombood,cordbood, andmarrowasthestartingmateriahaveidentifiedthecriticacytokines requiredforerythroiddifferentiationandmaturationandhaveenabedthe identificationandisoationofpurecohortsoferythroidprogenitorsand erythrobastsatastagesofterminaerythroidmaturation.4,5

Precursors

Figure1-2showsthesequenceofprecursorsasseeninmarrowfims. Figure1-3showsthemarrowprecursorsasisoatedbyfowcytometry.

Figure1–2.Humanerythrocyteprecursors.Lightmicroscopicappearance.MarrowfilmsstainedwithWrightstain.Therearefivestagesoferythroblastdevelopmentrecognizablebylightmicroscopy.A.Proerythroblasts.Twoarepresentinthisfield.Theyarethelargestredcellprecursor,withafine nuclearchromatinpattern,nucleoli,basophiliccytoplasm,andoftenaclearareaatthesiteoftheGolgiapparatus.B.Basophilicerythroblast.Thecell issmallerthantheproerythroblast,thenuclearchromatinisslightlymorecondensed,andcytoplasmisbasophilic.C.Polychromatophilicerythroblasts.Thecellissmalleronaveragethanitsprecursors.Thenuclearchromatinismorecondensed,withacheckerboardpatternthatdevelops.Nucleoli areusuallynotapparent.Thecytoplasmisgray,reflectingthestainingmodulationinducedbyhemoglobinsynthesis,whichaddscytoplasmiccontentthattakesaneosinophilicstain,admixedwiththeresidualbasophiliaofthefadingproteinsyntheticapparatus.D.Orthochromicnormoblast. Smalleronaveragethanitsprecursor,increasedcondensationofnuclearchromatin,withhomogeneouscytoplasmiccolorationapproachingthatof aredcell.E.Lateorthochromaticerythroblasts(asterisks).Theorthochromaticerythroblasttotherightisundergoingapparentenucleation.Theother threemononuclearcellsarelymphocytes.Adegeneratingfour-lobedneutrophilisalsopresent.(ReproducedwithpermissionfromLichtmanMA,ShaferMS, FelgarRE,etal:Lichtman’sAtlasofHematology2016.NewYork,NY:McGrawHill;2017.)

Figure1–3.Humanerythroblastprecursorsasisolatedbycellflowcytometry.Imagesareofpopulationsofhumanerythroblastprecursorsat stagesoferythroidmaturationwhensortedfromhumanmarrowbyflowcytometry.AandB.Proerythroblastsandearlybasophilicerythroblasts;(C)polychromaticerythroblasts;and(D)orthochromaticerythroblasts.

ProerythroblastsOnstainedfims,theproerythrobastappears asaargece,irreguaryroundedorsightyova.13Thenuceusoccupiesapproximatey80%oftheceareaandcontainsfinechromatindeicateydistributedinsmacumps.Oneorseverawe-definednuceoi arepresent.Thehighconcentrationofpoyribosomesgivesthecytopasmofthesecesitscharacteristicintensebasophiia.Atveryhigh magnification,ferritinmoecuesareseendispersedsingythroughout thecytopasmandiningthecathrin-coatedpitsonthecemembrane (Figs.1-2and1-4).Diffusecytopasmicdensityonsectionsstainedfor peroxidaseindicatesthathemogobinisareadypresent.Dispersedgycogenparticesarepresentinthecytopasm.

BasophilicErythroblastsBasophiicerythrobastsaresmaer thanproerythrobasts.Thenuceusoccupiesthree-fourthsofthece areaandiscomposedofcharacteristicdarkvioetheterochromatininterspersedwithpink-stainingcumpsofeuchromatininkedby irreguarstrands.13Thewhoearrangementoftenresembeswhee spokesoracockface.Thecytopasmstainsdeepbue,eavingaperinucearhaothatexpandsintoajuxtanucearcearzonearoundthe Gogiapparatus.Cytopasmicbasophiiaatthisstageresutsfromthe continuedpresenceofpoyribosomes(Figs.1-2and1-5).

PolychromatophilicErythroblastsAfterthemitoticdivision ofthebasophiicerythrobast,thecytopasmchangesfromdeepbue tograyashemogobindiutesthepoyribosomecontent.Cesatthis stagearesmaerthanbasophiicerythrobasts.Thenuceusoccupies essthanhafofthecearea.Theheterochromatinisocatedin we-definedcumpsspacedreguaryaboutthenuceus,producing acheckerboardpattern.Thenuceousisost,buttheperinucear haopersists.13Itisatthispointthaterythrobastsosetheirmitotic potentia.Eectronmicroscopyofthepoychromatophiicerythrobastreveasincreasedaggregationofnucearheterochromatin.13Active ferritintransportacrossthecemembraneisawaysevident,and siderosomesaongwithdispersedferritinmoecuescanbeidentified withinthecytopasm(Figs.1-2and1-6).

Orthochromic(syn.Orthochromatic)ErythroblastsAfterthe finamitoticdivisionoftheerythropoieticseries,theconcentrationof hemogobinincreaseswithintheerythrobast.Undertheightmicroscope,thenuceusappearsamostcompeteydenseandfeatureess. Itismeasurabydecreasedinsize.Thisceisthesmaestoftheerythrobasticseries.13Thenuceusoccupiesapproximateyone-fourthof theceareaandiseccentric.Cemovementcanbeappreciatedunder thephase-contrastmicroscope.Roundprojectionsappearsuddenyin

differentpartsoftheceperipheryandarejustasquickyretracted.13 Themovementsprobabyaremadeinpreparationforejectionofthe nuceus.Theceutrastructureischaracterizedbyirreguarborders, refectingitsmotiestate.Theheterochromatinformsargemasses. Mitochondriaarereducedinnumberandsize(seeFigs.1-2,1-7,and1-8).

