Page 1


Matematik Ö¤retmeni (Marmara Üniversitesi)

KEMAL TÜRKEL‹’nin Tüm ‹kö¤retim

8.s›n›f ö¤encilerini

L‹SELERE Girifl

TEST Seçme S›navlar›;

SBS; OGES (Ortaö¤retime Geçifl Sistemi) * ALS (Türk Silahl› Kuvvetleri Askeri Liseler ile Bando Astsubay Haz›rlama Okulu Seçme S›nav›),

* Özel YABANCI Liseler’e Girifl S›nav› * PYBS (Paras›z Yat›l›l›k ve Bursluluk S›nav›) ile Okulda MATEMAT‹K Dersine Yard›mc› Konu Anlat›ml› - Tümü Aç›klamal› Çözümlü

MATEMAT‹K TEST’lerini Pratik çözmeyi ö¤reten evinizdeki ö¤retmeniniz

Ö⁄RETMEN K‹TAP www.kemalturkeli.com kemal_turkeli@yahoo.com


©Copyright 2009; Bu kitab›n tüm yasal haklar› sakl› olup Kemal Türkeli’ye aittir. Bu kitab›n tamam› 5846 say›l› Fikir ve Sanat Eserlerini koruyan yasan›n hükümlerine göre kitab›n yazar› Kemal Türkeli’ye aittir. Bu kitaptaki tüm bilgileri kağ›t ortam›nda veya internet ortam›nda veya DVD-CD gibi bilgi depolama ve çoğaltma ortamlar›nda digital bilgi olarak kaydetme veya elektonik cihazlarda (fotokopi, yaz›c›) kopyalar›n› çoğaltma sonucunda ticari gelir elde etme hakk› Fikir ve Sanat Eserleri kanununu kapsam›nda yazar› Matematik Öğretmeni Kemal Türkeli’ye aittir. Kemal Türkeli’nin yaz›l› izni olmadan kağ›t, internet, DVD gibi benzer ortamlarda aynen veya değiştirilerek k›smen bile herhangi bir bilgi kay›t ortam›nda çoğalt›lmas› veya yay›nlanmas› yasakt›r. Matematik Öğretmeni Kemal Türkeli’nin yaz›l› izni olmaks›z›n tamamen veya k›smen elektronik, mekanik, fotokopi ya da herhangi bir kay›t yöntemi ile kitaptaki bilgiler çoğalt›lamaz, yay›nlanamaz, depolanamaz. ® www.kemalturkeli.com yazar›n kendi sitesidir. Kitab› yazan ve yay›na haz›rlayan Matematik Öğretmeni Kemal Türkeli. GSM: (0536) 511 84 00 e-mail: kemal_turkeli@yahoo.com Matematik (Marmara Üniversitesi) ve Elektronik Yüksek Mühendisi (‹stanbul Teknik Üniversitesi) mezunudur. Yazar, Marmara Üniversitesi Atatürk Eğitim Fakültesi ‹ngilizce Matematik Öğretmenliği bölümü öğrencisi olarak bir y›l 1350 Ders ‹ngilizce Haz›rl›k eğitimi alm›şt›r. Kitab›n ad›: Kemal Türkeli’nin 8. s›n›f ilköğretim öğrencilerine SBS’yi kazand›ran Konu Anlat›ml› MATEMAT‹K TESTLER‹'nin pratik çözümünü öğreten Ö⁄RETMEN K‹TAP’t›r.

Dizgi & Grafik Kitab›n Görsel Uygulama ve Dizgisi Önder KARÇI⁄A GSM: (0532) 374 37 98 e-mail: onkarciga@gmail.com

0212 575 48 15 e-mail: dmdara@gmail.com Gsm: 0532 556 24 24 Bahçelievler / ‹STANBUL Kapağ›n geliştirilmesine katk›lar›ndan dolay› teşekkür ederim.

www.kemalturkeli.com

kemal_turkeli@yahoo.com Nisan 2009 ‹stanbul

Eylül 2009 güncellendi


Milleti kurtaranlar yalnız ve ancak ö¤retmenlerdir. Ö¤retmenden, e¤iticiden yoksun bir millet, henüz millet namını almak istidadını keflfetmemifltir.            Toplumların uygarlık düzeyi, ö¤retmene verilen de¤erle ölçülür. Ö¤retmen; geçmiflin ö¤reticisi, gelece¤in kurucusudur. Çalıflmak demek, bofluna yorulmak, terlemek de¤ildir. Zamanın gereklerine göre bilim ve teknik ve her türlü uygar bulufllardan azami derecede istifade etmek zorunludur. Ben manevi miras olarak hiç bir ayet ve hiç bir dogma, hiç bir donmufl ve kalıplaflmıfl kural bırakmıyorum. Benim manevi mirasım ilim ve akıldır.  Medeniyet öyle bir ıfl›ktır ki, ona kayıtsız olanları yakar, mahveder. Medeni olmayan milletler, medeni olanların ayakları altında kalmaya mahkumdur.    

K.Atatürk. (www.add.org.tr)


Önsöz Say›n Ö¤retmenler, Say›n Veliler, De¤erli Çal›flkan Ö¤renciler, Geçmiflte ‹lkö¤retim 5.,6. ve 7. s›n›f ö¤rencileri için Okula yard›mc› MATEMAT‹K kitaplar› yazm›flt›m. Ayr›ca Lise 1 Konu anlat›ml› çözümlü Matematik Testleri Yard›mc› ve Üniversitelere Girifle haz›rlay›c› Ö⁄RETMEN K‹TAP ve KILAVUZ K‹TAP gibi 30 civar› Test veya Konu Anlat›ml› kitaplar yaz›p yay›nlam›flt›m. Elinizdeki bu kitab›, ‹lkö¤retim 8.s›n›f ö¤rencilerine Okuldaki Matematik derslerine ve Haziranda girecekleri SBS S›nav›nda sorulacak 20 Matematik Test sorusuna en iyi flekilde haz›rlanabilmeleri için yazd›m. ALS (Türk Silahl› Kuvvetleri Askeri Liseler ile Bando Astsubay Haz›rlama Okulunda Ö¤renim Görecek Ö¤rencileri Seçme S›nav›), Özel Yabanc› Liselere (Kolejlere) Girifl S›nav› ile PYBS (Paras›z Yat›l›l›k ve Bursluluk S›nav›) gibi s›navlara girecek tüm ö¤rencilere yard›mc› olacak flekilde konu anlat›m›na ve çözümlü Testlere yer verdim. 8.s›n›f›n Degifltirilen yeni program› ile örtüflen geçmiflte Liselere Girifl s›navlar›nda sorulmufl Test sorular›n› inceledim. Kitab›mdaki Test sorular›n› ve konu Anlat›m›m› , s›navlarda önemsenen bilgiyi kavrama, kurallar›(bilgileri) problemle iliflkilendirebilme becerisi ve ifllem (4 ifllem, üslü veya köklü say›larla gibi) performans› gibi ölçütlere uygun olarak yazd›m. Konular› kavratmak için cebirsel ifadelerdeki harflere olas› de¤erler atayarak konuyu say›sal sonuçlarla yorumlayarak daha iyi kavraman›z› kolaylaflt›rmaya çal›flt›m. Milli E¤itim Bakanl›¤›’n›n ö¤renilmesini önemsedi¤i program› hem MEB‘in internet sitesinden inceledim hem de yay›nlad›¤› ‹lkö¤retim 8.s›n›f Ders Kitab›, Ö¤renci Çal›flma Kitab› ile Ö¤retmen K›lavuz Kitab›ndan inceledim. Ayr›ca Ayd›n , Erdem ve Özgün yay›nlar›n›n 8.s›n›f Ders kitaplar›ndan MEB program›n› nas›l ifllediklerini inceledim. ‹nternetten veya ‹ngilizce Matematik ders kitaplar›ndan da Uluslararas› (Global) 8.s›n›f Matematik konular›n›n anlat›l›fl standard›n› da kitab›m› yazarken inceledim. Sonuçta bu kitap Uluslararas› Matematik konular›n›n içinden MEB’in 8.s›n›f için seçti¤i ( önemsediklerini) ö¤renciye kavratmay› konular› bilinçli daha derinden ö¤retmeyi amaçlayan bir ifllenmifl eser niteli¤ini de giderek kazand›. Liselere Girifl SBS s›nav›nda konuyu iyi anlam›fl ö¤rencilerin yapabilece¤i ama konuyu

iyi bilmeyen, birkaç formül veya belirli Test soru tiplerini ezberlemifl ö¤rencinin yapamayaca¤› seçici Matematik Test sorular› sorulmaktad›r. 2009‘da sorulan 20 Matematik Test sorusunun her aday ortalama 2,35 `ini(net) yapabildi. Ö¤rencilerin %3 ‘ü 12 netin üstüne ç›kabildi. Kitab›n sonuna 6 tane 20’fler soruluk SBS Matematik Deneme Testleri ve Çözümlerini de koydum. Kitapta yer alan tüm Test sorular›n›n do¤ru cevaplar› ile Aç›klamal› Çözümlerini de kitab›n sonunda verdim. Bir Test sorusunu do¤ru yapm›fl bile olsan›z Aç›klamal› çözümünü de incelemenizi öneririm. Kitaptaki çözümlü Test sorular›n›n da çözümünü bir ka¤›tla örtüp önce k end iniz çözm eyi d eneyin . Çözemezseniz çözümünden yararlanarak nas›l çözmeniz gerekti¤ini ö¤renebilmeniz için çözümü mutlaka siz de yazarak kavramaya çal›fl›n. Gazete gibi okuyarak yazmadan ara ifllemleri yapmadan ve özet ç›karmadan Matematik ö¤renilmez. Seviye Belirleme S›nav›nda Matematik Testinin a¤›rl›k katsay›s› 4, Türkçe testinin a¤›rl›k katsay›s› 4, Fen Bilgisi testinin a¤›rl›k katsay›s› 3, Sosyal Bilgiler testinin a¤›rl›k katsay›s› 3, Yabanc› Dil testinin a¤›rl›k katsay›s› 1 olacakt›r. Görülüyor ki Matematik Test sorular› 15 üzerinden 4(% 27) de¤erinde a¤›rland›r›lacakt›r. Benim hesaplad›¤›m net say›lar›na göre yaklafl›k 2009 Formülü flöyledir: 2009 SBS 8.s›n›f = 4,714 Matematik + 3,516Türkçe + 2,988 Fen ve T. + 2,479 Sosyal +1,274 ‹ng + 194,154 (Taban puan) 2009 Liselere Girifl s›nav›nda 1011211 Aday yar›flm›flt›r. Adaylar›n 978061‘ i(% 96’s›) Tercih yapabilme hakk›n› kazanabildi. Bunlar›n 764623‘ ü tercih yapt›. Tercih yapanlar›n 253708’ i (Baflvuranlar›n %25’i) I. yerlefltirmede tercihlerinden birine yerlefltirildi. Anadolu Liselerini toplam 122860(S›nava girenlerin %12 si kazanabildi ) ö¤renci kazand›. 2009 Liselere Girifl s›nav›nda 100 soruyu do¤ru yan›tlayabilen ve okul baflar› notlar› 100 puan olan OYP puanlar›na göre 3 birinci ö¤renci birincili¤i paylaflt› . Birincilerin biri ‹stanbul’dan ç›kt›. 2009 da 8.s›n›flar aras›nda 100 net yapabilen ö¤renci say›s› 67 oldu fakat bunlar›n 64‘ünün okul Diploma notlar› ve S›n›f Puanlar› 100 puan olmad›¤›ndan OYP Puan›nda s›nav birincisi olamad›lar. Fen Liselerini


