First Course in Abstract Algebra 3rd Edition Rotman Solutions Manual

Page 1

SolutionManualfor AFirstCourseinAbstractAlgebra,withApplications ThirdEdition

ExercisesforChapter1

1.1 Trueorfalsewithreasons.

(i) Thereisalargestintegerineverynonemptysetofnegativeintegers.

Solution. True.If C isanonemptysetofnegativeintegers,then C ={−n : n ∈ C } isanonemptysetofpositiveintegers.If a isthesmallestelement of C ,whichexistsbytheLeastIntegerAxiom,then a ≤−c forall c ∈ C ,sothat a ≥ c forall c ∈ C .

(ii) Thereisasequenceof13consecutivenaturalnumberscontaining exactly2primes.

Solution. True.Theintegers48through60formsuchasequence; only53and59areprimes.

(iii) Thereareatleasttwoprimesinanysequenceof7consecutive naturalnumbers.

Solution. False.Theintegers48through54are7consecutive naturalnumbers,andonly53isprime.

(iv) Ofallthesequencesofconsecutivenaturalnumbersnotcontaining 2primes,thereisasequenceofshortestlength.

Solution. True.Theset C consistingofthelengthsofsuch(finite) sequencesisanonemptysubsetofthenaturalnumbers.

(v) 79isaprime.

Solution. True. √79 < √81 = 9,and79isnotdivisibleby2,3, 5,or7.

(vi) Thereexistsasequenceofstatements S (1), S (2),... with S (2n ) trueforall n ≥ 1andwith S (2n 1) falseforevery n ≥ 1.

Solution. True.Define S (2n 1) tobethestatement n = n ,and define S (2n ) tobethestatement n = n .

(vii) Forall n ≥ 0,wehave n ≤ Fn ,where Fn isthe n thFibonacci number.

1
First Course in Abstract Algebra 3rd Edition Rotman Solutions Manual Full Download: http://testbanktip.com/download/first-course-in-abstract-algebra-3rd-edition-rotman-solutions-manual/ Download all pages and all chapters at: TestBankTip.com

Solution. True.Wehave0 = F0 ,1 = F1 ,1 = F2 ,and2 = F3 .Usethesecondformofinductionwithbasesteps n = 2and n = 3(verifyingtheinductivestepwillshowwhywechoose thesenumbers).Bytheinductivehypothesis, n 2 ≤ Fn 2 and n 1 ≤ Fn 1 .Hence,2n 3 ≤ Fn .But n ≤ 2n 3forall n ≥ 3, asdesired.

(viii) If m and n arenaturalnumbers,then (mn )!= m !n ! Solution. False.If m = 2 =

1.2(i) Forany n ≥ 0andany r = 1,provethat

4.

Solution. Weuseinductionon n ≥ 1.When n = 1,bothsides equal1 + r .Fortheinductivestep,notethat

(ii) Provethat

Thisisthespecialcaseofthegeometricserieswhen r

2;hence,thesumis

alsoprovethisdirectly,byinductionon

1.3 Show,forall n ≥ 1,that10n leavesremainder1afterdividingby9. Solution. Thismayberephrasedtosaythatthereisaninteger qn with 10n = 9qn + 1.Ifwedefine q1 = 1,then10 = q1 + 1,andsothebasestep istrue.

Fortheinductivestep,thereisaninteger qn with 10n +1 = 10 × 10n = 10(9qn + 1) = 90qn + 10 = 9(

Define qn +1 = 10qn + 1,whichisaninteger.

1.4 Provethatif0 ≤ a ≤ b ,then a n ≤ b n forall n ≥ 0. Solution. Basestep a 0 = 1 = b 0 ,andso a 0 ≤ b 0 Inductivestep.Theinductivehypothesisis

2
n ,then (mn )!= 24and m !n !=
1 +
r
+
3 +···+ r n = (1 r n +
r +
2
r
1 )/(1 r ).
[1 + r + r 2 + r 3 +···+ r n ]+ r n +1 = (1 r n +1 )/(1 r ) + r n +1 = 1 r n +1 + (1 r )r n +1 1 r = 1 r n +2 1 r .
1 + 2 + 22 +···+ 2n = 2n +1 1.
2
n
Solution.
=
(1 2n +1 )/(1
) = 2
+1 1.Onecan
n ≥ 0.
10qn + 1) + 1.
a n
b n