Figure1–4.Proerythroblast.Phase-contrastmicrograph(inset)ofa proerythroblastshowingtheimmaturenucleuswithnucleoliandfinely dispersednuclearchromatin.Thecentrosome(juxtanuclearclearzone) isapparentwithitsdenseaccumulationofmitochondria.Electronmicroscopicsectionoftheproerythroblastshowsnucleoli(n)incontactwith thenuclearmembrane.Chromatinisfinelydispersedandformssmall aggregatesinthefixednuclearmembrane.Theperinuclearcanalisnarrowbutwelldefined.Polyribosomegroups,manyinhelicalconfiguration, aredispersedthroughoutthecytoplasm.TheGolgiapparatus(g)iswell developed,andregionsofendoplasmicreticulum(arrows)areseen.

Figure1–5.Basophilicerythroblast.Phase-contrastphotomicrograph (inset)showsincreasedclumpingofthenuclearchromatinandfurther roundingofthecell,withaggregationofthemitochondriaandcentrosomeintotheregionsofnuclearindentation.Theelectronmicroscopicsectionshowsclumpingofthenuclearchromatin,nuclearpores (p),organizationofthenucleoli,increaseddensityofpolyribosomes(pr), well-developedGolgiapparatus(g),andadecreaseinsmoothendoplasmicreticulum.

NormalSideroblastsAnormaerythrobastsaresiderobasts inthattheycontainironinstructurescaedsiderosomes,asevidentby transmissioneectronmicroscopy.Thesestructuresareessentiaforthe transferofironforheme(hemogobin)synthesis.Byightmicroscopy, undertheusuaconditionsofPrussianbuestainingforiron,aminority ofnormaerythrobasts(approximatey15%-20%)canbeidentifiedas containingsiderosomes,andthosethatcanbesoidentifiedhavevery few(1-4)smaPrussianbue–positivegranues.

PathologicSideroblastsAheterogeneousgroupoferythrocytedisordersisaccompaniedbyineffectiveerythropoiesis,abnorma erythrobastmorphoogy,andhyperferremia.Thesedisordersincude acquiredmegaobasticanemia(Chap.9),congenitadyserythropoietic anemias(Chap.14),thaassemias(Chap.17),theinheritedandacquired siderobasticanemias,pyridoxine-responsiveanemia,acoho-induced siderobasticanemia,andeadintoxication(Chaps.20and23).Some oftheseconditionsarecharacterizedbythepresenceofpathoogic siderobasts.Pathoogicsiderobastsareoftwotypes.Thefirstisan erythrobastthathasanincreaseinnumberandsizeofPrussianbue–stainedsideroticgranuesthroughoutthecytopasm.Thesecondisthe erythrobastthatshowsiron-containinggranuesthatarearrangedin anarcoracompeteringaroundthenuceus(Fig.1-8).Thesepathoogicsiderobastsarereferredtoasringorringedsideroblasts. 26,27Eectronmicroscopicstudiesshowthatgranuesinringedsiderobastsare iron-oadedmitochondria.Inceswithiron-oadedmitochondria, manyferritinmoecuesaredepositedbetweenadjacenterythrobast membranes.

Figure1–6.Polychromatophilicerythroblast.Phase-contrastmicrograph(inset)demonstratesdiminishedsizeofthiscellcomparedwith itsprecursor.Furtherclumpingofnuclearchromatingivesthenucleus acheckerboardappearance.Thecentrosomeiscondensed,andaperinuclearhalohasdeveloped.Theelectronmicroscopicsectiondemonstratesrelativereductionofthedensityofpolyribosomesanddilution bythemoderatelyosmiophilichemoglobininthecytoplasm.Nuclear chromatinshowsamarkedincreaseinclumping,andnuclearpores(P) areenlarged.

RETICULOCYTE

Birth

Beforeenuceationattheateorthochromaticerythrobastsstage,intermediatefiamentsandthemarginabandofmicrotubuesdisappear. Enuceationisahighydynamicprocessthatinvovescoordinatedaction ofmutipemechanisms.28-30Tubuinandactinbecomeconcentratedat thepointwherethenuceuswiexit.Thesechanges,accompaniedby microtubuarrearrangementsandactinpoymerization,payaroein nucearexpusion.Expusionofthenuceusinvitroisnotaninstantaneousphenomenon;itrequiresaperiodof6to8minutes.Theprocess beginswithseveravigorouscontractionsaroundthemidportionofthe ce,foowedbyadivisionoftheceintounequaportions.Thesmaer portionconsistsoftheexpeednuceussurroundedbyathinringof hemogobinandpasmamembrane(Fig.1-9).Invivo,expusionofthe nuceusmayoccurwhietheerythrobastisstipartofanerythrobasticisandandtheoutereafetofthebiaminarmembranesurrounding theexpeednuceusishighinphosphatidyserine,asignaformacrophageingestion(Fig.1-10).22Twohypotheseshavebeenproposedto expainhowthereticuocyteexitsthemarrow.19-21Thereticuocytemay activeytraversethesinusepitheiumtoentertheumen.Moreikey, however,thereticuocytemaybedrivenacrossbyapressuredifferentiabecauseitappearsincapabeofdirectedamoeboidmotion.Invitro experimentaevidencefavorsthehypothesisthatpressuredifferentiais ikeythedriverforreticuocytereease.21

Figure1–7.Orthochromicerythroblast.Phase-contrastappearance ofthiscellinthelivingstate(inset)showstheirregularbordersindicativeofitscharacteristicmotility,theeccentricnucleusmakingcontact withtheplasmalemma,furtherpyknosisofthenuclearchromatin,and condensationofthecentrosome.Theelectronmicroscopicsection showsfurtherdilutionofpolyribosomes,someofwhichappeartobe disintegratingintomonoribosomes,bytheincreasinghemoglobin. Thenumberofmitochondriaisdecreased,andsomemitochondriaare degenerating.Nuclearchromatinisclumpedintolargemasses,anda perinuclearcanal(pnc)isseen.