Puan›nda s›nav birincisi olamad›lar. Fen Liselerini 7172 ve Sosyal Bilimler Liselerini1056 ö¤renci kazand›. ‹stanbul’daki 1578 ‹lkö¤retim okulunun (221’i Özeldir) en iyileri olan ö¤renciler en iyi okullar› kazanabilmek için 2010 SBS s›nav›nda birbirleriyle yar›flacaklard›r. Okullar›n›n en iyisi olmayan ö¤rencilerin, gözde bir Anadolu Lisesini kazanabilmeleri için zamanlar›n› çok iyi kullan›p çok iyi bir ders çal›flma program› yapabilirlerse iyi bir Anadolu Lisesini kazanabileceklerdir. 2009’da ‹stanbul’daki 86 Anadolu Lisesine 12810 ö¤rencilik kontenjan ayr›ld›. ‹stanbul’dan baflvuran 180522 aday›n en çok 12810‘ u (%7’si) Anadolu Liselerini kazanabildi. Adaylar 2009 ‘da SBS‘ de sorulan 100 soruyu (www.kemalturkeli.com, http://oges.meb.gov.tr) Arflivinden çözmeyi denesinler. Ayr›ca SBS Adaylar› sitede verilen geçmifl y›llarda sorulmufl Test s›nav sorular›n› da çözmeye çal›fls›nlar. Öncelikle ö¤rendikleri konularla ilgili sorular› çözmeye çal›fls›nlar. Kendi Performanslar›n›n iyi oldu¤u saatlerde henüz ö¤retilmeyen konular›, okulda ö¤retilmesini beklemeden ö¤renmeye çal›fl›nlar. SBS adaylar›n›n Y›lsonu Baflar› Puan› (YBP) sene sonu Karne notlar›ndan hesaplanacakt›r. Y›l sonu okul puan›n›z okulunuzdaki en baflar›l› ö¤rencinin baflar› puan›na bölünerek sonuç 132 ile çarp ›lacakt›r. En çok 132 p ua n ok uldan kazanabileceksiniz. Bulunan puan S›n›f Puan›n›z hesaplan›rken SBS’ nize eklenecektir. 8.s›n›f S›n›f Puan›n›z›n 368 puan›n› SBS den, 132 puan› da Okul derslerinizdeki baflar›n›zdan kazanabileceksiniz. SBS puanlar›na YBP puanlar› da eklenece¤inden ö¤rencilerin okul notlar›n› artt›rmaya önem vermeleri de gerekmektedir. 2009 ‹stanbul Galatasaray Lisesinin (Frans›zca) 100. ö¤rencisinin puan› OYP puan› 492.371 idi. ‹stanbul Lisesinin (Almanca) 180. ö¤rencisinin (sonuncunun) puan› 489,817 idi. Befliktafl KABATAfi Erkek Lisesinin 120. sonuncu(‹ng) ö¤rencisinin OYP puan› 487,176 idi. Bahçelievler’deki Adnan Menderes Anadolu Lisesinin 150. ö¤rencisinin puan› 473,903 oldu. Ataköy Hasan Polatkan Anadolu Lisesini kazanan 90. ö¤rencinin puan› da 456,219 oldu. Ataköy Cumhuriyet Anadolu Lisesini kazanan 120. ö¤rencinin puan› 440,7 oldu. ‹nternet sitemde kitab›n bas›m› s›ras›nda gözden kaçan düzeltmeleri veya kitapla ilgili veya SBS Haz›rl›k sürecinizde yararl› Rehberlik yaz›lar›n› veya

ö¤rencilere yararl› olabilecek çeflitli ek bilgileri(Site adreslerine ba¤lant›lar gibi) bulabileceksiniz. Sitemde tüm SBS veya Üniversite Adaylar›na(LYS, YGS) Okula Yard›mc› + S›nava Haz›rlay›c› çeflitli yararl› bilgiler bulacaks›n›z. Kitapta olmas›n› istedi¤iniz soru çeflitlerini veya istedi¤iniz konu anlat›m›n› sitedeki adresime yaz›p bana e-mail yollarsan›z kitab›m›n yeni bask›s›n› isteklerinizi göz önüne al›p gelifltirmeye çal›flaca¤›m. Okuma h›z›n›z› elinizden geldi¤ince artt›rmaya önem verin. K‹fi‹SEL GEL‹fi‹M (DVD: www.infinityteknoloji. com, H›zl› Okuma, Bellek Gelifltirme, Düflünce Gücü)’den bölümlerinden çok yararlanacaksan›z. 2010 ‹stanbul 8.s›n›f SBS Adaylar›na Matematik temellerini gelifltirme sürecinde gerek Okul derslerinde ve istedi¤iniz Anadolu Lisesini kazand›rmada kitab›m›n sizlere yararl› oldu¤unu bildirece¤iniz emailleriniz (Elektronik Posta) yeni Test kitab› yazmak için çal›flma heyecan›m› olumlu yönde artt›racakt›r. Baflar› haberlerinizi almak umuduyla, Tüm okurlar›m›n öneri ve elefltirisi ile kitab›m›n içeri¤i daha da gelifltirilerek zenginleflecektir. S›navlarda baflar›l› olman›z› dilerim Ataköy Gazetesi SBS Rehberlik köflesi yazar› , www.benidahilet.org ve www.kemalturkeli.com Rehberlik köflesi yazar› Matematik ö¤retmeni yazar Kemal Türkeli www.kemalturkeli.com veya Ataköy Gazetesindeki www.atakoygazete. com.tr SBS Adaylar›na Ayl›k REHBERL‹K Köflesi Yaz›m› + Arflivdeki yaz›lar›m› da ücretsiz okuyunuz. Tel:0212.4423040 Bahçelievler/ ‹stanbul Cep; 0536.5118400; 2009 Eylül güncellenmifltir ‹stanbul MSN+ e-mail; kemal_turkeli@yahoo.com www.kemalturkeli.com


‹lkö¤retim 8. s›n›f SBS’ye Haz›rl›k + OKUL’a Yard›mc› MATEMAT‹K TEST’lerini ö¤reten evinizdeki ö¤retmeniniz Ö⁄RETMEN K‹TAP ‹çindekiler: 1. Ünite : Aralar›nda Farkl› iliflkiler (kurallar) olan fiekil ve Say› kümeleri (7), Fraktal geometri (Fractal geometry) (7) , Dönüflüm Geometrisi ; Koordinat sisteminde bir eksene göre bir fleklin yans›ma alt›ndaki görüntüsü (11), Orijin etraf›nda bir flekli döndürmek (12), fiekli eksenlere paralel öteleme (13), Araflt›rmalar için uygun soru oluflturma, Örneklem (14), Histogram oluflturarak grafi¤ini çizme (14), Üslü say›lar (16), Üslü say›lar›n bilimsel gösterimi (19), 1.Ünite Test Sorular› (20,çözümleri 183) 2. Ünite: Olas›l›k nedir? Çeflitleri (25), Olay çeflitleri (25), Olas›l›k Testleri (28, çözümleri 187) , Kareköklü Say›lar (30), Kareköklü say›larla ifllemler (32), Kareköklü Say›lar Testi (36), Gerçek say›lar (37), Standart Sapma (37) ,2.Ünite Test Sorular› (42,çözümleri 191’de), 3. Ünite: GEOMETR‹ ; Üçgenler (44), Üçgen eflitsizli¤i (44) , üçgen çizimi (47), Do¤ru parças›n›n orta dikme do¤rusunu çizmek(48), Yüksekliklerin özellikleri (49), Pisagor ba¤›nt›s› (51), Say› örüntüleri (60), Aritmetik dizi (61), Geometrik dizi (61), Özdefllikler (63), Üç terimli cebirsel ifadeleri cebir karolar›n› kullanarak çarpanlar›na ay›rmak (65), Rasyonel Cebirsel ifadelerle ifllem yaparak olabiliyorsa sonucun sadelefltirmelerini yapmak (66), 3.Ünite Test Sorular› (72,çözümleri 194), 4. Ünite: Kombinasyon (76), Permütasyon (77), Denklem sistemleri (79), Do¤rusal (1.dereceden) Denklem sistemlerinin cebirsel yok etme veya yerine koyma yöntemi ile çözümü (81), Üçgenlerin eflitli¤i (84), Üçgenlerin Benzerli¤i (87), Geometrik Cisimler; Üçgen prizma (95), Üçgen prizman›n Alan› (97), Düzgün alt›gen dik prizman›n alan› (98), Piramit (107), Dik koni (108), Küre (108), 4.Ünite Test Sorular› (109, çözümü 199), 5. Ünite; Dik Piramidin yüzey Alan›n›, hacmini hesaplama (114), Dik Dairesel koninin yüzey Alan› (117), Kürenin yüzey alan›n›n hesab› (120), Dik piramidin Hacmi (125), Dik dairesel Koninin Hacmi (128), Kürenin Hacmi (132), ‹zdüflümü ve Çok yüzlüler (136), Perspektif çizimi (136), Bir nokta ve iki nokta perspektifinin çizimi (137), Çok yüzlüler ve ara kesitleri (138), 5.Ünite SBS TEST Sorular› (142, çözümleri 205), 6. Ünite: Geometrik cisimler : Çok küplüleri kullanarak yap›lar oluflturmak (148), Geometrik cisimlerin simetrileri (149), Do¤runun E¤imi nedir? Nas›l hesaplan›r? (153) , Do¤rusal denklem sistemlerinin grafiklerini çizerek sistemin çözüm kümesini bulmak (155), Eflitsizlikler (157), ‹ki bilinmeyenli do¤rusal eflitsizliklerin çözüm kümesinin ikililerini koordinat düzleminde gösterme (158), Trigonometrik oranlar›n tan›m› (160), 30˚,60˚,45˚ aç›lar›n trigonometrik oranlar›(161), 6.Ünite Test Sorular›(166,çözümleri 213), 7. Ünite 8 SBS 1.Matematik Deneme Testi sorular› (172), 8 SBS 2.Matematik Deneme Testi sorular› (175), 8. SBS 3.Matematik Deneme Testi sorular› (178), 8.Ünite : 7 Ünitede çözülmeyen Test Sorular›n›n cevaplar› ile Aç›klamal› çözümleri. 20.sayfadaki 1.Ünite Testlerinin cevaplar› ile çözümleri (183), 28 sayfadaki 2.Ünite Testlerinin cevap ve çözümleri (187), 36. Sayfan›n 189’da, 42. sayfadakinin 191’de, 72. sayfadaki 3.Ünitenin 194’de, 109. sayfadaki 4. Ünitenin 199’da, 142. sayfadaki 5. Ünitenin 205’de, 166. sayfadaki 6. Ünitenin 213’de, 172. sayfadaki 1. Denemenin 219’da, 175. sayfadaki 2. Denemenin 224’de, 178. sayfadaki, 3. Denemenin 230’da cevap ve çözümleri verilmifltir.


ARALARINDA FARKLI ‹L‹fiK‹LER OLAN fiEK‹L veya SAYI KÜMELER‹

ÜN‹TE 1

Hal›, tarihi binalar›n duvarlar›, kumafl, perde, duvar ka¤›d›, defter kapa¤› gibi de¤iflik yüzeylerde gördü¤ümüz do¤ru, üçgen, çokgen, çember gibi elemanlardan oluflturulmufl grafik desenlerini inceledi¤imizde çizerin (ressam›n) bofl bir ka¤›da bunlar› hangi mant›k s›ras› ile oluflturdu¤unu merak ederiz. Ayr›ca Norveç’in çok girintili, ç›k›nt›l› k›y› fleridine benziyen resimler dijital fotograf makinalar›na say› dizisi olarak kaydedilirken bayt (byte) veya bit (1 Byte = 8 Bit) olarak bellekte çok yer tutarlar. Bunu azaltabilmek için Fraktal geometri (Fractal Geometry) den yararlanmaya çal›fl›l›r. Fraktal bir fleklin orant›l› olarak küçültülmüfl ya da büyütülmüflleri ile oluflturulan flekil kümeleri olan flekil örüntülerine k›saca fraktal denir. ‹sveçli Matematikçi Helge Von Koch (1870 - 1924) taraf›ndan gelifltirilen Koch e¤risinin (virajl›) hangi aflamalarla oluflturuldu¤unu inceleyelim. Deniz

1. Ad›m: A

B

160 - 90 = 70 mm uzam›fl durumdad›r. Düz k›y›y› doldurarak sahil fleridini 70 mm uzatm›fl olduk. Norveç’in girintili ç›k›nt›l› k›y›lar›n› and›ran bir Matematik model gelifltirmifl olduk. Size önerim k›rtasiyeciden 10 tabaka A4 boyu ince Ayd›nger ka¤›d› alarak her yeni flekli olufltururken yeni bir Ayd›ngeri bir öncekinin üstüne seloteyple yap›flt›rarak çizmenizdir. Böylece fraktal e¤rilerden oluflan örüntünün oluflumunu daha iyi kavrayabilirsiniz. Bu ifllemi n = 100 kez tekrarlad›¤›m›zda kar tanesine (snowfake) benzer bir flekil veya do¤adaki Norveç k›y›lar›na benzer bir flekil elde edilir. Oluflan e¤riye de fraktal (fractal) ad› verilir. Dikkat ederseniz her aflamada flekli oluflturan 1 do¤ru parçalar› bir öncekinin ü uzunlu¤unda ol3 makta, do¤ru parças› say›s› ise bir öncekinin 4 kat›na ç›kmaktad›r. K›y› fleridimiz de bir öncekinin 4 uzun3 lu¤unda kat› olmaktad›r.