Since a ispositive,Theorem1.4(i)gives

;since b is positive,Theorem1.4(i)nowgives

3
n
1 = aa n ≤ ab n
ab n ≤ bb n = b n +1 . 1.5 Provethat12 + 22 +···+ n 2 = 1 6 n (n + 1)(2n + 1) = 1 3 n 3 + 1 2 n 2 + 1 6 n Solution. Theproofisbyinductionon n ≥ 1.When n = 1,theleftsideis 1andtherightsideis 1 3 + 1 2 + 1 6 = 1. Fortheinductivestep, [12 + 22 +···+ n 2 ]+ (n + 1)2 = 1 3 n 3 + 1 2 n 2 + 1 6 n + (n + 1)2 = 1 3 (n + 1)3 + 1 2 (n + 1)2 + 1 6 (n + 1), aftersomeelementaryalgebraicmanipulation. 1.6 Provethat13 + 23 +···+ n 3 = 1 4 n 4 + 1 2 n 3 + 1 4 n 2 . Solution. Basestep:When n = 1,bothsidesequal1. Inductivestep: [13 + 23 +···+ n 3 ]+ (n + 1)3 = 1 4 n 4 + 1 2 n 3 + 1 4 n 2 + (n + 1)3 . Expandinggives 1 4 n 4 + 3 2 n 3 + 13 4 n 2 + 3n + 1, whichis 1 4 (n + 1)4 + 1 2 (n + 1)3 + 1 4 (n + 1)2 1.7 Provethat14 + 24 +···+ n 4 = 1 5 n 5 + 1 2 n 4 + 1 3 n 3 1 30 n . Solution. Theproofisbyinductionon n ≥ 1.If n 1,thentheleftsideis 1,whiletherightsideis 1 5 + 1 2 + 1 3 1 30 = 1aswell. Fortheinductivestep, 14 + 24 +···+ n 4 + (n + 1)4 = 1 5 n 5 + 1 2 n 4 + 1 3 n 3 1 30 n + (n + 1)4 . Itisnowstraightforwardtocheckthatthislastexpressionisequalto 1 5 (n + 1)5 + 1 2 (n + 1)4 + 1 3 (n + 1)3 1 30 (n + 1). 1.8 Findaformulafor1
3
5 +···+ (
n
),andusemathematicalinduction
InductiveStep. 1 + 3 + 5 +···+ (2n 1) + (2n + 1) = 1 + 3 + 5 +···+ (2n 1)]+ (2n + 1) = n 2 + 2n + 1 = (n + 1)2
a
+
+
+
2
1
toprovethatyourformulaiscorrect. Solution. Weprovebyinductionon n ≥ 1thatthesumis n 2 . BaseStep.When n = 1,weinterprettheleftsidetomean1.Ofcourse, 12 = 1,andsothebasestepistrue.

1.9 Findaformulafor1 + n j =1 j ! j ,anduseinductiontoprovethatyour formulaiscorrect.

Solution. Alistofthesumsfor

Thesearefactorials;better,theyare2

theguess

Wenowuseinductiontoprovethattheguessis always true.Thebasestep S (1) hasalreadybeenchecked;itisonthelist.Fortheinductivestep,we mustprove

Bytheinductivehypothesis,thebracketedtermis (n + 1)!,andsotheleft sideequals

Byinduction, S (n ) istrueforall n ≥ 1.

1.10 (M.Barr)ThereisafamousanecdotedescribingahospitalvisitofG.H. HardytoRamanujan.Hardymentionedthatthenumber1729ofthetaxi hehadtakentothehospitalwasnotaninterestingnumber.Ramanujan disagreed,sayingthatitisthesmallestpositiveintegerthatcanbewritten asthesumoftwocubesintwodifferentways.

(i) ProvethatRamanujan’sstatementistrue.

Solution. First,1729isthesumoftwocubesintwodifferent ways:

1729 = 13 + 123 ; 1927 = 93 + 103 .

Second,nosmallernumber n hasthisproperty.If n = a 3 + b 3 , then a , b ≤ 12.Itisnowamatterofcheckingallpairs a 3 + b 3 for such a and b .

4
n = 1, 2, 3, 4, 5is2, 6, 24,
!, 3!, 4!, 5!, 6!.Wehavebeenledto
S (n ) : 1 + n j =1 j ! j = (n + 1)!.
120, 720.
S (n + 1) : 1 + n +1 j =1 j ! j = (n + 2)!. Rewritetheleftsideas 1 + n j =1 j ! j + (n + 1)!(n + 1).
(n + 1)!+ (n + 1)!(n + 1) = (n + 1)![1 + (n + 1)] = (n + 1)!(n + 2) = (n + 2)!

(ii) ProvethatRamanujan’sstatementisfalse.

Solution. Onemustpayattentiontohypotheses.Consider a 3 + b 3 if b isnegative:

1.11 Derivetheformulafor n i =1 i bycomputingthearea (n + 1)2 ofasquare withsidesoflength n + 1usingFigure1.1.

Solution. Computethearea A ofthesquareintwoways.Ontheonehand, A = (n + 1)2 .Ontheotherhand, A

D isthediagonal and S isthe“staircase.”Therefore,

1.12(i) Derivetheformulafor n i =1 i bycomputingthearea n (n + 1) of arectanglewithheight n + 1andbase n ,aspicturedinFigure1.2.