Pathologicsideroblastisanerythroblastcharacterizedby thepresenceofmitochondrialdepositsofiron-containingferruginous micelles(arrows)betweenthecristae.

Figure1–8.
Figure1–9.Morphologyofcellsduringreticulocytematuration.A.Orthochromaticerythroblastextrudingitsnucleus.B.Multilobular,motile reticulocytegeneratedafternuclearextrusion.C.Thecup-shaped,nonmotilereticulocyteatalaterstageofmaturation.D.Maturediscoidredcell.

Figure1–10.Orthochromicerythroblastejectingitsnucleus.Athin rimofcytoplasmsurroundsthenucleus.Inthecytoplasm,asinglecentriole(c)ispartiallyencircledbysomeGolgisaccules.

Maturation

Afternucearextrusion,thereticuocyteretainsmitochondria,sma numbersofribosomes,thecentrioe,andremnantsoftheGogiapparatus.Itcontainsnoendopasmicreticuum.Supravitastainingwith briiantcresybueornewmethyenebueproducesaggregatesof ribosomes,mitochondria,andothercytopasmicorganees.These aggregatesstaindeepbueand,arrangedinreticuarstrands,give thereticuocyteitsname.Maturationofthereticuocyterequires 48to72hours.Duringthisperiod,approximatey20%ofthemembrane surfaceareaisostandcevoumedecreasesby10%to15%,andthe finaassembyofthemembraneskeetoniscompeted.31-33Livingreticuocytesobservedbyphase-contrastmicroscopyareirreguaryshaped ceswithacharacteristicaypuckeredexteriorandamotiemembrane. Examinedbyeectronmicroscopy,reticuocytesareirreguaryshaped andcontainmanyremnantorganees.13Theorganees,smasmooth vesices,andanoccasionacentrioearegroupedintheregionofthe cewherethenuceusisexpeed.In“young”reticuocytes,themajority ofribosomesdispersedthroughoutthecytopasmareintheformof poyribosomes.Asproteinsynthesisdiminishesduringmaturation,the poyribosomesgraduaytransformintomonoribosomes.Duringreticuocytematuration,thereissignificantremodeingofthemembrane, incudingossofmembraneproteinsthatincudetransferrinreceptors, Na-Kadenosinetriphosphatase,andadhesionmoecues,asweasoss oftubuinandcytopasmicactin.33Duringtheremodeingprocess,the membranebecomesmoreeasticandacquiresincreasedmembrane mechanicastabiity.32

Macroreticulocytes

“Stress”reticuocytesarereeasedintothecircuationduringanintense erythropoietinresponsetoacuteanemiaorexperimentayinresponseto argedosesofexogenousyadministerederythropoietin.34Theseces maybetwicethenormavoume,withacorrespondingincreasein meancehemogobin(MCH)content.Whethertheincreaseresuts fromoneessmitoticdivisionduringmaturationorfromsomeother processsuchaschangesincecyceisnotcear.Micedonothavethe abiitytoproducestressreticuocyteswithincreasedmeancevoume

(MCV)andMCH.Incontrast,evenundermoderateerythropoietic stress,somereticuocytesinthemarrowpooshifttothecircuating poo.These“shift”reticuocyteswithnormaMCHcontainahigher-thannormaRNAcontentandcanbequantified.Quantificationiscommony performedbyappyingafuorescentstaintotagRNAandthendividingreticuocytesintohigh-,medium-,andow-fuorescencecategories usingafuorescence-sensitivefowcytometer.The“stress”reticuocytes oftheoderiteratureikeyfainthehigh-andmedium-fuorescence categories.Currenty,itteattentionisbeingpaidtodiscriminatestress andshiftreticuocytes.

PathologyoftheReticulocyte

Thereticuocytemayshowpathoogicaterationsinsizeorstaining properties.Thereticuocytemaycontainincusionsvisibebyight microscopyoridentifiabeonyfromutrastructuraanaysis.Most pathoogicincusionsusuayattributedtoerythrocytesarefound withinreticuocytesandarenucearorcytopasmicremnantsderived fromate-stageerythrobasts.Inpatientswhohaveundergonespenectomy,theymayasobefoundinmatureerythrocytes.

REDCELLINCLUSIONS

SeeFig.1-11forimagesofredceincusions.

Howell-JollyBodies

Howe-Joybodiesaresmanucearremnantsthathavethecoorofa pyknoticnuceusonWright-stainedfimsandshowapositiveFeugen reactionforDNA.35,36Theyaresphericayshaped,randomydistributedintheredce,andusuaynoargerthan0.5μmindiameter. Howe-Joybodiesmaybenumerous,athoughonyoneisusuay present.Inpathoogicsituations,theyappeartorepresentchromosomesthathaveseparatedfromthemitoticspindeduringabnorma mitosis,andtheycontainahighproportionofcentromericmateria aongwithheterochromatin.Morecommony,duringnormamaturationtheyarisefromnucearfragmentationorincompeteexpusionof thenuceus.Howe-Joybodiesarepittedfromthereticuocytesduringtheirtransitthroughtheinterendotheiasitsofthespenicsinus. Theyarecharacteristicaypresentintheboodofpersonswhohave undergonespenectomyandinpatientswithmegaobasticanemia,and hypospenicstates.

Pocked(orPitted)RedCells

Whenviewedbyinterference-phasemicroscopy,pockedredces appeartohavesurfacemembrane“pits”orcraters.37-39Thevesicesor indentationscharacterizingthesecesrepresentautophagicvacuoes adjacenttothecemembrane.Thevacuoesappeartobeinstrumentaindisposaofceuardebrisastheerythrocytepassesthroughthe microcircuationofthespeen.Within1weekafterspenectomy,a patient’spockedredcecountsbegintorise,reachingapateauat 2to3months.Pockedredboodcecountsaresometimesusedasa surrogatetestforspenicfunction.