K E |AB| = a = 90 mm = 3.30 4 . 4 . M 30 = 120 mm → 120 = 160 mm oldu. 3 3 A Deniz kenar›nda 90 mm’lik k›y› fleridimiz olsun. L fiimdi denizi doldurarak k›y› fleridini uzatal›m. Böylece k›y› fleridimiz 1 < 4 oldu¤undan her T fieridi 3 eflit parçaya bölelim. 3 Ü 4 1 R aflamada uzayacakt›r. 3 . 160 = 64 . 9 . 30 = 213,3 E K mm bir sonraki k›y› fleridimizdir. E Deniz k k L Bafll›ng›ç fleklini IABI = 270 mm alarak bir sonraki ‹ k k C D flekli de siz oluflturunuz. A B k

k = 30

k

k = 30

k

k = 30

Yani IABI deniz k›y›m›z 4.30 = 120 mm’ye uzam›flt›r. fiimdi 4 parçan›n herbirini 3’e bölerek herbirine bir önceki ifllemi tekrarlayal›m: Deniz

A

B

Polonyal› Matematikçi Vaclav Sierpinski (18821969) Sierpinski üçgeni (The Sierpinski Gasget, Sierpinski fiapkas›) denen fraktal› 1916 y›l›nda tan›tm›flt›r. 12. yüzy›lda bir kilisede süsleme olarak ayn› flekil çizilmifltir. Bir kenar› a = 32 mm Çevresi= 3a = 96 mm olan bir eflkenar üçgen çizelim.

A Bafllang›ç fleklimiz 3 tane 30 mm’den oluflurken flimdi herbir do¤ru parçam›z›n uzunlu¤u 1 . 30 = 10 mm olmufltur. 10 mm = k do¤ru par3 3 çalar›n›n say›s›n›n 16’ya ç›kt›¤›na yani 4.4 = 16 kat›na ç›kt›¤›na dikkat ediniz. Sahil fleridimiz de 90 mm’den 1 1 16 . k = 16 . 30 = 160 mm olmufl. 3 3 KEMAL Türkeli • 8. sınıf SBS MATEMATiK

a= 32 mm

B

a= 32 mm

C

7


Fraktal

KEMAL Türkeli Tekrar ayn› ifllemi yineleyerek her üçgen yerine 3 üçgen yerlefltirelim. Yeni eflkenar üçgenlerimizin kenar uzunlu¤u 1 . 8 = 1 . a = 4 mm olur. 2 8 9 . 3 = 27 üçgenimizin kenar say›s› 27 . 3 = 81 3 tanedir. 27 üçgenin toplam çevresi bir öncekinin 2 kat› olacakt›r. 3 . 216 mm = 324 mm = 81 . a 2 8 = 81 . 32 = 324 mm olacakt›r. 8

‹kinci ad›mda A, B ve C köflelerine kenar uzunlu¤u 1 a = 16 mm olan 3 benzer eflit efl kenar üçgeni 2 çizelim. A 16 =

16

a 2

a 2 1. benzer üçgen

3. benzer üçgen

B 2. benzer üçgen

a 2

C

A 4

Yeni flekli bir önceki ile karfl›laflt›r›rsak, flekli oluflturan kenar uzunluklar› bir öncekinin a 1 si ( = 16 mm), toplam kenar say›s› 3 kat 9 2 2 eflit kenardan oluflan 3 yeni üçgenimiz olufltu. fiekli oluflturan do¤ru parçalar›n›n uzunluklar› toplam› ise S 9. 1 . a = 9 . 1. 32 = 3 . 96 = 144 mm = 3 . Ç B 2 2 2 2 S olmufltur.

8

4 4 4 4 4

11

5

1 3

2

4

7 6

8

9 19

10 12

20

21

4

Bir sonraki ad›mda her eflkenar üçgen yerine 13 16 22 25 1 si büyüklü¤ünde köflelerine 3 eflkenar üçgeni 4 2 14 15 17 18 23 24 26 27 M yerlefltirme ifllemini yineleyerek uygulayal›m. B C A A T E Dikkat ederseniz 64 eflit üçgenin 27 tanesi yar›dan M 8 A azd›r. Yani bu ifllemi n = 100 kez yenilersek üçgenlerin 1 T ‹ toplam alan› üçgenin (ABC) alan›na göre çok küçük K bir de¤er olacakt›r. 8

2

Deniz

3

IABI = 729 mm

A

B

D

8 4

8

B

5 8

7

6

8

9

8

8

8

A C

Oluflturdu¤umuz 9 eflkenar üçgenin kenar uzunlu¤u 1 .16 = 8 mm = 1 . 32 olup toplam ke2 4 nar say›m›z bir öncekinin 3 kat› 3 . 9 = 27 tanedir. 9 üçgenin toplam çevresi ise bir öncekinin 3 . 27 . 27 144 = 216 mm = (32) = a 2 4 4 8

4 9

4 9

4 9

C

E 1 9

Deniz

4 9

B

IABI = 729 mm = 9 k = 9 . 81 k = 81 mm 4 alal›m. Sonra da IABI’nin uzunlu¤unda 4 eflit 9 parçadan (her biri 324 mm) flekli olufltural›m. Daha önce eflkenar üçgenle yapm›flt›k flimdi de CDE ikizkenar üçgendir. IACI = ICDI= IDEI = IEBI = 4k = 324 mm Toplam k›y› fleridimiz 16 . IABI = 1296 mm 9 KEMAL Türkeli • 8. sınıf SBS MATEMATiK


1. Ünite

SBS 8 MATEMAT‹K Örnek TEST 1 :

Her bir kenara bir önceki ifllemleri yeniden uygulayal›m. Eflit herbir parçan›n uzunlu¤u

Afla¤›daki örüntünün devam› hangi seçenekteki flekil olabilir?

4 . 324 = 144 mm = 16 . 729 = 16 . IABI 81 81 9 fiekli oluflturan eflit do¤ru parças› say›s› 16’d›r.

A

144

A)

B)

C)

D)

B

fiimdi 16 do¤ru parças›n›n her birine temel ifllemleri tekrar yineleyelim. K Çözüm 1 : Düzgün alt›genin bir köflesinden E M geçen 3 köflegeni ilk 3 flekilde çiA zilmifl. Saat yönünde yeni bir köfle seçilip A, B, C seL çeneklerinde di¤er köflegenleri çizilmifl. Sonra di¤er T köfle saat yönünde seçilmifl D’de bunun bir köflegeni Ü B R çizilmifl. A Do¤ru cevap: A K E Oluflan flekilde eflit do¤ru parçalar›n›n uzunlu¤u L Örnek TEST 2 : 9 küçük kareden oluflan 1. ‹ fleklin içindeki kareler belli 64 . IABI = 64 . 729 = 64 mm’dir. bir kurala göre karalanarak (boyanarak) 2. flekil729 729 deki gibi bir desen elde edilmifltir. Kenar say›s› bir öncekinin 4 kat› oldu. Afla¤›daki desenlerden biri hariç di¤er üçü 16 . 4 = 64 do¤ru parçam›z flekli oluflturuyor. ayn› kuralla oluflturulmufltur. Kurala uymayan desen hangisidir? Deniz kenar›nda oluflan toplam k›y› fleridimiz 4096 . IABI = 4096 mm oldu. 729 Veya 64 . 64 = 4096 mm oldu. K›y› fleridimizi 4096 -729 = 4,62 kat art›rd›k. 729 Toplam k›y› fleridimiz 5 451 kata ulaflt›. 729

1. flekil

A)

B)

2. flekil

C)

D)

Çözüm 2 :

Doğanın muazzam kitabının dili matematiktir. Galileo KEMAL Türkeli • 8. sınıf SBS MATEMATiK

2. flekil ve A, B ve C flekillerinin ortak özelli¤i her sat›r ve her sütunda bir ve yaln›z bir küçük kare karalanarak (boyanarak) desenler elde edilmifl olmas›d›r. Oysa D seçene¤inde 3. sütunda birden çok kare boyanm›flt›r. Do¤ru cevap: D 9


Üçgenler

KEMAL Türkeli

Sözkonusu kurala göre birinci sat›rda 3 yerden birini seçebiliriz. 2. sat›rda ise kalan 2 yerden birini seçebiliriz, 3 x 2 = 6 adet farkl› desen oluflturabiliriz. Kalan 2 deseni de siz bulunuz. Örnek TEST 3 :

Afla¤›da verilen örüntüde bir sonraki flekil hangi seçenektedir?

A a

B

A D

a

a

C B

E F

C

IDAI = IDBI, IEAI = IECI , IFBI = IFCI A)

B)

C)

D)

8

Çözüm 3 :

Verilen örüntüde bir eflkenar üçgenden bafllanm›fl, sonra da her 1 kenar›n›n orta noktalar› birlefltirilerek küçültülmüflü 2 elde edilmifl. 3. de de son eflkenar üçgenin orta nok1 talar› birlefltirilerek bir öncekinin yine benzeri olan 2 üçgen elde edilmifl, örüntünün bir sonraki flekli B seçene¤indedir. Çünkü son üçgenin kenarlar›n›n orta noktalar› birlefltirilerek yine bir öncekinin 1 benzeri 2 olan eflkenar üçgen çizilmifl. Do¤ru cevap: B Örnek TEST 4 :

IABI = a = 729 mm uzunlu¤unda bir tahta çubu¤umuz olsun. Veya A ve B noktalar› aras› 729 m asfalt yeni yol yapt›¤›m›z› varsayal›m. A A A 10

8a 27a - 8a 19 19 = = a= .729 = 513 mm 27 27 27 27 k›salm›flt›r. a-

Do¤ru cevap D

B

a = 729 243

Çubu¤u marangoza 3 eflit parçaya böldürelim. a 729 Yeni parçalar = = 243 mm olacakt›r. Orta3 3 1 daki parçay› her seferinde ay›ral›m. Veya yolun ‘ü 3 olan ortas›n›n bir y›l sonra bak›ms›zl›ktan bozuldu¤unu varsayal›m. a 1. ifllem sonunda her parçan›n uzunlu¤u = 243 3 mm, kalan parça say›s› 2’dir. Kalan 2 parçan›n uzuna luklar› toplam› ise 2 = 2.243 = 486 mm’dir. Veya 3 ortas› bozulan asfalt yolun sa¤lam k›sm›n›n uzunlu¤u 486 m’dir. Tekrar her tahta parçay› marangoza üç eflit parçaya böldürüp ortadakini ay›ral›m. 2. ifllem sonunda elde edece¤imiz her parçan›n uzunlu¤u a 729 = = 81 mm, parçalar›n say›s› 4, kurala göre 9 9 elde edilen tahta çubuklar›n uzunluklar› toplam› ise a 4. = 4.81 = 324 mm olacakt›r. Tekrar marangoza 9 4 parçay› verip her parçaya ayn› ifllemi uygulamas›n› S istiyoruz. Hangi seçenekteki bilgi yanl›fl verilmifltir? B A) 3. ifllem sonucunda her bir tahta parças›n›n S uzunlu¤u 27 mm olacakt›r. B) 3. ifllem sonucunda kurala göre 8 adet 27 mm uzunlu¤unda tahta parçam›z olacakt›r. C) 3. ifllem sonucunda kalan parçalar›n uzunluklar› a toplam› 8. ⋲ 0,3.a = 216 mm olacakt›r. M 27 A D) 3. ifllem sonucunda çubu¤un boyu 486 mm T k›salm›flt›r. E M A Çözüm 4 : Söylenen kurala göre marangoz 4 T parçan›n her birini 3 eflit parçaya ‹ K bölecek fakat ortadaki parçay› kural gere¤ince bize vermeyecektir. a = 81 = 27 mm yeni parça uzunlu27 3 ¤u olacakt›r. 3. ifllem sonucunda kurala göre, a 4 x 2 = 8 adet 27 mm = boyunda tahta 27 parçam›z olacakt›r. 3. ifllem sonucunda kalan tahta a parçalar›n›n uzunluklar› toplam› 8. = 8.27 = 216 27 mm olacakt›r.

C

D

E F C ? a ?= 9

D

a 3 ?

G

B H B ?

3 için 8 .a = 27

( 23 ) .a oldu¤una dikkat ediniz. 3

Bu fraktal say›lamayacak kadar çok (sonsuz) say›da parçan›n uzunluklar› toplam›n›n s›f›ra yak›n oldu¤unu söylüyor. KEMAL Türkeli • 8. sınıf SBS MATEMATiK


DÖNÜfiÜM GEOMETR‹S‹ KOORD‹NAT S‹STEM‹NDE B‹R ÇOKGEN‹N, DO⁄RULARDAN B‹R‹NE GÖRE YANSIMASI, ORJ‹N ETRAFINDA BEL‹RL‹ AÇILARDA DÖNDÜRÜLMES‹ veya HERHANG‹ B‹R DO⁄RU BOYUNCA ÖTELENMES‹ Örnek TEST 5 :

Köfle noktalar›n›n koordinatlar› A(1,5), B(5,2), C(9,5) ve D(5,8) dörtgeninin x eksenine göre yans›ma › › › › alt›ndaki görüntüsü (simetrisi) A B C D dir.

Bir fleklin x eksenine göre yans›mas› (simetrisi) alt›ndaki görüntüsü bulunurken flekli oluflturan her› hangi bir nokta K (a,b) ise yeni adresi K (a,-b) olur. Dikkat ederseniz ordinat› (-1) ile çarp›ld› veya z›t iflaretlisi yaz›ld› diyebiliriz.

y (x = 0)

Örnek TEST 4 :

Köfle noktalar›n›n koordinatlar› A(6,4), B(2,1) ve C(6,1) olan üçgenin x eksenine göre yans›ma › › › alt›ndaki görüntüsü olan A B C üçgeni çiziliyor.