Solution. Computethearea R oftherectangleintwoways.On theonehand, R = n (n + 1).Ontheotherhand, R = 2| S |,where S istheshadedregion(whoseareaiswhatweseek).

(ii) (Alhazen)For fixed k ≥ 1,useFigure1.3toprove

5
728
93
( 1)
= 123 + ( 103 ) =
+
3
D |+ 2| S |
| S |= 1 2 (n + 1)2 (n + 1) = 1 2 n (n + 1).
=|
,where
1 2 3 4 51 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Figure1.1 1 + 2 +···+ n = 1 2 (n 2 + n ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Figure1.2 1 + 2 +···+ n = 1 2 n (n + 1)
But | S | isthesumweareseeking.
(n + 1) n i =1 i k = n i =1 i k +1 + n i =1 i p =1 p k

AsindicatedinFigure1.3,arectanglewithheight

+ 1

canbesubdividedsothattheshadedstaircase

6 Solution.
n
andbase n i =1 i k
hasarea n i =1 i k +1 ,whiletheareaaboveitis 1k + (1k + 2k ) + (1k + 2k + 3k ) +···+ (1k + 2k +···+ n k ). Onecanprovethis,for fixed k ,byinductionon n ≥ 1. 1 2 3 5 4 k k k k k 1 5 4 + k k k 1 2 3 5 4 k+1 k+1 k+1 k+1 k+1 1 + 2 3 4 k k k k 3 k 1 + 2 k k 1 + 2 + + k k 1 + 2 + + k k k 3 + Figure1.3
(iii) Giventheformula n i =1 i = 1 2 n (n + 1),usepart(ii)toderivethe formulafor n i =1 i 2 Solution. (n + 1) n i =0 i = n i =0 i 2 + n i =0 i p =0 p = n i =0 i 2 + n i =0 1 2 i (i + 1) = n i =0 i 2 + 1 2 n i =0 i 2 + 1 2 n i =0 i Therefore, (n + 1 1 2 ) n i =0 i = 3 2 n i =0 i 2 , andso n i =0 i 2 = 2 3 (n + 1 2 ) 1 2 n (n + 1) = 1 3 1 2 (2n + 1)n (n + 1) = 1 6 (2n + 1)n (n + 1).
Alhazan’sDissection

1.13(i) Provethat2n > n 3 forall n ≥ 10.

Solution. Basestep.210 = 1024 > 103 = 1000.(Notethat 29 = 512 < 93 = 729.)

Inductivestep Notethat n ≥ 10implies n ≥ 4.Theinductive hypothesisis2n > n 3 ;multiplyingbothsidesby2gives

(ii) Provethat2n > n 4 forall n ≥ 17.

Solution. Basestep.217 = 131, 072 > 174 = 83, 521.(Notethat 164 = (24 )4 = 216 .)

Inductivestep.Notethat n ≥ 17implies n ≥ 7.Theinductive hypothesisis2n > n 4 ;multiplyingbothsidesby2gives

1.14 Around1350,N.Oresmewasabletosumtheseries

/2

be

bydissectingtheregioninFigure1.4intwoways.Let A n betheverticalrectanglewithbase 1 2n andheight

7
2n +1 = 2 2n > 2n 3 = n 3 + n 3 ≥ n 3 + 4n 2 = n 3 + 3n 2 + n 2 > n 3 + 3n 2 + 4n = n 3 + 3n 2 + 3n + n ≥ n 3 + 3n 2 + 3n + 1 = (n + 1)3
2n +1 = 2 2n > 2n 4 = n 4 + n 4 ≥ n 4 + 5n 3 ≥ n 4 + 4n 3 + n 3 ≥ n 4 + 4n 3 + 7n 2 ≥ n 4 + 4n 3 + 6n 2 + n 2 ≥ n 4 + 4n 3 + 6n 2 + 5n ≥ n 4 + 4n 3 + 6n 2 + 4n + 1 = (n + 1)4 .
∞ n =1 n
n
A n ) = n
1 2n + 1 2n +1
∞ n =1 n /2n
∞ n =0 ar n = a /(1 r
if0 ≤ r
n
,sothatarea(
/2n ,andlet Bn
horizontalrectanglewithbase
+··· andheight1.Provethat
= 2. Solution. Youmayassumethat
)
< 1.Now computetheareausing A n = Bn

1.15 Let g1 ( x ),..., gn ( x ) bedifferentiablefunctions,andlet f ( x ) betheirproduct: f ( x ) = g1 ( x ) gn ( x ).Prove,forallintegers n ≥ 2,thatthederiva-

Basestep.If n = 2,thisistheusualproductruleforderivatives.