CabotRings

Thering-ikeorfigure-of-eightstructuressometimesseeninmegaobasticanemiawithinreticuocytesandinanoccasiona,heaviy stipped,ate-intermediatemegaobastaredesignatedCabotrings40,41 Theircompositionisnucear.Someinvestigatorshavesuggestedthat Cabotringsoriginatefromspindemateriathatwasmishandedduringabnormamitosis.OthershavefoundnoindicationofDNAor spindefiamentsbuthaveshowntheringsareassociatedwithadherentgranuarmateriacontainingarginine-richhistoneandnonhemogobiniron.

Figure1–11.Redcellinclusions.Bloodfilms.A.RedcellswithHowell-Jollybodies(arrows)postsplenectomy.Thecrispcircularborder,darkblue color,andperipherallocationarecharacteristics.B.Basophilicstippling.Thesebasophilicinclusionsmaybefineorcoarse.Inthiscase,thecellcontains coarsestipplingseeninleadpoisoning(arrow)C.Siderocyte.ThesecellscontainpurplegranuleswhenstainedwithWrightstain(Pappenheimer bodies).Comparedwithbasophilicstippling,sideroticgranulesareusuallyfewerinnumberandsometimesclustered.ThesePrussianblue–stained cellsconfirmthatthegranulescontainiron(bluereactionproduct).Thearrowpointstotwosiderocytes.D.Cabotring.Rareredcellinclusion(arrow) Seetextforfurtherdescription.E.Heinzbodies.Thesecellsfromapatientwithglucose-6-phosphatedehydrogenasedeficiencywereincubatedwith asupravitaldye,whichstainsthedenaturedglobinprecipitates.F.RedcellsfromapatientwithhemoglobinHdisease(α-thalassemia).Thehemoglobinprecipitatesarestainedwithbrilliantcresylblue.(ReproducedwithpermissionfromLichtmanMA,ShaferMS,FelgarRE,etal:Lichtman’sAtlasof Hematology2016.NewYork,NY:McGrawHill;2017.)

BasophilicStippling

BasophiicstippingconsistsofgranuationsofvariabesizeandnumberthatstaindeepbuewithWrightstain.Eectronmicroscopicstudies haveshownthatpunctatebasophiliarepresentsaggregatedribosomes.42 Cumpsformduringthecourseofdryingandpostvitastainingof theces,muchas“reticuum”inreticuocytesprecipitatesfromribosomesduringsupravitastaining.Thecumpedribosomesmayincude degeneratingmitochondriaandsiderosomes.Inconditionssuchasead intoxication(Chap.23),pyrimidine5’-nuceotidasedeficiency(Chap.16), andthaassemia(Chap.17),theateredreticuocyteribosomeshave agreaterpropensitytoaggregate.Asaresut,basophiicgranuation appearsargerandisreferredtoascoarsebasophilicstippling

HeinzBodies

Heinzbodiesarecomposedofdenaturedproteins,primariyhemogobin,thatforminredcesasaresutofchemicainsut;inhereditary defectsofthehexosemonophosphateshunt(Chap.16);inthethaassemias(Chap.17);andinunstabehemogobinsyndromes(Chap.18).43

HeinzbodiesarenotseenonordinaryWright-orGiemsa-stainedbood fims.Heinzbodiesarereadiyvisibeinredcesstainedsupravitay withbriiantcresybueorcrystavioetandareeiminatedasredces traversetheendotheiasitsofthespenicsinus.

HemoglobinHInclusions

HemogobinHiscomposedofβ4tetramers,indicatingthatβchainsare presentinexcessasaresutofimpairedα-chainproduction(Chap.17). Exposuretoredoxdyessuchasbriiantcresybue,methyenebue,or newmethyenebue,resutsindenaturationandprecipitationofabnormahemogobin.44-46Briiantcresybuecausestheformationofaarge numberofsmamembrane-boundincusions,givingtheceacharacteristic“gofba-ike”appearancewhenviewedbyightmicroscopy.

Methyenebueandnewmethyenebuegenerateasmaernumberof variabysizedmembrane-boundandfoatingincusions.Thesechanges areseenmostfrequentyinα-thaassemiabutcanasobefoundin patientswithunstabehemogobin(Chap.18)andinrarepatientswith primarymyeofibrosisinwhomacquiredhemogobinHdiseasehas deveoped.

SiderosomesandPappenheimerBodies

Normaorpathoogicredcesinboodcontainingsiderosomes(“iron bodies”)usuayarereticuocytes.Theirongranuationsareargerand morenumerousinthepathoogicstate.Eectronmicroscopyshowsthat manyofthesebodiesaremitochondria-containingferruginousmicees ratherthantheferritinaggregatescharacterizingnormasiderocytes.47 Siderosomesusuayarefoundintheceperiphery,whereasbasophiic stippingtendstobedistributedhomogeneousythroughoutthece. PappenheimerbodiesaresiderosomesthatstainwithWrightstain. EectronmicroscopyofPappenheimerbodiesshowsthattheironoften iscontainedwithinaysosome,asconfirmedbythepresenceofacid phosphatase.Siderosomesmaycontaindegeneratingmitochondria, ribosomes,andotherceuarremnants.