D(5,8)

y

5

A

C(9,5)

A(6,4)

x=0

B(5,2) O

B(2,1)

C(6,1)

y=0

x

K E M A L

Hangi seçenekteki bilgi yanl›flt›r? › A) A (6, -4) › B) C (6, -1) T C) Her noktan›n ordinat› ile simetri¤inin ordinatlar› Ü R toplam› s›f›rdan farkl›d›r. › K D) B (2, -1) E L ‹ Çözüm 4 : y

x (y = 0)

1

Hangi seçenekteki önerme yanl›flt›r? › › A) D (5, -8) dir. B) C (9, -5) dir. › › C) B (5, -2) dir. D) A (-1, 5) dir. Çözüm 5 : y (x = 0)

D(5,8)

5 A

C(9,5)

A(6,4)

x=0

2

B(5,2) x

B(2,1) ›

B (2,-1)

C(6,1) ›

C (6,-1)

y=0

1

x

A (6,-4)

5

y=0

B (5,-2)

-5

A

C (9,-5)

A(6, 4) A (6, -4) › B(2, 1) B (2, -1) › C(6, 1) C (6, -1) 4 + (-4) = 0 1 + (-1) = 0 oldu¤undan C seçene¤indeki önerme yanl›flt›r. Do¤ru cevap: C yA + yA = 4 + (-4) = 0 yB + yB = 1 + (-1) = 0 ›

D (5,-8)

A(1, 5) B(5, 2) C(9, 5) D(5, 8)

A (1, -5) › B (5, -2) › C (9, -5) › D (5, -8)

Do¤ru cevap: D

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

11


Eksene göre yans›ma alt›ndaki görüntüsü Çözüm 7 :

Örnek TEST 6 :

ABC üçgeninin x eksenine göre yans›mas›n›n (simetri› › › ¤inin) köfle noktalar›n›n koordinatlar› A B C dir. › A(2, 3) A (a, -3) › B(4, b) B (4, -1) › C(8, d) C (c, -2) Hangi seçenekteki önerme yanl›flt›r? A) a + b = 3 B) a : b = 2 C) c - 3d = +14 D) 2c - a . b = 14 Çözüm 6 :

a = 2, -b = -1

b = 1, c = 8

(-1) d = -2

d=2

KEMAL Türkeli y A›

A (3,5)

C›(-7,2)

B›(-3,2)

B(3,2)

-7

-3

3

C(7,2)

x

7

A(3, 5) B(3, 2) C(7, 2)

A (-3, 5) › B (-3, 2) › C (-7, 2)

Do¤ru cevap: D

xA + xA = 3 + (-3) = 0 xB + xB = 3 + (-3) = 0 xC + xC = 7 + (-7) = 0 ›

oldu¤u hesaplan›r.

a + b = 2 + 1 = 3,√

a : b = 2 : 1 = 2, √

c -3d = 8 -3 . 2 = 8 -6 = 2 Örnek TEST 8 :

2c - ab = 2 . 8 - 2 . 1 = 16 - 2 = 14 Do¤ru cevap: C S Bir fleklin y eksenine göre yans›ma alt›ndaki B görüntüsü (simetri¤i) bulunurken fleklin köflelerine S › ait bir nokta K(a, b) ise, yeni adresi K (-a, b) olur. Dikkat ederseniz apsisini -1 ile çarp›yoruz veya z›t iflaretlisini al›yoruz.

8

Örnek TEST 7 :

Köfle noktalar›n›n koordinatlar› A(3,5), B(3,2) ve C(7,2) olan üçgenin y eksenine göre yans›ma › › › alt›ndaki görüntüsü olan A B C üçgeni çiziliyor. y

5

D(3,5)

C(7,2)

B(3,2) 3

7

x

Hangi seçenekteki önerme yanl›flt›r? › A) B (-3, 2) › B) A (-3, 5) › C) C (-7, 2) D) fiekle ait her noktan›n apsisi ile y eksenine göre yans›ma alt›ndaki görüntüsünün (simetri¤inin) apsisleri toplam› s›f›rdan farkl›d›r.

12

M A T E M A T ‹ K

Köfle noktalar›n›n koordinatlar› A(1,3), B(5,0), C(9,3) ve D(5,6) olan dörtgenin y eksenine göre yans›ma › › › › alt›ndaki görüntüsü (simetri¤i) A B C D çiziliyor. y D

C›

D(5,6)

A› A

B›

C(9,3)

1

x

B(5,0)

Hangi seçenekteki önerme yanl›flt›r? › › A) B (-5, 0) tür B) A (-1, 3) tür › › C) D (5, -6) tür D) C (-9, 3) tür Çözüm 8 :

A(1,3) B(5,0) C(9,3) D(5,6)

(-1) .1 = -1 = xA A (-1,3) › B (-5,0) › B (-9,3) › D (-5,6) d›r. Do¤ru cevap: C ›

O (0,0) noktas› (orijin) etraf›nda saat yönünde bir flekli 90º döndürürsek, flekle ait bir T (a,b) noktas›n›n yeni adresi T1 = (b, -a) olur. E¤er saatin dönüfl yönünün tersine döndürürsek T2 = (-b, a) olur. E¤er α = 180º saat yönünde döndürürsek T3 = (-a, -b) olur. Dikkat ederseniz TT3 do¤ru parças›n›n orta noktas› koordinat sisteminin bafllang›ç noktas› olan O(0,0)d›r. Yani 180º döndürmek orijine (O) göre simetri¤ini çizmeye eflittir. E¤er α = 360º döndürürsek T(a,b) koordinat› ayn› kal›r. Yeni flekil ayn› yerinde dönmemifl gibi görünür. KEMAL Türkeli • 8. sınıf SBS MATEMATiK


1. Ünite

SBS 8 MATEMAT‹K

Örnek TEST 9 :

Köfle noktalar›n›n koordinatlar› T(3,4), H(3,0) ve O(0,0) olan TOH dik üçgeni, orijin etraf›nda saat yönünde veya tersi yönünde döndürülüyor.

a + b + c + d = 3 + (-2) + 5 + 1 = 7, 2a + b = 6 + (-2) = 4, 3c - 2d = 15 - 2 = 13, 3a - 2c = 9 - 10 = -1 Do¤ru cevap: A

y

Verilen bir flekli x ekseninde a birim ötelersek › flekle ait bir nokta K(x, y) K (x + a, y) olacakt›r. fiayet flekli y eksenine paralel b birim (yukar› b +, afla¤› ise b’nin iflareti - al›n›r.) ötelersek ›› K(x, y) K (x, y + b) ‹stedi¤imiz s›rada her iki eksen boyunca flekli ››› ötelersek K (x + a, y + b) olur. fiekil ötelenirken bütün noktalar› bir arada ötelenir. Bir fleklin, bir do¤ru boyunca yans›mas›n› çizip sonra sözkonusu do¤ru boyunca ötelemesini çizmek yerine s›ray› de¤ifltirip önce öteler sonra do¤ruya göre yans›mas›n› çizersek, gene ayn› flekil olaca¤›na dikkat ediniz.

T(3,4) T2

C(-5,0)

H2 H3

O

-3

90°

A(5,0)

H

x

T3 (4,-3)

H1

T3

B(0,-5)

Hangi seçenekteki önerme yanl›flt›r? A) Üçgen saat yönünde 90º döndürüldü¤ünde T’nin yeni adresi T1 (4, -3) olur. B) Saatin tersi yönünde 90º döndürülürse T’nin yeni adresi T2 (-4, 3) olur. C) Saat yönünde 180º döndürüldü¤ünde T’nin yeni adresi T3 (-4, -3) olur. D) H(3, 0) noktas› saat yönünde 90º flekil döndürüldü¤ünde yeni adresi H1 (0, -3) olur. Çözüm 9 : A; α = -90° için, T(a,b) T1 (b, -a) = T1 (4, -3) olur. T (3, 4) = T(a, b) B; α = +90° (tersi + al›n›r) için T2 (-b, a) = T2 (-4, 3) olur. C; α = 180° için T3 (-a, -b) = T3 (-3, -4) olur. D; H(3, 0) = H(a, b) a = 3, b = 0 H1 (b, -a) = H1 (0, -3) olur. Do¤ru cevap: C Örnek TEST 10 : KRM üçgeninin saat yönünde orijin etraf›nda 90° › › › döndürülme sonucundaki görüntüsü K R M üçgenidir. › › K(2, a) K (3, b) R(c, 1) R (d, -5) biliniyorken hangi seçenekteki bilgi yanl›flt›r? A) a + b + c + d = 6 B) 2a + b = 4 C) 3c - 2d = 13 D) 3a - 2c = -1 ›

Çözüm 10 : K(2, a) K (a, -2) olmal›d›r. a = 3, b = -2 › R(c, 1) R (1, -c) olmal›d›r. 1= d, -c = -5 c = 5 olmal›d›r.

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

Örnek TEST 11 : y

K E M A L T Ü R K E L ‹

A

C

B B

A

C

A

A(-6, 4), › A (-6, -4), ›› A (5, 4), ››› A (5, -4),

O

B

››

B

›››

››

C C

A

››

x

›››

›››

B(-10, 1), C(-6, 1) › › B (-10, -1), C (-6, -1) ›› ›› B (1, 1), C (5, 1) ››› ››› B (1, -1), C (5, -1)

fiekille ilgili hangi seçenek yanl›flt›r? ›› ›› ›› A) ABC üçgeni 11 birim sa¤a ötelenerek A B C üçgeninin görüntüsü oluflmufltur. B) ABC üçgeninin Ox eksenine göre yans›mas› › › › A B C çizilmifl sonra do¤ru boyunca 7 birim ››› ››› ››› ötelenmifl A B C üçgeni oluflmufltur. ››› ››› ››› C) A B C üçgeni ABC üçgeninin Ox do¤rusu boyunca 11 birim sa¤a öteleyip yans›mas› ile oluflaça¤› gibi ABC’nin Ox do¤rusuna göre yans›mas› çizildikten sonra 11 birim sa¤a ötelenmesiyle de oluflmufl olabilir. › › › ››› ››› ››› D) A B C üçgeni A B C üçgeninin 11 birim sola ötelenmesi ile çizilmifl olabilir. 13


Histogram

KEMAL Türkeli ››

Örneklemini çocuklar›n oluflturdu¤u bir kümeye soraca¤›m›z sorular› oluflturmal›y›z. Örne¤in çocuklar›n boy ve kilogram geliflimi yafllar›nda olmas› gerekti¤i gibi mi? Afl›lar›n› düzenli yapt›rm›fllar m›?

Çözüm 11 : A(-6, 4) A (5, 4) -6 -6 + a = 5 a = 5 + 6 = 11 oldu¤undan ABC üçgeninin 11 birim sa¤a ötelenmesi ›› ›› ›› ile A B C çizilmifltir. › › › ABC ile A B C te apsisler ayn› ordinatlar z›t iflaretli oldu¤undan, ABC üçgeninin Ox eksenine göre yans›mas› olan flekildir. › ››› A (-6, -4) A (5, -4) -6 + a = 5 a = 11 birim › › › A B C ötelenmifltir. Do¤ru cevap: B

TABLO ve GRAF‹K OLUfiTURMA

H‹STOGRAM (Histograms) Oluflturma ve Yorumlama: Ad›m 1: Kaç adet veri oldu¤u say›l›r. Ad›m 2: Veriler küçükten büyü¤e s›ralan›r. Ad›m 3: En büyük de¤er - En küçük de¤er = De¤iflim aral›¤› = Aç›kl›k hesaplan›r.

ARAfiTIRMALAR ‹Ç‹N UYGUN SORU OLUfiTURMA,

Ad›m 4:

ÖRNEKLEME UYGUN ARAfiTIRMA SORUSU DÜfiÜNME

aç›kl›k = Veri grubunun geniflli¤i grup say›s›

Ad›m 5: Veri gruplar›n›n say›s› 10 civar›nda al›n›r. Ad›m 6: Her gruba düflen veri adedi say›l›r.