1.16 Prove,forevery n ∈ N,that (1 + x )n ≥ 1 + nx whenever x ∈ R and 1 + x > 0.

Weprovetheinequalitybyinductionon n ≥ 1.Thebasestep n = 1says1 + x ≥ 1 + x ,whichisobviouslytrue.Fortheinductivestep,

8 A1 A3 A2 1 2 1 4 1 8 1 B0 B1 B2 B3 1 1 1 1
Figure1.4 Oresme’sDissections
tive f ( x ) = n i =1 g1 ( x ) ··· gi 1 ( x ) gi ( x ) gi +1 ( x ) ··· gn ( x ). Solution.
Inductivestep.Define h ( x ) = g1 ( x ) ··· gn ( x ) = f ( x )/ gn +1 ( x )
whathastobeshown: f ( x ) = n +1 j =1 g j ( x ) f ( x ) g j ( x ) . Now f ( x ) = (h ( x ) gn +1 ( x )) = h ( x ) gn +1 ( x ) + h ( x ) gn +1 ( x ) = n = 1i =1 gi ( x )h ( x ) gi ( x ) gn +1 ( x ) + f ( x ) gn +1 ( x ) gn = n +1 j =1 g j ( x ) f ( x ) g j ( x ) .
.Rewrite
Solution.

werecordtheinductivehypothesis:

Multiplyingbothsidesofthisinequalitybythepositivenumber1 + x preservestheinequality: (

because nx 2 ≥ 0.

1.17 Provethateverypositiveinteger a hasauniquefactorization a = 3k m , where k ≥ 0and m isnotamultipleof3.

Solution. ModelyoursolutionontheproofofProposition1.14.Replace “even” by “multipleof3” and “odd” by “notamultipleof3.” Weprove thisbythesecondformofinductionon a ≥ 1.Thebasestep n = 1holds, for1 = 30 1isafactorizationofthedesiredkind.

Fortheinductivestep,let a ≥ 1.If a isnotamultipleof3,then a = 30 a isagoodfactorization.If a = 3b ,then b < a ,andsotheinductive hypothesisgives k ≥ 0andaninteger c notdivisibleby3suchthat b = 3k c .Itfollowsthat a = 3b = 3k +1 c ,whichisafactorizationofthedesired kind.Wehaveprovedtheexistenceofafactorization.

Toproveuniqueness,supposethat n = 3k m = 3t m ,whereboth k and t arenonnegativeandboth m and m arenotmultiplesof3;itmustbe shownthat k = t and m = m .Wemayassumethat k ≥ t .If k > t ,then canceling3t frombothsidesgives3k t m = m .Since k t > 0,theleft sideisamultipleof3whiletherightsideisnot;thiscontradictionshows that k = t .Wemaythuscancel3k frombothsides,leaving m = m .

Solution. Theproofisbythesecondformofinduction.

Basestep: F0 = 0 < 1 = 20 and F1 = 1 < 2 = 21 .(Therearetwobasesteps becausewewillhavetousetwopredecessorsfortheinductivestep.)

Inductivestep:

9
(1 + x )n ≥ 1 + nx .
1
x )n +1 = (1 + x )(1 + x )n ≥ (1 + x )(1 + nx ) = 1 + (n + 1) x + nx 2 ≥ 1 + (n + 1) x ,
+
1.18 Provethat Fn < 2n forall n ≥ 0,where F0 , F1 , F2 ,... istheFibonacci sequence.
10 If n ≥ 2,then Fn = Fn 1 + Fn 2 < 2n 1 + 2n 2 (byinductivehypothesis) < 2n 1 + 2n 1 = 2 2n 1 = 2n Byinduction, Fn < 2n forall n ≥ 0.
usingtwopredecessors, S (n 2) and S (n 1),toprove S (n ).
If Fn denotesthe n thtermoftheFibonaccisequence,provethat m n =1 Fn = Fm +2 1 Solution. ByTheorem1.15,wehave Fn = 1 √5 (α n β n ) forall n .Hence, m n =1 Fn = m n =1 1 √5 (α n β n ) = 1 √5 m n =1 (α n β n ) = 1 √5 1 α m +1 1 α 1 1 β m +1 1 β 1 . Now α(α 1) = 1,sothat1/(1 α) =−α ;similarly,1/(1 β) =−β . Therefore, m n =1 Fn = 1 √5 1 α m +1 1 α 1 1 β m +1 1 β 1 = 1 √5 ( α)[(1 α m +1 ) 1]−[( β)(1 β m +1 ) 1] = 1 √5 [−(α β) + (α m +2 β m +2 )] Thisisthedesiredformula,for 1 √5 (α β) = 1and 1 √5 (α m +2 β m +2 ) = Fm +2 1.20 Provethat4n +1 + 52n 1 isdivisibleby21forall n ≥ 1. Solution. Weusethesecondformofinduction.
Noticethatthesecondformistheappropriateinductionhere,forweare
1.19

BaseStep.If n = 1,then

4n +1 + 52n 1 = 16 + 5 = 21, whichisobviouslydivisibleby21.Sinceourinductivestepwillinvolve twopredecessors,weareobligedtocheckthecase n = 2.But43 + 53 = 64 + 125 = 189 = 21 × 9.