STRUCTUREANDSHAPEOFERYTHROCYTES

Thenormarestingshapeoftheerythrocyteisabiconcavedisc(Fig.1-12). Variationsintheshapeanddimensionsoftheredceareusefuin thedifferentiadiagnosisofanemias.Normahumanredceshave adiameterof7to8μm,andthediameterdecreasessightywithce age.Thedecreaseinsizeikeyresutsfromossofmembranesurface areaduringtheerythrocyteifespanbyspeen-faciitatedvesicuation. Theceshaveanaveragevoumeofapproximatey90fLandasurface areaofapproximatey140μm2.Themembraneispresentinsufficient excesstoaowthecetoswetoasphereofapproximatey150fLorto

Figure1–12.Scanningelectronmicrographsofdistinctredcellmorphologies.Discoidnormalredcells(topleftpanel).Elliptocytesandfragmentedredcells(toprightpanel).Oxygenatedsickleredcells(middleleft panel)anddeoxygenatedsickleredcells(middlerightpanel).Stomatocyticredcells(bottomleftpanel).Acanthocyte(bottomrightpanel)

deformsoastoenteracapiarywithadiameterof2.8μm.Thenorma erythrocytestainsreddish-brownwithWright-stainedboodfimsand pinkwithGiemsastain.Thecentrathirdoftheceappearsreativey paecomparedwiththeperiphery,refectingitsbiconcaveshape.Many artifactscanbeproducedinthepreparationoftheboodfim.Theymay resutfromcontaminationofthegasssideorcoversipwithtracesof fat,detergent,orotherimpurities.Frictionandsurfacetensioninvoved inthepreparationoftheboodfimproducefragmentation,“doughnutces”oranuocytes,andcrescent-shapedces.Observedunderthe phase-contrastorinterferencemicroscope,theredceshowsacharacteristicinternascintiationknownasredceficker.48Thescintiation resutsfromthermayexcitedunduationsoftheredcemembrane. Frequencyanaysisofthesurfaceunduationshasprovidedanestimateofthemembranecurvatureeasticconstantandofchangesinthis constantresutingfromacoho,choesterooading,andexposureto cross-inkingagents.

REDCELLSHAPEANDSURVIVAL INCIRCULATION

Theredcespendsmostofitscircuatoryifewithinthecapiarychannesofthemicrocircuation.Duringits100-to120-dayifespan,the redcetravesapproximatey250kmandosesapproximatey15%to 20%ofitscesurfacearea.Theongsurvivaoftheredceisateast partiayaresutoftheuniquecapacityofitsmembraneto“tanktread,”

thatis,torotatearoundtheredcecontentsandtherebyfaciitatemore efficientoxygendeivery.Thephysicaarrangementofmembraneskeetaproteinsinauniformsheofhighyfodedhexagonaspectrinattice permitsthisunusuabehavior.49-51Thearrangementasoisresponsibe forthecharacteristicbiconcaveshapeoftherestingce.Redcesmust asobeabetowithstandargeshearforcesandmustbeabetoundergo extensivereversibedeformationduringtransitthroughthemicrovascuatureandintransitingfromthespenicredcepupbackintocircuation.Theresiiencyandfuidityofthemembranetodeformation isreguatedbythespectrin-basedmembraneskeeton.49Adeficiency intheamountofspectrinorthepresenceofmutantspectrininthe submembraneskeetonresutsinabnormayshapedcesinhereditaryspherocytosis,eiptocytosis,andpyropoikiocytosis(Chap.15).49 Inregionsofcircuatorystandstiorverysowfow,redcestrave inaggregatesof2to12ces,formingroueaux.Withinargevesses, increasedshearforcesdisruptthisaggregation.

REDCELLCOMPOSITION

Theerythrocyteisacompexce.Themembraneiscomposedofipids andproteins,andtheinteriorofthececontainsmetaboicmachinery designedtosustainthecethroughits120-dayifespanandmaintain theintegrityofhemogobinfunction.Eachcomponentofredbood cesmaybeexpressedasafunctionofredcevoume,gramsofhemogobin,orsquarecentimetersofcesurface.Theseexpressionsareusuayinterchangeabe,butundercertaincircumstanceseachmayhave specificadvantages.However,becausediseasemayproducechangesin theaverageredcesize,hemogobincontent,orsurfacearea,theuseof anyofthesemeasurementsindividuaymay,attimes,bemiseading. Forconvenienceanduniformity,dataintheaccompanyingtabes (Tabes1-1through1-6)52-125areexpressedintermsofceconstituent permiiiterofredceandpergramofhemogobin.Inmanyinstances, thisprocessrequiredrecacuationofpubisheddata.Theserecacuationsassumeahematocritvaueof45%and33gofhemogobinper deciiterofredces.Toobtainconcentrationpergramofhemogobin, theconcentrationpermiiiterredboodcecanbemutipiedby3.03. Thetabesistonysomeofthemostcommonyreferredtoconstituents oftheerythrocyte.Thereferenceonwhicheachvaueisbasedisthe firstnumberpresentedintheastcoumnofeachtabe.Whereappicabe,additionaconfirmatoryreferencesaregiven.Insomeinstances, onythepercentageofthetotaofthetypeofconstituentpresentis given.Chapter15discussesthedetaiedproteincompositionofthered cemembraneanditsvariousproteinconstituents.

TABLE1–1.HumanErythrocyteProteinand WaterContent

TABLE1–2.HumanErythrocytePhospholipids

Lipid Amount

Totalphospholipids2.98±0.20mg/mLRBC56

Ethanolamine phosphoglyceride 29%oftotal phospholipid

Meanplasmalogen content 67%ofethanolamine phosphoglyceride

Serinephosphoglyceride10%oftotal phospholipid 56

Meanplasmalogen content 8%ofserine phosphoglyceride 56

Lecithin 0.320.03–0.95mg/mL57

Sphingomyelin 0.12–1.13mg/mL57

Lysolecithin 1.82%oftotal phospholipids 58

Abbreviation:RBC,redbloodcell.

Someresultsaregivenasmean±standarddeviation.