Araflt›rman›n amac›na uygun soru soraca¤›m›z S alt kümeyi saptamal›y›z. (Örneklem oluflturma) B Bir ilkö¤retim okulunun 8. s›n›f›nda okuyan 100 S ö¤rencisine SBS s›nav›na haz›rl›k düzeylerini ölçmek Ayn› hastal›k için iki ayr› fabrika taraf›ndan için 20 soruluk Matematik Testi uygulan›yor. üretilmifl iki ilac› 100’er kiflilik iki farkl› gözlem Y kümesine uygulayabiliriz. D -formulünden Matematik netleri hesap3 A ilac›n› verdi¤imiz 100 hastay›, B ilac›n› verdi¤imiz M di¤er 100 hastay› belirli aral›klarla test ederiz. ‹ki A lan›yor. 100 ö¤renciye ait Matematik netleri 10 gruba ilac›n her grupta kaç hastay› iyilefltirdi¤ini incelemeye T ayr›larak çal›fl›r›z. Tabi hastalar›n di¤er hastal›klar›, yafllar› gibi E 20 -- 0 20 aç›kl›k = = = 2 net veri grubuM di¤er özelliklerinin sonuca olumlu veya olumsuz etki- A 10 10 grup say›s› lerini saptamaya çal›fl›r›z. Karfl›laflt›r›labilir sonuçlar T nun geniflli¤i olarak seçiliyor. ‹ için sorular› iyi seçmeliyiz. 0 -- 2 aras› 0 ≤ x ≤ 2 SBS Matematik neti olan K ‹statistik; rastgele rakamlardan anlaml› sonuçlar ö¤renci say›s› 4 ö¤renciç›karmaya çal›flan Matemati¤in bir dal›d›r. dir. Örne¤in A ve B iki büyük süpermarket olsun. Bu 2 -- 4 aras› 2 < x ≤ 4 5 ö¤rencinin neti bu aramarketlerin yöneticileri ortalama bir müflterinin kaç l›ktad›r. TL’lik al›fl-verifl yapt›¤›n› bulup A ve B süpermarketleri 4 -- 6 6 ö¤renci (örne¤in bir ö¤rencinin neti için karfl›laflt›rabiliriz. Her iki markette en çok sat›lan 4,2’dir.) ürünleri karfl›laflt›rabiliriz. 6 -- 8 8 Veya iki farkl› ilkö¤retim okulundan seçilen 8. s›8 -- 10 13 n›f ö¤rencilerinin SBS s›nav›ndaki baflar› oranlar›n› 10 -- 12 22 karfl›laflt›rabilir, daha baflar›l› olan okuldaki ö¤rencilerin 12 -- 14 20 baflar› nedenlerini araflt›rabiliriz. Okulun uygulad›¤› 14 -- 16 14 özel bir program m› baflar›y› art›rmaktad›r? Yoksa 16 -- 18 aral›¤›nda Matematik neti olan 5 ö¤velilerin s›nav baflar›s›n› önemsemeleri mi ö¤rencileri renci motive etmektedir? 18 -- 20 3 Örne¤in yeni aç›lacak k›rtasiye, test kitaplar›, öykü ve roman satacak bir kitabevinin gelirinin yüksek olabilmesi için okula yak›n bir yerde aç›lmas› Matematiksel çalışmanın en önemli sonucu, gerekti¤ini söyleyebiliriz. Ö¤rencilerin en çok sat›n öğrencilerin düşünmesini sağlamaktır. almak istedikleri ürünlerden bir liste oluflturmal›y›z. John Wesley Young

8

14

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


1. Ünite

SBS 8 MATEMAT‹K

Bir ilkö¤retim okulunun 8. s›n›f›nda okuyan 100 20 soruluk SBS Matematik deneme s›nav›nda ö¤rencilerin Matematik netlerini 10 eflit gruba ay›rarak her grupta olan ö¤rencilerin say›s›n› [frekans (frequency)] düfley eksende gösterelim. Grafik: SBS Matematik denemesinde ö¤rencilerin baflar›s›

Grafik: Ö¤rencilerin kütlesi ile say›lar› aras›ndaki iliflki Kifli say›s›

30

25

Ö¤renci say›s›

20

20

15

15

10

10

5

5

0

Ö¤rencilerin kütlesi (kg)

Matematik netleri say›s›

0

Histogram› çizmifl olduk. Bir aral›¤a karfl› gelen dikdörtgenin yüksekli¤ini ö¤rencilerin say›s› ile orant›l› olarak çizdik. Histogram›n çubuk grafi¤i oldu¤una dikkat ediniz. Histogramda sütun genifllikleri eflittir. Oysa sütun grafi¤inde eflit olmayabilir. Histogram sayesinde ilgilendi¤imiz say›lar kümesi için daha kolay yorumlar yapabiliriz.

Örnek TEST 12 :

Bir okuldaki ö¤rencilerin kg cinsinden kütlelerine ait veriler 5 kg l›k grup geniflli¤i olacak flekilde 9 grup say›s› olacak flekilde kümeleniyor. Aral›¤› (kg)

Say›s›

45 - 50

3

45 ≤ x < 50

50 - 55

6

50 ≤ x < 55

55 - 60

10

60 - 65

29

65 - 70

24

70 - 75

15

75 - 80

7

80 - 85

4

85 - 90

2

85 ≤ x < 90

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

K Histogram› çizilen grafikle ilgili hangi seçenekteki E bilgi yanl›fl verilmifltir? M A) Kütleleri hakk›nda veri toplanan ö¤rencilerin A L say›s› 100’dür. B) 60-90 kg a¤›rl›¤›nda 81 ö¤renci vard›r. T Ü C) Ö¤rencilerin % 53’ü 60-70 kg a¤›rl›¤›ndad›r. R D) Histogram grafi¤i, dikdörtgen (çubuk)lerden K oluflturularak verilen aral›klarda gözlenen verilerin E L tekrarlanma s›kl›¤›n› göstermez. ‹

Çözüm 12 : Histogram grafi¤i dikdörtgen çubuklardan oluflturulan, seçilen aral›klarda gözlenen verilerin tekrarlanma s›kl›¤›n› gösterdi¤inden D’deki ifade yanl›flt›r. Do¤ru cevap: D Yukar›daki grafikte 45 kg’dan küçük ö¤renci olamad›¤›ndan “zikzak” k›r›k çizgisi çizilmifltir. Grubun 90 - 45 geniflli¤i bulunurken = 5 kg grup geniflli¤i 9 olarak seçilmifltir. Grup say›s› 9 olarak seçilmifltir. Grafikte orant›l› birimler kulllan›lm›flt›r. Histogram grafi¤inin bafll›klar› yaz›l›r. ve eksenleri anlafl›l›r olmas› için isimlendirilir. Genel olarak bir grubun geniflli¤i bulunurken aç›kl›k grup say›s›na (10, 9, 11 olabilir) bölünür bulunan say›ya en yak›n olan büyük tek say› grup geniflli¤i olarak seçilir.

15


SAYILAR

ÜSLÜ SAYILAR a ∈ R = Gerçek Say›lar Kümesi ve n ∈ Z+ = Sayma Say›lar› Kümesi olmak üzere n tane a n›n çarp›m›

Tam say›n›n (-2) tek say›da (3) tekrarl› çarp›m› negatif iflaretli bir say›d›r. (-8) a = 2, n = 2 ise (-2)2.2 = (-2)4 = (-2) . (-2) . (-2) . (-2)

a . a . a . a ... a = an biçiminde gösterilir. n tane

a

taban

,

n

+4 +4 = (+4) . (+4) = 16 Negatif Tam Say›n›n çift say›da (4) tekrarl› çarp›m› pozitif iflaretlidir (16)

üs

n = 4, a = 10 ise 10 . 10 . 10 . 10 = 104 fleklinde yaz›l›r. 10 üssü 4 diye okunur. n = 1 a1 = a, 51 = 5 dir. an = 1-n a

=

2-3

Örnek TEST 13 : S B S

n = 4 ise 3-4, 3-3, 3-2, 3-1, 30, 3, 32, 33, 34 ,

1

,

1

,

1

, 1 , 3 , 9 , 27 , 81

8

M 81 27 9 3 A T 1 = 5-2 E Bir üslü ifade paydada iken paya M 52 yaz›l›rsa üssün iflareti de¤ifltirilir. A T Veya 1-2 = 52 yaz›l›r. ‹ 5 K a = -2 ∈ Z = Tam say›, n = -4 ise (-2)-4, (-2)-3, (-2)-2, (-2)-1, 1, -2, (-2)2, (-2)3, (-2)4, 1 (-2)4

,

1 (-2)3

1

,-

1

16

8

,

,

0 < a için

1 (-2)2

,

1 (-2)1

,

1

, -2 ,

4

,

-8

,

16

1

,-

1

,

1

, -2 ,

4

,

-8

,

16

4

2

(-a)2n = a2n dir.

0 < a için (-a)2n - 1 = -a2n-1 < 0, 2n-1 = Tek say›, n = Tam say› a = 2 ve n = 2 ise (-a)2n-1 = (-2)2.2-1 = (-2)3 = (-2) . (-2). (-2)

an = a0 = 1 dir.

n = 0 ise

a = -2 ise (-2)0 = 1,

; Negatif üslü ifade denir.

1

a ≠ 0 iken

23 = 1-3 2

veya n = - 3 ise 1 2-3 = 13 = dir. 8 2 a-n

(EXPONENTS)

a = 2 ise (2)0 = 1 dir.

A) 53

5 tane -3’ün çarp›m›n›n, 3 tane -3’ün toplam›na bölümü kaçt›r? B) (-3)4

C) 33

D)

5 3

Çözüm 13 : (-3) . (-3) . (-3) . (-3) . (-3) (-3)5 (-3)4 = = -3 + (-3) + (-3) 3.(-3) 3 34 = = 33 = 27 3 Do¤ru cevap: C’dir.

?=

Örnek TEST 14 :

Afla¤›daki seçeneklerin hangisinde 5 24, 412, 49 12, 8 27 say›lar›n›n büyükten küçü¤e s›ralan›fl› do¤rudur? A) 4912 > 278 > 524 > 412 B) 4912 > 524 > 278 > 412 C) 4912 > 524 > 412 > 278 D) 4912 > 278 > 412 > 524 Çözüm 14 : 412 = (22)12 = 224 278 = (33)8 = 324 12 2 12 49 = (7 ) = 724 724 > 524 > 324 > 224 4912 > 524 > 278 > 412 fleklinde s›ral›n›r. Do¤ru cevap B’dir.

= (+4) . (-2) = -8 16

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


1. Ünite

SBS 8 MATEMAT‹K

ONDALIK KES‹RLER‹N TEKRARLI ÇARPIMI

( ba )

b ≠ 0 iken

m

ÜSLÜ SAYILARIN ÇARPIMI

am bm

=

102 . 103 = 10 . 10 . 10 . 10 . 10 = 105

3

( 103 ) = 103 . 103 . 103 3 ( 103 ) = 0,027 dir. 5 10

( )

2

= 10 33

=

27 1000

=

103

2+3

= 100 000

Tabanlar› ayn› olan iki üslü say›y› çarparken, ortak taban yaz›l›r. Say›lar›n üsleri toplam› ortak üs olarak yaz›l›r. x ∈ IR - {0} ve m, n ∈ Z+ iken

25 = = 0,25 dür. 100

( ba )

m = -1 ise

3

2

a = 3, b = 10, m = 3 ise

-1

xm , xn = xm + n

dir.

b d›r. a

=

22 . 25 = 27 -1

( 107 )

=

10 3 =1 7 7

2

-2

( ba ) = ( ba )

m = -2 ise

2

=

b2 dir. a2

K E M A L

a = 7 , b = 10, m = -3 ise -3

( 107 )

=

-1 3

[ ( 107 ) ]

=

( 107 )

3

=

3

10

3

7 1000 314 -3 = =2 = 7 . 10 3 343 343

( )

3

=

-4

( 23 ) (

3 4

23 33

8 dir. 27

=

-1 4

3.3.3.3 9.9 81 1 = = =5 2.2.2.2 4.4 16 16

) = [( = =

(-4)3 3

3

-1 3

3 -4

=

2 3

-4

2 3

)=( 36

= =

-6

=

26

-1 6

2 -3 ) = [ ( -3 ) ] = ( 2 ) 32. 32 . 32 23. 23

9. 9. 9 81 . 9 = 8. 8 64 729 64

=

1 7

3

=

= 11

25 dir. 64

1 1 = 9. 9. 9. 3 2187

3

24

-1 3

-4

(x + y)1 . (x + y)1 = (x + y)1+1 = (x + y)2 (x - y) . (x - y) = (x - y)2 3

) ] = [ ( ) ] =( 3 ) =

-2

) .(

7

4

=

3 4

( 32 )

4

[ ( 23 ) ]

-3

2 3

3-2 . 3-5 = 3-7 =

=

=

(

T Ü R K E L ‹

RASYONEL SAYILARIN KEND‹LER‹ ‹LE ÇARPIMI 2 3

5

( 23 ) . ( 23 ) = ( 23 )

(-4) . (-4) . (-4) 16 . (-4) = 3.3.3 9. 3

-64 10 26 = -2 =dir. 27 27 33

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

(x - y)2 . (x - y) = (x - y)3

Çarp›lacak iki üslü say›n›n üsleri ayn›, tabanlar› farkl› ise tabanlar›n çarp›m›na ortak üs yaz›l›r. an . bn = 25 . 55 = (2.5)5 = 105

17

6


Üslü Say›lar

KEMAL Türkeli n ∈ Z+ için

a, b ∈ R - {0} iken an , bn = (a . b) n

( )

dir.

a = 100, b = 4 iken n = 2 ise

23 . 53 = (2 . 5)3 = 103 = 1000

1002 2 3

4

2 3

7

4

3 2

2 = 3

3 . 2

( ) .( ) ( 3 2

( ) ( 33 .