Nowthelasttermisdivisibleby21;the firstterm,bytheinductivehypothesis,andthesecondbecause52 4 = 21.

1.21 Foranyinteger n ≥ 2,provethatthereare n consecutivecompositenumbers.Concludethatthegapbetweenconsecutiveprimescanbearbitrarily large.

Solution. Theproofhasnothingtodowithinduction.If2 ≤ a ≤ n + 1, then a isadivisorof (n + 1)!;say, (n + 1)!= da forsomeinteger d .It followsthat (n + 1)!+ a = (d + 1)a ,andso (n + 1)!+ a iscompositefor all a between2and n + 1.

1.22 Provethatthe firstandsecondformsofmathematicalinductionareequivalent;thatis,provethatTheorem1.4istrueifandonlyifTheorem1.12is true.

Solution. Absent.

1.23 (DoubleInduction)Let S (m , n ) beadoublyindexedfamilyofstatements, oneforeach m ≥ 0and n ≥ 0.Supposethat

(i) S (0, 0) istrue;

(ii)if S (m , 0) istrue,then S (m + 1, 0) istrue;

(iii)if S (m , n ) istrueforall m ≥ 0,then S (m , n + 1) istrueforall m ≥ 0.

Provethat S (m , n ) istrueforall m ≥ 0and n ≥ 0.

Solution. Conditions(i)and(ii)arethehypothesesneededtoprove,by (ordinary)inductionthatthestatements S (m , 0) aretrueforall m ≥ 0.

Nowconsiderthestatements

T (n ) : S (m , n ) istrueforall m ≥ 0

Weprovethatallthestatements T (n ) aretruebyinductionon n ≥ 0.The basestephasbeenprovedabove,andcondition(iii)ispreciselywhatis neededfortheinductivestep.

11
4n +2 + 52n +1 = 4 · 4n +1 + 52 · 52n 1 = 4 4n +1 + (4 52n 1 4 52n 1 ) + 52 52n 1 = 4(4n +1 + 52n 1 ) + 52n 1 (52 4).
InductiveStep

1.24 Usedoubleinductiontoprovethat

AccordingtoExercise1.23,therearethreethingstoverify.

Solution. That θ isanacuteangleimpliesthatthenumberssin θ ,cot

, andsec θ areallpositive.Theinequalityofthemeansgives

1.26 IsoperimetricInequality.

(i) Let p beapositivenumber.If isanequilateraltrianglewith perimeter p = 2s ,provethatarea( ) = s 2 /√27. Solution. Thisisanelementaryfactofhighschoolgeometry.

12
(m + 1)n > mn
m
S (0, 0): (0 + 0)0 = 1 0. (ii) S (m , 0) ⇒ S (m + 1, 0):if (m + 1)0 > m ,then (m + 2)0 >(m + 1) 0 = 0?
S (m , n ) ⇒ S (m , n + 1):does (m + 1)n > mn imply (m + 1)n +1 > m (n
(m + 1)n +1 = (m + 1)(m + 1)n >(m + 1)mn = m 2 n + mn > mn + m , for m 2
mn ≥ m . Noticethat2
S (0, n )
Foreveryacuteangle θ ,i.e.,0◦ <θ< 90◦ ,provethat sin θ + cot θ + sec θ ≥ 3.
forall
, n ≥ 0. Solution.
(i)
(iii)
+ 1)?Yes,because
n ≥ mn and
n > n isthespecialcase
1.25
1 3 (sin θ + cot θ + sec θ) 3 ≥ sin θ cot θ sec θ. Now sin θ cot θ sec θ = sin θ cos θ sin θ 1 cos θ = 1, sothat 1 3 (sin θ + cot θ + sec θ) 3 ≥ 1and 1 3 (sin θ + cot θ + sec θ) ≥ 1
cot θ + sec θ ≥
θ
Therefore,sin θ +
3.

1.27

(ii) Ofallthetrianglesintheplanehavingperimeter p ,provethatthe equilateraltrianglehasthelargestarea.

Solution. Use Heron’sformula:ifatriangle T hasarea A and sidesoflengths a , b ,

1.28 Trueorfalsewithreasons.

(i) Forallintegers r with0 < r < 7,thebinomialcoefficient 7 r isa multipleof7.

Solution. True.

(ii) Foranypositiveinteger n andany r with0 < r < n ,thebinomial coefficient n r isamultipleof n

Solution. False.