ERYTHROCYTEDEFORMABILITY

Duringits120-dayifespan,theerythrocytemustundergoextensive passivedeformationandmustbemechanicaystabetoresistfragmentation;ceuardeformabiityisanimportantdeterminantofred cesurvivainthecircuation.Redcedeformabiityisinfuenced bythreedistinctceuarcomponents:(1)ceshapeorcegeometry, whichdeterminestheratioofcesurfaceareatocevoume(SA:V; highervauesofSA:Vfaciitatedeformation);(2)cytopasmicviscosity,whichisprimariyreguatedbythemeancorpuscuarhemogobin concentration(MCHC)andisthereforeinfuencedbyaterationsin

TABLE1–3.HumanErythrocyteCoenzymeandVitamins

Ascorbicacid

Abbreviation:RBC,redbloodcell. Someresultsaregivenasmean±standarddeviation.

TABLE1–4.Nucleotides

Compound

Adenosinemonophosphate0.021±0.00369-72

Adenosinediphosphate0.216±0.03669-72

Adenosinetriphosphate1.35±0.03571-75

Cyclicadenosine monophosphate 0.015±0.002476

Cyclicguanosine monophosphate 0.013±0.004276

Guanosinediphosphate0.018±0.00571

Guanosinetriphosphate0.052±0.01270,71

Inosinemonophosphate0.031±0.00571-73

Nicotinamideadenine dinucleotide 77,78

Reduced 0.0018±0.00177,78

Oxidized 0.049±0.006

Nicotinamideadeninedinucleotidephosphate 77,78

Reduced 0.032±0.002

Oxidized 0.0014±0.0011

S-adenosylmethionine0.005 79

Totalnucleotide 1.534±0.03380

Uridinediphosphoglucose0.031±0.00571,81

UridinediphosphateN-acetyl glucosamine 0.018 81

Abbreviation:RBC,redbloodcell. Someresultsaregivenasmean±standarddeviation.

cevoume;and(3)membranedeformabiityandmechanicastabiity, whicharereguatedbymutipemembraneproperties,whichincude easticshearmoduus,bendingmoduus,andyiedstress.126-129Either directyorindirecty,membranecomponentsandtheirorganization payanimportantroeinreguatingeachofthefactorsthatinfuence ceuardeformabiity.

ThebiconcavediscshapeofthenormaredcecreatesanadvantageousSA:Vreationship,aowingtheredcetoundergomarkeddeformationwhiemaintainingaconstantsurfacearea.Thenormahuman adutredcehasavoumeof90fLandasurfaceareaof140μm2.If theredcewereasphereofidenticavoume,itwoudhaveasurface areaofony98μm2.Thus,thediscoidshapeprovidesapproximatey 40μm2ofexcesssurfacearea,oranextra43%,whichenabesthered cetoundergoextensivedeformation.Mostdeformationsoccurringin vivoandinvitroinvovenoincreaseinsurfacearea.Thisisimportant becausethenormaredcecanundergoargeinearextensionsofupto 230%ofitsoriginadimensionwhiemaintainingitssurfacearea,but anincreaseofeven3%to4%insurfacearearesutsinceysis.Either membraneoss,eadingtoareductioninsurfacearea,oranincrease incewatercontent,eadingtoanincreaseincevoume,wicreatea moresphericashapewithessredundantsurfacearea.Thisossofsurfacearearedundancyresutsinreducedceuardeformabiity,compromisedredcefunction,anddiminishedsurvivaasaresutofspenic sequestrationofspherocyticredces.A17%reductioninsurfacearea resutsinrapidremovaofredcesbythehumanspeen.130

TABLE1–5.

HumanErythrocyteCarbohydrates,Organic Acids,andMetabolites

Compound μmol/mLRBCReference(s)

Dihydroxyacetonephosphate0.0094±0.002869

2,3-Diphosphoglycerate4.171±0.63669,75

Fructose 0.000354± 0.0000191 82

Fructose6-phosphate0.0093±0.00269,72,75,83

Fructose3-phosphate0.013±0.00184,85

Fructose2,6-diphosphatea 48±1386

Fructose1,6-diphosphate0.0019±0.000669,72,75,83

Glucuronicacid Trace 87

Glucose Inequilibrium withplasma 88,89

Glucose6-phosphate0.0278±0.007569,72,75,83

Glucose1,6-diphosphate0.18–0.3072,90

Glyceraldehyde3-phosphateNotdetectable69

Lacticacid

0.932±0.21153,69,91

Mannose1,6-diphosphate0.150 90

Octulose1,8-diphosphateTrace 92

Pyruvate 0.0533±0.021569

3-Phosphoglycerate 0.0449±0.005169,75

2-Phosphoglycerate 0.0073±0.002569,75

Phosphoenolpyruvate0.0122±0.002269

Ribonucleicacid 1.355mg93

Ribose1,5-diphosphate<0.02 94,95

Ribulose5-phosphateTrace 96

Sedoheptulose7-phosphateTrace 96

SedoheptulosediphosphateTrace 97

Sialicacid 0.825±0.02894

Sorbitol 31.1±5.382,84

Sorbitol3-phosphate0.013±0.00185

Abbreviation:RBC,redbloodcell. aValuesaregiveninpicomoles. Someresultsaregivenasmean±standarddeviation.

Cytopasmicviscosity,anotherreguatorycomponentofredce deformabiity,isargeydeterminedbytheMCHC,whichisdetermined inargepartbycewatercontent.Asthehemogobinconcentration risesfrom27to35g/dL(thenormarangeforredboodces),theviscosityofhemogobinsoutionincreasesfrom5to15centipoise(cP), 5to15timesthatofwater.Attheseeves,thecontributionofcytopasmicviscositytoceuardeformabiityisnegigibe.However,viscosity increasesexponentiayathemogobinconcentrationshigherthan37g/dL, reaching45cPat40g/dL,170cPat45g/dL,and650cPat50g/dL.At theseeves,cytopasmicviscositymaybecometheprimarydeterminantofceuardeformabiity.Thus,ceuardehydration,usuaycaused bythefaiureofnormavoumehomeostasismechanisms,canseverey impairceuardeformabiityandthusdecreaseoptimaoxygendeiverybyimpairingtheabiityofredcestoundergorapiddeformation

TABLE1–6.HumanErythrocyteElectrolytes

Electrolyteμmol/mLRBCReference

protein-bound

98,114

Abbreviation:RBC,redbloodcell.

aObtainedbysubtractingplasmaconcentrationfromwhole-blood concentration.