.

43

7

=

2 . 3 3 2

4)3

123

) (

= (3 .

=

4

)

4

= 14 = 1

)

7

=

(-1)7

6

5 2

6

6

= -1

4 2

) =(

Bölünecek iki üslü say›n›n tabanlar› ayn› üsleri farkl› ise ortak tabana üsler fark› üs olarak yaz›l›r. m, n ∈ Z+ iken

am 1 = am-n = n-m n a a a = 10, m = 5, n = 3 ise 105 = 10 . 10 . 10 . 10 . 10 = 105-3 = 102 10 . 10 . 10 103 = 100 =

3

274

4

=

( 273 )

25 25x = x 5 5

( )

6

= (-2)6 = 26 = 64

a ∈ IR - {0} iken

10 103 = 3 2 2 34

)

( 100 4 )

( )

= 12 . 12 . 12

4 5 . 5 2

) =(

=

2

= 144 .12 = 1728

( 45 ) . (

x

2

= 252 = 54 = 625

= 53 = 125 = 94 = (32)4 = 38 = 6561 = 5x

S B S

Örnek TEST 15 : [(48 . 10-4) : (2,4 . 10-3)] . a = 1 eflitli¤ini do¤ru yapan a say›s› kaçt›r?

8

A) 2

M A T E M A T ‹ K

B)

1 2

C) 10-1

1 20

10 oldu¤undan 10

48 . 10-4 . a = 1 24 . 10-4

48 . 10-4 . a = 1 2,4 . 10-3

a = 1 dir. 2

2a = 1

Do¤ru cevap B’dir.

1 -2

10

(2-1 + 3-1)-1 = a say›s› afla¤›dakilerden hangisine eflittir?

52 1 1 1 = = = 57 57-2 55 3125 A) 52 25 = = 1 = 52-2 = 50 2 5 25

(a + b)

D)

Çözüm 15 : 1 = 10 . 10-1 =

Örnek TEST 16 :

(a + b)2

n ∈ Z+ için

a ∈ R, b ∈ R - {0} iken a n an dir. n = b b

50 = 1 olur.

= (a + b)2-1 = a + b

5 6

B) 6

C)

6 5

D)

Çözüm 16 : (2-1 + 3-1)-1 = (

=

-1

-1

( 3 +6 2 ) = ( 56 )

=

1 8

1 1 -1 + ) 2 3

6 1 =1 5 5

= 1,2

Do¤ru cevap C’dir. Bölünecek iki üslü say›n›n üsleri ayn›, tabanlar› farkl› ise say›lar›n tabanlar› bölümüne ortak üs yaz›l›r. 18

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


1. Ünite

SBS 8 MATEMAT‹K

Örnek TEST 17 : 2 2 2,89 . 10-1 . (-10)-1 . 10 (1,7)2 . 10-2

( )

iflleminin sonu-

ÇOK BÜYÜK veya ÇOK KÜÇÜK POZ‹T‹F SAYILARIN B‹L‹MSEL GÖSTER‹M‹ (SCIENTIFIC NOTATION)

cu kaçt›r? B) 4.10-1

A) 0,04

C) -4.10-2

D) 4.10

Çözüm 17 :

( 102 )

2

-1 . 2,89 . [10 . (-10)] -2 2,89 10

? =

4(-102)-1 4 = = 2-2 0 . 10 10 (-102)

4 102

? = - 4 . 10-2 = -0,04 Do¤ru cevap C’dir.

Örnek TEST 18 : 1 3

(

-2

)

1 ≤ a < 10 aras›nda bir gerçek (Reel) say› olmak üzere m ∈ Z iken a x 10m gösterimine Bilimsel Gösterim ad› verilir. 10’un pozitif veya negatif kuvvetinin katsay›s› “1” ile “10” aras›nda veya 1’e eflit bir gerçek say› olacak flekilde bir say›n›n yaz›lmas› Bilimsel Gösterim diye adland›r›l›r. Örne¤in ›fl›¤›n h›z› 300 000 000 m/s dir. Bilimsel Gösterimle 3 . 108 m/s = 300 000 000 m/s fleklinde gösterilir. 0,000137 m = 1,37 . 10-4 m Çok küçük say›n›n bilimsel gösterimidir. Güneflin kütlesi 2 x 1030 kg

AIDS virüsünün uzunlu¤u 0,00011mm K = 1,1 x 10-4 mm ifllemlerin sonucunda bulu- E 5 -3 M Dünyam›z›n hacmi 1,08 x 1012 km3 nacak üslü say› seçeneklerde verilen hangi say› A = 1,08 x 1021m3 ile çarp›l›rsa ifllem sonucunda bulunucak say› L pozitif bir tam say› olur? T ‹nsan vücudundaki hücrelerin ortalama say›s› A) 3 B) -3 C) -3.10-2 D) -3-2 Ü R1014 tür. K E Çözüm 18 : Hidrojen atomunun yar›çap› L 0,4A0 = 0,4 x 10-10m = 4 . 10-11m ‹ 1 -1 = -3 olup 3 Örnek TEST 19 : 570 000 000 cm uzunlu¤u1 -1 2. 2 nun bilimsel gösterimi han(-3) (-3)2 . (-3)2 (-3)2x2 3 gi seçenekte do¤ru yaz›lm›flt›r? = = ?= -35 -35 -35 A) 5,7 . 10-8cm B) 5,7 . 107cm C) 5,7 . 108 cm D) 57 . 107 cm (-3)4 1 1 = = = -35 35-4 3 Çözüm 19 : 570 000 000 cm = 5,7 . 108 cm çok büyük say›n›n bilimsel gösteri1 . (-3) = +1 ∈ Z olur. midir. 3 Do¤ru cevap C’dir. Do¤ru cevap B’dir.

(

. (-3)2

)

[(

)]

Örnek TEST 20 :

Baflar›n›n s›rlar›ndan biri, geçici baflar›s›zl›klar›n bizi yenmesine izin vermemektir. Mark Kay KEMAL Türkeli • 8. sınıf SBS MATEMATiK

0,000007 cm çok küçük say›s›n›n bilimsel gösterimi afla¤›dakilerden hangisidir? A) 7 . 106cm B) 7 . 10-6cm C) 70 . 10-8cm D) 700 . 10-9cm Çözüm 20 : 0, 000007 cm = 7 . 10-6 cm olup Do¤ru cevap B’dir. 19


TEST SORULARI

ÜN‹TE 1

Do¤ru cevaplar›, aç›klamal› çözümleri 183. sayfadad›r.

1. 0,0007 = a x 10-4 ise 24 x 10a kaç basamakl› bir say›d›r? A) 7 B) 8 C) 9 D) 10

310 + 311

8.

311 - 312

iflleminin sonucu afla¤›dakilerden

hangisidir? 6

7

2. 0,3 x 10 + 0,07 x 10 (4 x 102) x (0,05 x 104) A) 1

B) 5

iflleminin sonucu kaçt›r?

C) 10

D) 21

2 pozitif bir say› oldu¤una göre afla3 ¤›dakilerden hangisinin ifllem sonucu bulunacak say› negatiftir?

23 + 23 + 23

2

3

D)

2

3

4

8

M 5. 59. 29. 10 iflleminin sonucu afla¤›dakilerden A hangisidir? T 10 9 9 9 E A) 10 B) 10 C) 3 . 10 D) 10 . 7 M A T -1 0 -1 3 6. (3 + 3 ) . 2 iflleminin sonucu afla¤›daki- ‹ K lerden hangisidir? 4 3

A)

B) 3 3 D) 2

C) 6

-1

7.

( 13 ) : ( 13 ) 2 ( 13 )

iflleminin sonucu afla¤›daki-

den hangisidir? A) 33 1 C) 4 3

20

B) 34 D)

30

2 3

D)

9. a =

iflleminin sonucu afla¤›da34 + 34 + 34 + 34 S kilerden hangisidir? B 1 S A) 2 . 3-3 B) 33 C)

B) -2

C) -6

3. (5,1 x 10-11 + 0,9 x 10-11) x 106 iflleminin sonucu afla¤›dakilerden hangisidir? A) 51 . 10-6 B) 9 . 10-5 5 C) 6 . 10 D) 6. 10-5 4.

2 3

A)

-1

A)

( 23 )

C)

(

10.

A) 4

2 3

)

( D) - ( B) -

2

a = 2 iken b B) -1

( ba )

x

2 3

= 16

C) -4

-3

) 2 -2 3)

oldu¤una göre, x kaçt›r? D) -

1 4

2 3 11. 8 + 2 . 4 = a say›s› kaçt›r? 25 : 42 A) 24 B) 3. 24 C) 3 . 25 D) 6

12. Dünyam›z›n kütlesinin kg birimi ile bilimsel gösterimi hangi seçenekte do¤ru yaz›lm›flt›r? A) 597 x 1022 kg

B) 59,7 x 1023 kg

C) 5,97 x 1024 kg

D) 0,597 x 1025 kg

13. Afla¤›dakilerden hangisi 729 do¤al say›s›n›n üslü say› olarak yaz›l›fllar›ndan biri de¤ildir? A) 93 B) (-3)6 C) (-27)2 D) 123 14. 0,0000987 = 9,87 . 10x olmas› için, x kaçt›r? A) -5 B) -4 C) 4 D) 3

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


1. Ünite Test Sorular›

KEMAL Türkeli

15. 3m = 125

Fulya bu verileri 20 puanl›k aral›klara kaydederek yeni bir tablo oluflturuyor. Sonra da bu verilerin grafi¤ini çiziyor.

5n = 15 oldu¤una göre, m nin n türünden efliti afla¤›dakilerden hangisidir? A)

3+n

n 3 C) n+1 16.

( 811 )

A) -3

Net 0 - 20 21 - 40 41 - 60 61 - 80 81 - 100

3 B) n-1 n-1 D) 3 x

= 96 oldu¤una göre x kaçt›r? B) -2

C) 2

Ö¤renci Say›s› 8. S›n›f SBS Deneme S›nav› Testi

D) 3 35

17. Afla¤›daki ifllemlerden birinin sonucu di¤erlerinden farkl›d›r. Sonucu farkl› olan hangi seçenektedir? 109 A) 103 . 102 B) 104 C)

103

18. Afla¤›daki eflitliklerden hangisi yanl›flt›r? A) 4-3 = B)

30

20 13

D) 10-4 . 10-1

10-2

1 . 1 . 1 4 4 4

( 12 ) . ( 12 ) . ( 12 ) = 2-3

C) 1000 000 = 106 D) 121 = 122 19. 8. s›n›f ö¤rencilerine SBS’ye haz›rl›k düzeylerini ölçmek için bir test deneme s›nav› uygulan›yor. Y Dformülünden ö¤rencilerin net puanlar› 3 hesaplan›yor. Net 0 - 10 11 - 20 21 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71 - 80 81 - 90 91 -100

Ö¤renci Say›s› 4 9 13 23 29 6 7 4 3 2

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

Ö¤renci Say›s› 13 A 35 11 B

K E M A L

Net Say›lar› 0-20

21-40

41-60

61-80

81-100

Afla¤›daki seçeneklerin hangisinde verilen önerme T yanl›flt›r? Ü R A) B = 5 tir. K B) A = 36 d›r. E L C) 8. S›n›f SBS Test denemesine kat›lan ö¤renci ‹ say›s› 100’dür. D) Grafikte 41 - 60 aral›¤›nda ve 81 - 100 aral›¤›nda neti olan ö¤renciler say›s› do¤ru çizilmifltir. 20. Koordinatlar› A(2, 1), B(6, 1), C(6, 4), D(2,4) olarak verilen bir dikdörtgen 7 birim sola, 4 birim afla¤›ya öteleniyor. y

D(2,4)

A(2,1)

C(6,4)

B(6,1)

x

Hangi seçenekte verilen bilgi yanl›flt›r? ›› ›› A) A (-5, -3) d›r. B) C (-1, 0) dir. ›› ›› C) D (-2, -3) dir. D) B (-1, -3) dir.

21


1. Ünite Test Sorular›

SBS 8 MATEMAT‹K 24. Afla¤›daki say›lar›n de¤erlerini bulunuz. Hangisi di¤er üçünden farkl›d›r?