(iii) Let D beacollectionof10differentdogs,andlet C beacollection of10differentcats.Therearethesamenumberofquartetsofdogs astherearesextetsofcats.

Solution. True.

(iv) If q isarationalnumber,then e 2π iq isarootofunity. Solution. True.

13
A 2 = s (s a )(s b )(s c ), where s = 1 2 (a + b + c ).Theinequalityofthemeansgives (s a ) + (s b ) + (s c ) 3 3 ≥ (s a )(s b )(s c ) = A 2 s , withequalityholdingifandonlyif s a = s b = s c .Thus, equalityholdsifandonlyif a = b = c ,whichistosay T is equilateral.
c ,then
Provethatif a1 , a2 ,..., an
(a1 + a2 +···+ an )(1/a1 + 1/a2 +···+ 1/an ) ≥ n 2 . Solution. Bytheinequalityofthemeans, [(a1 + a2 +···+ an )/ n ]n ≥ a1 an and [(1/a1 + 1/a2 +···+ 1/an )/ n ]n ≥ 1/a1 1/an .Nowuse thegeneralfactthatif p ≥ q > 0and p ≥ q > 0,then pp ≥ qq toobtain (a1 + a2 +···+ an )/ n ]n [(1/a1 + 1/a2 +···+ 1/an )/ n ]n ≥ (a1 an )(1/a1 1/an ).Buttherightsideis a1 an (1/a1 ) (1/an ) = 1,sothat (a1 + a2 +···+ an )/ n ]n [(1/a1 + 1/a2 +···+ 1/an )/ n ]n ≥ 1 Taking n throotsgives (a1 + a2 +···+ an )(1/a1 + 1/a2 +···+ 1/an ) ≥ n 2
arepositivenumbers,then

(v) Let f ( x ) = ax 2 + bx + c ,where a , b , c arerealnumbers.If z is arootof f ( x ),then z isalsoarootof f ( x ). Solution. True.

(vi) Let f ( x ) = ax 2 + bx + c ,where a , b , c arecomplexnumbers.If z isarootof f ( x ),then z isalsoarootof f ( x ) Solution. False.

(vii) Theprimitive4throotsofunityare i and i Solution. True.

1.29 Provethatthebinomialtheoremholdsforcomplexnumbers:if u and v are complexnumbers,then

Solution. Theproofofthebinomialtheoremforrealnumbersusedonly propertiesofthethreeoperations:addition,multiplication,anddivision. Theseoperationsoncomplexnumbershaveexactlythesameproperties. (Divisionentersinonlybecausewechosetoexpand (a + b )n byusingthe formulafor (1 + x )n ;hadwenotchosenthisexpositorypath,thendivision wouldnothavebeenused.Thus,thebinomialtheoremreallyholdsfor commutativerings.)

1.30 Showthatthebinomialcoefficientsare “symmetric”:

14
(u + v)n = n r =0 n r u n r v r .
n r = n n r forall r with0 ≤ r ≤ n
n r and n n r areequalto n ! r !(n r )!
n ,thatthesumofthebinomialcoefficientsis2n : n 0 + n 1 + n 2 +···+ n n = 2n . Solution. ByCorollary1.19,if f ( x ) = (1 + x )n ,thenthereistheexpansion f ( x ) = n 0 + n 1 x + n 2 x 2 +···+ n n x n . Evaluatingat x = 1givestheanswer,for f (1) = (1 + 1)n = 2n .
Solution. ByLemma1.17,both
1.31 Show,forevery

1.32(i) Show,forevery n ≥ 1,thatthe “alternatingsum” ofthebinomial coefficientsiszero:

Solution. If f ( x ) = (1 + x )n ,then f ( 1) = (1 1)n = 0;but theexpansionisthealternatingsumofthebinomialcoefficients.

(ii) Usepart(i)toprove,foragiven n ,thatthesumofallthebinomial coefficients n r with r evenisequaltothesumofallthose n r with r odd.

Solution. Bypart(i),

Sincethesignof n r is ( 1)r ,theterms n r with r evenarepositivewhilethosewith r oddarenegative.Justputthosecoefficients withnegativecoefficientontheothersideoftheequation.

1.33 Provethatif n ≥ 2,then

Solution. Again,consider f ( x ) = (1 + x )n .Therearetwowaystodescribe itsderivative f ( x ).Ontheonehand, f ( x ) = n (1 + x )n 1 .Ontheother hand,wecandoterm-by-termdifferentiation:

1.34 If1 ≤ r ≤ n ,provethat

Solution. Absent.

15
n 0 n 1 + n 2 −···+ ( 1)n n n = 0.
n 0 n 1 + n 2 −···± n n = 0
n r =1 ( 1)r 1 r n r = 0
f ( x ) = n r =1 r n r x r 1
= n
)n 1
f ( 1) = n r =1 ( 1)r 1 r n r
Evaluatingat x =−1gives f ( 1)
(1 1
= 0,since n 1 ≥ 1. Ontheotherhand,wecanusetheexpansiontosee
n r = n r n 1 r 1 .