Someresultsaregivenasmean±standarddeviation.

necessaryforpassagethroughthemicrovascuature.Asexampes,ceuardehydrationreducesredcedeformabiityinhereditaryxerocytosis, sickeceanemia,hemogobinCC,andβ-thaassemia.129,131,132However, changesinceuardehydrationbyitsefappeartohaveitteinfuence onredcesurviva.

Thepropertyofmembranedeformabiitydeterminestheextentof membranedeformationthatcanbeinducedbyadefinedeveofappied force.Themoredeformabethemembrane,theesstheforcerequired forthecetopassthroughthecapiariesandothernarrowopenings, suchasfenestrationsinthespeniccords.Thepropertyofmembrane mechanicastabiityisdefinedasthemaximumextentofdeformation thatamembranecanundergo,beyondwhichitcannotcompetey recoveritsinitiashape.Thisisthepointatwhichthemembranefais. Normamembranestabiityaowshumanredcestocircuatefor100 to120dayswithoutfragmenting,whereasdecreasedstabiityeadsto cefragmentationundernormacircuatorystresses.Bothmembrane

deformabiityandmembranemechanicastabiityarereguatedby structuraorganizationofmembraneproteins.128Athoughdecreased membranedeformabiitycanreduceeffectivetissueoxygendeivery,it appearstohaveitteeffectonredcesurvivabecauseSoutheastAsian ovaocyteswithmarkedreductionsinmembranedeformabiityhave near-normaredcesurviva.Lossofmembranemechanicastabiity eadingtomembranefragmentationandconsequentreductioninSA:V ratio,conversey,compromisesredcesurvivaasinhemoytichereditaryeiptocytosis.49

REDCELLSENESCENCE

Thereticuocyteosesmembraneasitmaturesintoadiscocyte,and membraneossbyvesicuationcontinuesthroughouttheerythrocyte’s ifespan.Thenotionthaterythrocyteagingissynonymouswithmembraneoss,increasingMCHC,anddecreasingdeformabiityargey resutsfromstudiesondensity-separatedcesandtheequatingofdense ceswithagedces(Chap.2).Athoughitiscearthatossofmembranesurfaceareaanddecreasedcevoumearethefeaturesofnorma redcesenescenceandthatcedensityincreaseswithceage,thereis nodirectreationshipbetweenceageandcedensitybecausethere isaargeheterogeneityincedensitiesofreticuocytesastheyenter circuation.Whatiscearisthatthedensest1%ofcircuatingredces arethemostaged—theyhavethehighestevesofgycatedhemogobin, averygoodmarkerofceage.Theossofmembranesurfaceareaof thesenescentredcesappearstobearesutofmembraneoxidation–inducedband3custeringandconsequentmembranevesicuation,and

theresutantcriticadecreaseinSA:Vratioeadstotheirremovafrom circuation.133,134

PATHOPHYSIOLOGYOF ERYTHROCYTESHAPES

Chapter15discusseserythrocytesingreaterdetai.

SeeTabe1-7andFig.1-13forscanningandboodfimappearance ofpathoogicayshapedredces.

SpherocytesandStomatocytes

Spherocytesrepresentredces,withthemostdecreasedSA:Vratio seeninhereditaryspherocytosis(Chap.15),immunehemoyticanemia(Chap.26),storedbood(Chap.30),Heinzbodyhemoyticanemia (Chap.16),andcausedbycefragmentation(Chap.22).49,135Stomatocytesareseeninhereditarystomatocytosis,asweasinhereditary spherocytosis,acohoism,cirrhosis,obstructiveiverdisease,anderythrocytesodiumpumpdefects.49,136,137Redcessensitizedwithantibodies,compement,orimmunecompexesosechoesteroandsurface area.Asaresut,theyareessdeformabeandmoreosmoticayfragie. Heinzbodyformationeadstomembranedepetionbyfragmentation, withspherocyteformation.Aspherogenicmechanismcommonto Heinzbodyhemoyticanemiasandimmunehemoysisispartiaphagocytosisofportionsofthececontainingaggregatesofdenaturedhemogobinandportionsofthesensitizedmembrane,respectivey.

StomatocytosisappeartobeanintermediateforminthegenerationofspherocytosiswithvaryingextentsofdecreasedSA:Vratioasa

TABLE1–7.NomenclatureofRedCellShapesandAssociatedDiseaseStates

Terminology

(GreekMeaning)OldTerms,SynonymsDescription

DiscocytediscBiconcavedisc

EchinocyteI-III seaurchin

“Burrcell,”crenatedcell, “berrycell”

Acanthocyte spike

StomatocyteI-III mouth

“Spurcell,”acanthoidcell, acanthrocyte

Mouthcell,cup form,mushroom cap,uniconcavedisc, microspherocyte

Biconcavediscformof RBC

SpiculatedRBCwith short,equallyspaced projectionsoverentire surface;progressingfrom the“crenateddisc”echinocyteItothecrenated sphereechinocyteIV— notshownwithnearly completelossofspicules

IrregularlyspiculatedRBC withprojectionsofvaryinglengthandposition

Bowl-shapedRBCwith singleconcavity;progressingfromshallow bowlItonearsphere withsmalldimpleseen asmouth-shapedformin peripheralfilm