21. Afla¤›daki flekillerdeki flekil örüntüsünün bir sonraki ad›m› hangi seçenektedir?

A)

A) 100-10 . 10010

B) (-1)2009

C) (-1)111

D) (-1)-2007

25. 597,83 g kaç teragram (Tg) eder? (1 teragram = 1 000 000 000 000 g = 1 trilyon gram = 1 milyar kg)

B)

A) 597,83 g = 5,9783 . 10-10 Tg B) 597,83 g = 597,83 . 10-13 Tg C) 597,83 g = 5,9783 . 10-14 Tg D) 597,83 g = 59,783 . 10-13 Tg

C)

D)

26. Hangi seçenekteki say› negatiftir? A) (-5)-8 B) (-3)2008

22. Afla¤›daki örüntülerden hangisi fraktald›r? K E M A) B) A L

C)

C) (-7)2009 D) 2-501 5. 4. 6 27. 7 49 2 iflleminin sonucu afla¤›dakiler43 . 495

T den hangisidir? Ü R 343 A) K 2 E L C) 49 ‹

D)

23. Afla¤›daki örüntünün bir sonraki ad›m›nda gelmesi gereken flekil hangisidir?

B) 343 D) 98

28. Hangi seçenekteki eflitlik yanl›flt›r? A) 10-7 . 107 = 1 B)

I A)

II

III B)

39 94

=3

C) 3-2 . 27 = 3 D)

2 -1 0

[ [ ( 23 ) ] ]

=

9 4

29. 3 . 58 . 27 iflleminin sonucunda kaç basamakl› bir say› bulunur? A) 9 B) 8 C) 7 D) 10 C)

D) 30. 38 = 6561 oldu¤u bilinirken 36 ifadesinin de¤erini hesaplay›n›z. A) 2187 B) 19 683 C) 729 D) 59 049

22

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


1. Ünite Test Sorular›

KEMAL Türkeli 35. Say› örüntüsünde x yerine hangi say› yaz›lmal›d›r? 1 , 1 , 1 , x , 1 , 3 , 32 , 27 , 81 81 27 9

31. Çözümlemesi 9 x10 3 + 7 x 10 2 +8 x10 + 3 x 10 0 + 4 x10 -1 + 6 x 10 -2 + 5 x 10 -3 olan say› hangi seçenektedir? A) 9783,0465 B) 9783,465 C) 978,3465 D) 9780,3465

A) 3-1 C) 3-2

32. Köflelerinin koordinatlar›, A(-2, 0), B(3, 0), C(3, 2), D(-2, 5) olan dik yamuk saatin tersi yönünde › › › › orijin etraf›nda 90° döndürülüyor. Son konumu A B C D dir.

B) 30 D) 6

36. Afla¤›daki önermelerden hangisi yanl›flt›r? A) 102 < 210 B) 52 < 25 5 5 C) - (-2) = -2 D) (-0,5) . (-0,5) = 2-2

y

37. fiekil örüntüsünün 4. ad›m›nda hangi flekil olmal›d›r?

D

5

60°

45°

90°

C

2

I O(0, 0) A -2

II

III

x

B 3

K E M A L

Hangi seçenekteki önerme yanl›flt›r? › › A) B (0, 3) B) A (0, -2) › › C) D (-5, -2) D) C (-3, 2) 33. ABCD dörtgenin köfle noktalar›n›n koordinatlar› A(-2, 2), B(5, 2), C(1, 6), D(-6, 6) olup orijin › › eraf›nda döndürülerek A (2, -2), B (-5, -2), C(-1, -6), › › › › › D (6, -6) olacak flekilde A B C D dörtgeni oluflturuluyor. fiekil orijin etraf›nda saat yönünde kaç derece döndürülmüfltür?

T Ü R K E L ‹

A)

C)

B)

180°

72°

120°

D)

y

38. Matematik s›nav›na kat›lan ö¤rencilerin puanlar› 100 üzerinden de¤erlendiriliyor ve 100 puan 10 eflit veri grubuna ayr›larak her grupta kaç ö¤renci bulundu¤u saptan›yor.

C

D

A

B

O(0, 0)

x

A) 90° C) 270°

B) 180° D) 360°

5. 8 34. x = 3 3 , 9

y=

say›s›n›n kaç kat›d›r? A) 3 C) 27

93 . 92 ise x say›s› y 32

B) 9 D) 81

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

0 - 10 11 - 20 21 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71 - 80 81 - 90 91 -100

3 ö¤renci 5 ö¤renci 10 12 18 20 15 11 4 2 23


1. Ünite

SBS 8 MATEMAT‹K fiimdi Histogram› çizelim:

Ö¤renci Say›s›

20 16 12 8 4

Ö¤renci puanlar›

Veri grubundan ve Histogramdan yararlanarak seçeneklerde verilen ifadelerden biri yanl›fl verilmifltir. Yanl›fl olan seçenek afla¤›dakilerden hangisidir? A) S›nava kat›lanlar›n %53’ü, 51 puan veya üzerinde puan alm›flt›r. B) S›nava kat›lanlar›n % 30’u, 41 puan›n alt›nda puan alm›flt›r. C) 71 veya üzeri puan alanlar, s›nava girenlerin % 17’sidir. D) 41’e eflit veya çok 71’den az puan alanlar, s›nava girenlerin % 53’üdür. Okulda ve SBS’de Matematik dersinden daha baflar›l› olabilmeniz için baz› öneriler; Kitab›mdaki formülleri konular› özet ç›kararak yazarak çal›fl›n›z. Çözece¤iniz bir Test sorusunun çözümünü önce ka¤›tla örtünüz. Ortalama 2 dakika akl›n›zdan yapmay› deneyiniz. Yapam›yorsan›z konu anlat›m›na ve daha önce çözdü¤ün çözümlü sorular› veya ders kitab›ndan ilgili konuyu inceleyerek alaca¤›n yard›mla çözmeyi denemelisin›z. 2 dakika içinde (ortalama süre) çözememiflseniz çözümünü yazarak(çözümü okuman›n fazla bir yarar› olmayacakt›r) anlamaya çal›flmal›s›n›z. Soruyu çözememe nedeninizi de araflt›rmal›s›n›z. Bilgi eksikli¤iniz mi var, yoksa bilgileri çözüme mi uygulayam›yorsunuz. Yoksa ifllem alt yap›n›z m› zay›f? Unutmay›n›z ki SBS zamana karfl› bir yar›flt›r ayn› sürede daha çok net soru yapabilen daha baflar›l› olacakt›r. Her gün 30 dakika bir Konu Testi veya Deneme çözerek h›zl› karar vermeye h›zl› okumaya kestirme ifllem yollar› gelifltirme denemeleri yapmaya önem vermelisiniz. E¤er ifllem yetene¤iniz iyi de¤il ise ders çal›flmaya dört ifllem, rasyonel say›lar, köklü ve üslü ifadeler konular›ndan biri ile bafllamal›s›n›z. ‹lkö¤retim 8.s›n›f ö¤rencileri özellikle dört ifllem (toplama, ç›karma, bölme, çarpma) performanslar›n› çok iyi gelifltirmifl olmal›lar. 24

Al›flveriflte bir fley sat›n alaca¤›m›z zaman, yemek yaparken kullanaca¤›m›z malzemenin ölçüsünü ayarlarken matematikten yararlanmaktay›z. Matematik ayn› zamanda, iliflkileri görebilmeyi, verilenler aras›nda neden -sonuç iliflkisini kurabilmeyi, tablolar›, grafikleri yorumlay›p bilgileri kullanabilme becerisini de gelifltirmifl olmay› gerektirir. Matematik ö¤reniminde temel amaç ö¤rencilerde düflünebilme yetene¤ini gelifltirmektir. Matematik, karfl›laflt›¤›m›z olaylar› ve problemleri mant›kl› inceleyebilmeniz için size temel bilgileri kazand›rmaya çal›fl›r. Ö¤renci sorunun ne anlama geldi¤ini kavramak için dikkatli bir flekilde soruyu okumal›, verilen bilgiler ile bulunmas› istenen sonucu iyi anlamaya çal›flmal›d›r.Ö¤renci çözümü yaparken ifllem hatas› yapmamaya özen göstermelidir. Matematik dersinde bir konuyla ilgili çok farkl› Test sorular› sorulabilir. Matematikte sorularda verilen hiçbir bilgi(veri) gereksiz de¤ildir. Her veri sorunun çözümünde seçilen çözüm yoluna göre kullanabilece¤iniz bir ayr›nt›d›r. Sorularda her ayr›nt›ya dikkat etmek S gerekir. Verilen bilgiler kümesinin elemanlar›n› mant›k B ve uygun formüllerle iliflkilendirece¤iniz bir mant›k S s›ras› izleyerek sorunun çözümüne ulaflmal›s›n›z. Okulda veya dershanede derse öncelikle bir ön haz›rl›k yaparak gitmelisiniz. Derslerde ö¤retmenin konuyu anlat›m›n› ve verdi¤i örnekleri not alarak M dikkatle izlemeli konunun nas›l ö¤renilece¤ini kavraA maya çal›flmal›s›n›z. Derste anlafl›lmayan ve eksik T kalan noktalar› ö¤retmenine hemen sormal›s›n›z. E M Ö¤retmenin soru çözmede kulland›¤› pratik k›sa A yollar›, ölçü birimlerini, formülleri ezberlemek yerine T neden-sonuç iliflkisi kurarak ö¤renmeye çal›flmal›s›n›z. ‹ Konuyu daha iyi kavramak için ders kitab›ndaki hangi K sayfalardaki al›flt›rmalar› yapman gerekti¤ini ö¤renmek için ö¤retmeninize mutlaka dan›flmal› çal›flman› yönlendirici bilgi almal›s›n›z. Matematik dersindeki konular› derste iyi ö¤renmifl olsan›z bile, evinizde düzenli test çözmezseniz konuyu ve ayr›nt›l› düflünceleri çok çabuk unutursunuz. Matematik Testinde çok net ç›karabilmek için ön yarg›s›z, sab›rl› ve programl› çal›flman›z önemlidir. Belirli bir programa göre konular› biriktirmeden çal›flmal›s›n›z. Bu çal›flmalarda çözülemeyen sorular›n vakit kaybetmeden do¤ru çözümlerini ö¤renmeye gayret etmelisiniz. Elden geldi¤ince çok say›da ve farkl› tarzda sorular ile çal›flman›z› zenginlefltirmelisiniz. Matematik dersindeki baflar›s›zl›¤›n temeli, kiflinin yapmas› gereken çal›flmalar› gününde ve yeteri kadar yazarak yapmamas›ndan kaynaklan›r. Baflar›lar dilerim. Matematik ö¤retmeni Kemal Türkeli (2009 ‹stanbul) www.kemalturkeli.com

8

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


ÜN‹TE 2

OLASILIK (Probalitiy)

OLASILIK ÇEfi‹TLER‹ Osman bir flans oyununda 1 ve 10 (dahil) aras›nda olan 3 say›y› tahmin etmek istiyor. Osman’›n 3 say›n›n 3’ünü çekilifl yap›lmadan önce onun bir defada do¤ru tahmin etme olas›l›¤›n› bulal›m. A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} kümesinden elde edilebilecek 3’lü alt kümelerin say›s›