1.35 Let ε1 ,...,εn becomplexnumberswith |ε j |= 1forall j ,where n ≥ 2.

(i) Provethat

Solution. Thetriangleinequalitygives |u + v |≤|u |+|v | forall complexnumbers u and v ,withnorestrictionontheirnorms.The inductiveproofisroutine.

(ii) Provethatthereisequality,

ifandonlyifallthe ε j areequal. Solution. Theproofisbyinductionon n ≥ 2. Forthebasestep,supposethat

16
n j =1 ε j ≤ n j =1 ε j = n
n j =1 ε j = n ,
|ε1 + ε2 |=
4 =|ε1 + ε2 |2 = (ε1 + ε2 ) (ε1 + ε2 ) =|ε1 |2 + 2ε1 ε2 +|ε2 |2 = 2 + 2ε1 · ε2 Therefore,2 = 1 + ε1 · ε2 ,sothat 1 = ε1 · ε2 =|ε1 ||ε2 | cos θ = cos θ, where θ istheanglebetween ε1 and ε2 (for |ε1 |= 1 =|ε2 |). Therefore, θ = 0or θ = π ,sothat ε2 =±ε1 .Wecannothave ε2 =−ε1 ,forthisgives |ε1 + ε2 |= 0. Fortheinductivestep,let | n +1 j =1 ε j |= n + 1.If | n j =1 ε j | < n , thenpart(i)gives n j =1 ε j + εn +1 ≤ n j =1 ε j + 1 < n + 1, contrarytohypothesis.Therefore, | n j =1 ε j |= n ,andsothe inductivehypothesisgives ε1 ,...,εn allequal,sayto ω .Hence, n j =1 ε j = n ω ,andso |n ω + εn +1 |= n + 1
2.Therefore,

Theargumentconcludesasthatofthebasestep.

+1 = 1.Bythebasestep,

+1 ,andtheproofis complete.

1.36 (StarofDavid )Prove,forall

Solution. UsingPascal’sformula,oneseesthatbothsidesareequalto

1.37 Forallodd n ≥ 1,provethatthereisapolynomial gn ( x ),allofwhose coefficientsareintegers,suchthat

Solution. FromDeMoivre’stheorem,

17
(n + 1)2 = (n ω + εn +1 ) (n ω + εn +1 ) = n 2 + 2n ω εn +1 + 1, sothat ω εn
ω = εn
n
r
1,that n 1 r 1 n r + 1 n + 1 r = n 1 r n r 1 n + 1 r + 1 n 1 r 1 n 1 r n r 1 n r n r + 1 n + 1 r n + 1 r + 1
>
(n 1)!n !(n + 1)! (r 1)!r !(r + 1)!(n r 1)!(n r )!(n r + 1)! .
sin(nx ) = gn (sin x ).
cos nx
i sin nx = (cos x + i sin x )n , wehave sin nx = Im (cos x + i sin x )n = Im n r =0 n r i r sinr x cosn r x
+

1.38(i)

Whatisthecoefficientof x 16 in (1 + x )20 ?

Solution. Pascal’sformulagives 20 16 = 4845.

(ii) Howmanywaysaretheretochoose4colorsfromapalettecontainingpaintsof20differentcolors?

Solution. Pascal’sformulagives 20 4 = 4845.Onecouldalso haveusedpart(i)andExercise1.30.

1.39 Giveatleasttwodifferentproofsthataset X with n elementshasexactly 2n subsets.

Solution. Therearemanyproofsofthis.Weofferonlythree.

Algebraic

Let X ={a1 , a2 ,..., an }.Wemaydescribeeachsubset S of X bya bitstring;thatis,byan n -tuple

( 1 , 2 ,..., n ),

where

i =

0if ai isnotin S 1if ai isin S .

(afterall,asetisdeterminedbytheelementscomprisingit).Butthereare exactly2n such n -tuples,fortherearetwochoicesforeachcoordinate.

Combinatorial

Inductionon n ≥ 1(takingbasestep n = 0isalso fine;theonlysetwith 0elementsis X = ∅,whichhasexactlyonesubset,itself).If X hasjust oneelement,thentherearetwosubsets: ∅ and X .Fortheinductivestep, assumethat X has n + 1elements,ofwhichoneiscoloredred,theother n beingblue.Therearetwotypesofsubsets S :thosethataresolidblue; thosethatcontainthered.Byinduction,thereare2n solidbluesubsets; denotethemby B .But,thereareasmanysubsets R containingthered astherearesolidbluesubsets:each R arisesbyadjoiningtheredelement toasolidbluesubset,namely, B = R −{red} (eventhesingletonsubset consistingoftheredelementalonearisesinthisway,byadjoiningthered elementto ∅).Hence,thereare2n + 2n = 2n +1 subsets.