MicrographAssociatedDiseaseStates

Uremia,liverdisease

Low-potassiumredcells

Immediatelyposttransfusionwithagedor metabolicallydepletedblood

Carcinomaofstomachandbleeding pepticulcers

Abetalipoproteinemia

Alcoholicliverdisease

Postsplenectomystate

Malabsorptivestates

Hereditaryspherocytosis

Hereditarystomatocytosis

Alcoholism,cirrhosis,obstructiveliver disease

Erythrocytesodium-pumpdefect

TABLE1–7.NomenclatureofRedCellShapesandAssociatedDiseaseStates

Terminology

(GreekMeaning)OldTerms,SynonymsDescription

Spherostomatocytesphere

Spherocyte,prelytic sphere,microspherocyte

SchizocytecutSchistocyte,helmetcell, fragmentedcell

SphericalRBCwithdense hemoglobincontent; scanningelectronmicroscopyshowsapersistent minimaldimple

(Continued)

MicrographAssociatedDiseaseStates

SplitRBC,oftenshowing half-discshapewithtwo orthreepointedextremities;maybesmall,irregularfragment

ElliptocyteovalOvalocyte

Drepanocyte sickle Sicklecell

CodocytebellTargetcell

Ovaltoelongated ellipsoidRBCwithpolarizationofhemoglobin

RBCcontainingpolymerizedhemoglobinS;showingvaryingshapesfrom bipolar,spiculatedforms toholly-leafandirregularlyspiculatedforms

Bell-shapedRBCthat assumesatargetshape ondriedfilmsofblood

Hereditaryspherocytosiscellsactually spherostomatocytes

Immunehemolyticanemia

Posttransfusion

Heinzbodyhemolyticanemia

Water-dilutionhemolysis

Fragmentationhemolysis

MicroangiopathichemolyticanemiaTTP, DIC,vasculitis,glomerulonephritis,renal graftrejection

Carcinomatosis

Heart-valvehemolysisprostheticor pathologicvalves

Severeburns

Marchhemoglobinuria

Hereditaryelliptocytosis

Thalassemia

Irondeficiency

Myelophthisicanemias

Megaloblasticanemias

SicklecelldisordersSS,Strait,SC,SD, Sthalassemia,etc.

HemoglobinC-Harlem

HemoglobinMemphis/S

Obstructiveliverdisease

HemoglobinopathiesS,C

Thalassemia

Irondeficiency

Postsplenectomystate

Lecithincholesterolacetyltransferase deficiency

DacryocytetearTeardropcell

LeptocytethinThincell,wafercell

KeratocytehornHorncell

RBCwithasingle elongatedorpointed extremity

Thin,flatRBCwithhemoglobinatperiphery

RBCwithspicules resultingfromruptured vacuole;cellappearshalfmoonshapedorspindle shaped

Primarymyelofibrosis

Myelophthisicanemias

Thalassemia

Thalassemia

Obstructiveliverdisease±irondeficiency

DICorvascularprosthesis

Abbreviations:DIC,disseminatedintravascularcoagulation;RBC,redbloodcell;TTP,thromboticthrombocytopenicpurpura.

Figure1–13.A.Normalblood.Thearrowpointstoanormochromic-normocyticdiscocyte.B.Stomatocytes.Thedoublearrowpointstothetwo morphologictypesofstomatocyte:uppercellwithaslit-shapedpaleareaandlowercellwithasmallcentralcircularpalearea.C.Echinocytes. Thefieldhasseveralsuchcells.Thearrowpointstooneexamplewithevenlydistributed,blunt,short,circumferentiallypositionedprojections. D.Acanthocytes.Thearrowpointstooneexamplewithafewspike-shapedprojections,unevenlydistributedandofvaryinglengths.E.Spherocytes. Small,circular,densely-staining(hyperchromic)cellsthat,whenfullydeveloped,shownocentralpallor.F.Schizocytes(schistocytes,helmetcells, fragmentedredcells).Thesemicrocyticcellfragmentsmayassumevariedshapes.Thearrowpointstoatriangularshape,buttwoothersofdifferent shapearealsopresentinthefield.Despitebeingdamagedandverysmall,theyfrequentlymaintainabiconcaveappearance,asseenbytheircentral pallor.G.Sicklecells(drepanocytes).Numeroussicklecellsareshown.Twoareintheclassicshapeofthebladeontheagriculturalsickle(arrow).Many redcellsthathaveundergonethetransformationtoa“sickle”celltaketheslightlylessextremeformofellipticalcellswithaverynarrowdiameter withcondensedhemoglobininthecenter(para-crystallization).Abouteightsuchcellsareinthefield.H.Elliptocytesandovalocytes.Thelowerarrow pointstoanelliptocyte(cigar-shaped).Theupperarrowpointstoanovalocyte(football-shaped).Becausebothformsmaybeseentogetherinacase ofinheriteddisease(samegenemutationresultinginbothshapes),asshownhere,ithasbeenproposedthatallsuchshapesbecalledelliptocytes withaRomannumeraltodesignatetheseverityoftheshapechangetowardtheelliptical,thatis,elliptocytesI,II,andIII.I.Targetcells(codocytes). Thearrowpointstoonecharacteristicexampleamongseveralinthefield.Thehemoglobinconcentrationcorralledbymembranerecurvatureinthe centerofthecellgivesittheappearanceofanarcherytarget.J.Tear-drop–shapedcells(dacryocytes).Threedacryocytesareinthisfield.Oneexample isindicatedbythearrowK.Horncell(keratocyte).Severalexamplesareinthefield.Thearrowpointstoatypicalsuchcellwithtwosharpprojections. (ReproducedwithpermissionfromLichtmanMA,ShaferMS,FelgarRE,etal:Lichtman’sAtlasofHematology2016.NewYork,NY:McGrawHill;2017.)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.