18 Write n = 2m + 1.Onlyoddpowersof i areimaginary,sothat,if r = 2k + 1, sin nx = 0≤k ≤m n 2k + 1 ( 1)k sin2k +1 x cos2(m k ) x . But cos2(m k ) x = (cos2 x )m k = (1 sin2 x )m k , andsowehaveexpressedsin nx asapolynomialinsin x

BinomialCoefficients.

If X has n elements,thenthenumberofitssubsetsisthesumofthe numberof0-subsets(thereisonly1,theemptyset),thenumberof1subsets,thenumberof2-subsets,etc.But n r isthenumberof r -subsets, aswehaveseeninthetext,andsothetotalnumberofsubsetsisthesum ofallthebinomialcoefficients,whichis2n ,byExercise1.31.

1.40 Aweeklylotteryasksyoutoselect5differentnumbersbetween1and45. Attheweek’send,5suchnumbersaredrawnatrandom,andyouwinthe jackpotifallyournumbersmatchthedrawnnumbers.Whatisyourchance ofwinning?

Solution. Theansweris ”45choose5”,whichis 45 5 = 1, 221, 759.The oddsagainstyourwinningaremorethanamilliontoone.

1.41 Assumethat “term-by-term” differentiationholdsforpowerseries:if f ( x ) = c0 + c1 x + c2 x 2 +···+ cn x n +··· ,thenthepowerseriesforthederivative f ( x ) is f

(i) Provethat f (0) = c0 .

Solution. f (0) = c0 ,foralltheothertermsare0.(Ifone wantstobefussy–thisisthewrongcourseforanalyticfussiness–thenthepartialsumsoftheseriesformtheconstantsequence c0 , c0 , c0 ,....)

(ii) Prove,forall n ≥ 0,that f (n ) (

1 x + x 2 gn ( x ), where gn ( x ) issomepowerseries.

Solution. Thisisastraightforwardproofbyinductionon n ≥ 0. Thebasestepisobvious;fortheinductivestep,justobservethat f n +1 ( x ) = ( f (n ) ( x )) .As f (n ) ( x ) isapowerseries,byassumption,itsderivativeiscomputedtermbyterm.

(iii) Provethat cn = f (n ) ( x )(0)/ n ! forall n ≥ 0.(Ofcourse,thisis Taylor’sformula.)

Solution. If n = 0,thenourconventionsthat f (0) ( x ) = f ( x ) and 0!= 1givetheresult.Fortheinductivestep,useparts(i)and(ii).

1.42 (Leibniz)Provethatif f and g are C ∞ -functions,then ( fg )(n ) ( x ) = n k =0

n k f (k ) ( x ) g (n k ) ( x ).

Solution. Theproofisbyinductionon n ≥ 1.

19
c
x +
c3 x 2 +···+ ncn x n
+···
( x ) = c1 + 2
2
3
1
!cn +
x ) = n
(n + 1)!cn +

First Course in Abstract Algebra 3rd Edition Rotman Solutions Manual

Ifn=1,thentheequationispreciselytheproductruleofCalculus:

1.43 Find √i Solution. ByDeMoivre’stheorem,since

1.44(i) If z = r [cos θ + i sin θ ],showthat w = n √r [cos(θ/ n ) + i sin(θ/ n )] isan n throotof z ,where r ≥ 0. Solution. ByDeMoivre’stheorem, wn = ( n √r )n ([cos(θ/ n ) + i sin(θ/ n )])n = r [cos(θ) + i sin(θ)].

(ii) Showthatevery n throotof z hastheform ζ k w ,where ζ isa primitive n throotofunityand k = 0, 1, 2,..., n 1.

20
( fg
( fg )n +1 =[( fg )n ] = n k =0 n k f k g n k = n k =0 n k f k g n k = n k =0 n k f k +1 g n k + f k g n k +1 = n k =0 n k f k +1 g n k + n k =0 n k f k g n k +1 . Rewritethislastexpressionwithoutthesigmanotation: n 0 f 0 g n +1 + n 1 f 1 g n +···+ n k f k g n k +1 +··· + n 0 f 1 g n +···+ n k 1 f k g n k +1 ··· Thecoefficientof f k g n k +1 isthus n k 1 + n k = n +1 k
) = f g + fg .Fortheinductivestep,wehave
,byLemma1.17, asdesired.
i = e i π/2
√i = e i π/4 = cos π/4 + i sin π/4 = √2 2 + i √2 2 .
,wehave
Full Download:
Download all pages and all chapters at: TestBankTip.com
http://testbanktip.com/download/first-course-in-abstract-algebra-3rd-edition-rotman-solutions-manual/

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.