OLAY ÇEfi‹TLER‹

Bir olay›n oluflmas›, di¤er olay›n olas› durumlar›n› etkilemiyorsa bu iki olaya ba¤›ms›z olaylar, e¤er etkiliyorsa iki A ve B olay›na ba¤›ml› olaylar denir. Örne¤in bir madeni para ile bir zar ayn› anda birlikte düfley at›ld›¤›nda paran›n yaz› yüzünün, düfltü¤ünde üste gelmesi zar›n üst yüzüne gelecek n! 10! say›y› etkilemeyecektir. Para ve zar› birlikte atma C(10, 3) = = (n - r)! . r! (10 - 3)! . 3! deneyinde iki olay birbirinden ba¤›ms›zd›r. 3 4 Bir torban›n içinde ayn› büyüklükte 10 bilye olsun. 10 . 9 . 8 . 7! = = 30 . 4 = 120 Bunlar›n 2’si k›rm›z› renkte, 3’ü mavi, gerisi sar› renk3 . 2 . 1. 7! tedir. Birinci çekiliflte k›rm›z› bilye çekilmek isteniyor. Osman 120 alt kümeyi (olas› durum) yaz›p 120 2 Bunun ç›kma olas›l›¤›n›n oldu¤una dikkat ediniz. 10 120 tahmin ücreti öderse kazanma flans› = 1 olacak- ‹kinci çekilifli yapacak kifli de k›rm›z› bilye çekmek 120 K istiyor. Bu kifli birinci çekiliflte çekileni (ç›kan) içine t›r. Ama, Osman’dan baflka 3 say›y› tahmin edenler E atarak bir bilye çekerse k›rm›z› çekme flans› M ç›karsa ödül do¤ru tahmin edebilenler aras›nda pay- A 2 1 1 = geri atmadan çekerse flans› dir. laflt›r›lacakt›r. L 10 5 9 1 1 T 1 < oldu¤undan ç›kan k›rm›z› bilyeyi geriP(3’ünü do¤ru) = = 0,0083 9 5 Ü 120 R ye tekrar torbaya atarak bir bilye çekerse k›rm›z› K bilyeyi çekme flans› yükselecektir. Geri koyarak Bu olas›l›¤a Teorik Olas›l›k ad› verilir. E Bir olas›l›k deneyi sonucunda hesaplanan olas›l›¤a L çekme iflleminde iki çekilifl birbirinden ba¤›ms›zd›r. deneysel olas›l›k ad› verilir. Madeni para ile yap›lan ‹ Geri koymazsa iki olay ba¤›ml›d›r denir. Ba¤›ml› ve 1 ba¤›ms›z olaylar›n olma olas›l›klar›n› hesaplay›p deneyde paran›n yaz› gelme teorik olas›l›¤› = 2 karfl›laflt›ral›m. olmas›na karfl› yap›lan 100 deneyin 49’unda paran›n Bir torbada renkleri d›fl›nda ayn› özelliklere sahip yaz› geldi¤i gözlenmifl olabilir. 5 beyaz, 4 siyah top bulunmakta olsun. 49 1 Torbadan toplar› iki farkl› flekilde çekece¤iz. ≠ d›r. 1000 deney yap›ld›¤›nda yaz› 100 2 1. durum: Fulya birinci topu torbadan çektikten say›s› 493 olabilir. Yani deney say›s› art›r›ld›¤›nda sonra torbaya geri atarak ikinci topu çekecektir. bulunan olas›l›k sonucu beklenen teorik olas›l›k E¤er iki çekiliflte de beyaz top çekebilirse Fulya kazanm›fl kabul edilecektir. Çekilen iki topun da beyaz de¤erine yak›nlaflacakt›r. Öznel olas›l›kla kiflilerin kendi düflüncelerine göre renkli top olma olas›l›¤›n› bulal›m. A¤ac›n dallar›ndan yapraklar›na do¤ru görünübir olay›n olas›l›¤›n› tahmin etmeleridir. Örne¤in Elif’in flüne benziyen a¤aç çizelgeyi olufltural›m. SBS’de baflar›l› olaca¤›n› annesi % 80 olas›l›kla tahmin edebilir. Oysa Matematik ö¤retmeni s›navda baflar›l› olma olas›l›¤›n› % 91 olarak tahmin edebilir. ‹laç fabrikas›, üretti¤i bir ilac›n ortalama her 100 kifliden 95’ini iyilefltirdi¤ini iddia edebilir. Elimizdeki bir tafl› avucumuzdan 100 kere yere b›rak›rsak 100’ünde de yere düflece¤inden serbest 100 b›rak›lan tafl›n yere düflme olas›l›¤› = 1 dir. 100 KEMAL Türkeli • 8. sınıf SBS MATEMATiK

5 9

4 9

5 9

B

BB

4 9 5 9

S

BS

B

SB

4 9

S

SS

B

S

1. Çekilifl

2. Çekilifl

Ç›kt›lar = Sonuçlar

25


Olas›l›k

KEMAL Türkeli

Fulya’n›n çekti¤i iki topun beyaz olma olas›l›¤› (BB);

40 45 < 81 81

P(BB) = 5 . 5 = 25 9 9 81

Topu geri atmadan çekilifl yapma yönteminde farkl› iki topu çekme flans›m›z›n daha fazla olaca¤› görülüyor.

Farkl› renkte çekme olas›l›¤› 5 . 4 4 . 5 20 + 20 40 + = = 9 9 9 9 81 81

P(SB) =

Fulya’n›n çekti¤i iki topun da siyah renkte olma olas›l›klar›n› karfl›laflt›ral›m.

Fulya’n›n çekti¤i 2 topun da siyah olma olas›l›¤›

P1 (SS) = 16 81

P(SS) = 4 . 4 = 16 dir. 9 81 9

P1 (SS) = 25 + 40 + 16 = 81 = 1 oldu¤una dikkat ediniz. 81 81 81 81 2. durum: Bu kez Fulya birinci çekiliflten sonra çekti¤i topu torbaya geri atmadan ikinci kez torbadan tekrar bir top çekecektir. Bu durumda çekilen iki topun da beyaz top olma olas›l›¤› kaçt›r? S ‹kinci çekiliflin sonucunu birinci çekiliflte çekilen B S topun renginin etkileyece¤ine dikkat ediniz.

5 9

4 9

4 8

B

BB

P= 5 . 4 = 5 9 8 18

4 8 5 8

S

BS

P= 5 . 4 = 5 9 8 18

B

SB

P= 4 . 5 = 5 9 8 18

3 8

S

SS

P= 4 . 3 = 3 9 8 18

B

S

1. Çekilifl

2. Çekilifl

Ç›kt›lar

‹ki farkl› yöntemde BB olas› durumu ile karfl›laflma olas›l›klar›n› karfl›laflt›r›rsak,

5 . 5 25 25 = < 18 5 90 81 Ç›kan topu tekrar torbaya geri atarak çekilifl yaparsa, ikisinin de beyaz olma olas›l›¤›n›n azald›¤›n› (%3) görüyoruz. ‹ki topu farkl› çekme olas›l›klar›n› karfl›laflt›r›rsak P1 (SB) = 40 81 5 5 10 5 P2 (SB) = + = = 18 18 18 9 = 26

5 . 9 9 9

=

45 81

32 102

P2 (SS) = 3 18 P2 (SS) =

27 olup 162

32 27 > oldu¤u ndan topu geri atmadan 162 162 2. topu çekme yönteminde Fulya’n›n iki topu da siyah çekme olas›l›¤›n›n azald›¤› görülüyor.

5 5 5 3 18 + + + = = 1 oldu¤una dikkat 18 18 18 18 18 ediniz. 2. durumda topu torbaya geri koymad›¤› için ç›kan topun renginin 2. çekiliflin sonucunu etkiledi¤i için bu olay ba¤›ml› olayd›r. Oysa 1. yöntemde çekilen topu Fulya tekrar M A torbaya geri att›¤› için 1.nin sonucu 2. olay›n sonucunu T (ç›kt›lar›n›) etkilemedi¤inden iki olay ba¤›ms›z olayE lard›r deriz. M A Örnek TEST 1 : 3Y, 7S 1. kutu T ‹ 2Y, 5S 2. kutu K

8

‹çinde yanm›fl ve sa¤lam ampuller olan iki kutu verilmifl olsun. 1. kutuda 3’ü yanm›fl 10 ampul olsun. 2. kutuda ise 2’si yanm›fl 7 ampul bulunuyor olsun. Rastgele bir kutu ve sonra da bu seçilen kutudan rastgele bir ampul çekiliyor. Bu çekilen ampulün yanm›fl ampul olma olas›l›¤› kaçt›r? A)

99 140

B)

11 70

C)

41 140

D) 1

Çözüm 1 : Bu soruda iki deney dizisi vard›r. Birinicisi iki kutudan biri seçilmektedir. Sonra da seçilen kutudan yanm›fl (Y) ya da sa¤lam (S) bir ampulün seçimi. A¤aç flemas› ile a¤ac›n her dal›n›n olas›l›¤›n› düflünelim. KEMAL Türkeli • 8. sınıf SBS MATEMATiK


2. Ünite

SBS 8 MATEMAT‹K 3 10

Y

P

P= 1 . 3 = 3 2 10 20

7 10 2 7

S

P

P= 1 . 7= 7 2 10 20

Y

P

P= 1 . 2 = 1 2 7 7

5 7

S

P

P= 1 . 5 = 5 2 7 14

1.

1 2

1 2

2.

1. Çekilifl

2. Çekilifl

1. kutuyu ve sonra da onun içinden yanm›fl bir ampulü çekme olas›l›¤› 1 . 3 = 3 dir. 2 10 20 Yanm›fl ampulü çekmek için birbirinden farkl› iki yol oldu¤undan bu yollar›n olas›l›klar›n›n toplam› istenen olas›l›kt›r. P=

41 3 1 21 + 20 + = = d›r. 140 20 7 140 Do¤ru cevap: C

Sa¤lam ampulün çekilme olas›l›¤›: 1 . 7 1 + 2 10 2

. 5 7

=

7 5 + 20 14 (7)

Olas› 3 x 2 = 6 sonuçtan yaln›z ikisinde çarklarda oklar›n önünde duran say›lar›n çarp›m›n›n tek say› oldu¤u görülüyor. P=

2 1 = 6 3

Ortalama her 3 deneyin birinde istenen durum gerçekleflecektir. fiayet 2 kifli 2 çark› çevirip bu kurala göre sonuç tek oldu¤unda biri, sonuç çift oldu¤unda da di¤eri

2 4 < oldu¤undan bu kuralla oyna6 6 nan oyun adil olmayacakt›r. Çünkü çarp›m›n tek oldu¤u sonuç say›s› 2 iken tek olmad›¤› (çift) oldu¤u sonuç say›s› 4 dür. Örne¤in 2 çark 9 kez dündürüldü¤ünde ortalama tek sonuç 3, çift sonuç 6 kez olabilir. fians›n adil olmas› için yar› yar›ya olmas› gerekirdi. Çünkü kazanma flanslar› eflit de¤ildir. kazan›yorsa;

K E Bir kolide, renkleri d›fl›nda ayn› büyüklükte M A k›rm›z›, beyaz ve sar› kalemler vard›r. Bu koliden L rastgele seçilen bir kalemin k›rm›z› renkte olma olas›l›¤›

(10)

T 2 , k›rm›z› veya sar› renkte olma olas›l›¤› 13 ’dir. Ü 5 15 49 + 50 99 R Kolide 60 kalem oldu¤u bilindi¤ine göre beyaz = = olup 140 140 K E kalemlerin say›s› sar›lardan ne kadar azd›r? L A) 8 B) 28 C) 20 D) 16 41 99 140 + = = 1 e eflit oldu¤una dikkat ‹ 140 140 140 2 ediniz. Çözüm : 60. = 12. 2 = 24 tane k›rm›z› 5 renkte kalem vard›r. 60 . 13 = 4.13 = 52 tane k›rm›z› 3 15 7 veya sar› kalem olmal›d›r. Bunlar›n 52 - 24 = 28 tanesi 5 sar› renktedir. 60 - 52 = 8 kalem de beyaz renktedir. 8 2 Beyaz kalemlerin say›s› (8), sar› renkteki kalemlerden 1. çark 2. çark (28) 8 - 28 = -20 tane daha azd›r. fiekildeki iki çark döndürüldü¤ünde oklar›n önünde durdu¤u say›lar›n çarp›m›n›n tek say› olma olas›l›¤›n› bulal›m. (Okun önünde iki bölgenin s›n›r›n›n durmad›¤›n› varsayal›m.)

1. çark 2 2 3 3 5 5

2. çark 7 8 7 8 7 8

Say›lar›n çarp›m› 14 tek de¤il 16 tek de¤il 21 tek 24 çift 35 tek 40 tek de¤il

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

Do¤ru cevap: C

Okuma h›z›n›z› elinizden geldi¤ince art›rmaya önem verin. K‹fi‹SEL GEL‹fi‹M (DVD: www.infinityteknoloji.com, H›zl› Okuma, Bellek Gelifltirme, Düflünce Gücü)’den s›navda ve s›nava haz›rl›k sürecinizde çok yararlanacaksan›z . 27


OLASILIK KONUSUNU PEK‹fiT‹R‹C‹

ÜN‹TE 2

TEST SORULARI

Do¤ru cevaplar›, aç›klamal› çözümleri 187. sayfadad›r.

1. fiekilde gösterilen çarklar 5 ve 3 bölgeye ayr›lm›fl ve her bölgeye bir rakam yaz›lm›flt›r. Çarklar h›zland›r›l›p b›rak›ld›¤›nda bir süre sonra duruyorlar. Çarklar durduruldu¤unda sabit oklar›n gösterdi¤i bölgedeki iki rakam toplan›yor. Toplam›n çift say› olma olas›l›¤› kaçt›r?

5

7

4

A) Asal say›da çark›n durma olas›l›¤› 5 dir. 12 B) Asal say›da çark›n durma olas›l›¤›n›n durmama 5 olas›l›¤›na oran› dir. 7 C) 13’ten küçük bir sayma say›s›nda çark›n durma olas›l›¤› 1’dir. D) Çark›n 12 do¤al say›s›n›n bölenlerinden biri önünde durma olas›l›¤› 5 dir. 12

4. A torbas›nda ayn› büyüklükte 2 beyaz, 3 siyah top vard›r. B torbas›nda ise 2 beyaz ve 1 siyah top 8 3 6 vard›r. Fulya A torbas›ndan bir top çekiyor ve bu topu B torbas›na at›yor. Seçeneklerin birinde verilen 1. çark 2. çark önerme yanl›flt›r. Yanl›fl olan hangisidir? A) Fulya’n›n arka arkaya siyah top çekme olas›l›¤› 7 8 4 1 A) B) C) D) 3 dur. 15 15 15 K 15 E 10 B) Fulya’n›n arka arkaya birer beyaz top çekme M A 2. Yüzlerinde 1’den 6’ya kadar 6 yüzü L olas›l›¤› 3 dur. 10 numaraland›r›lm›fl iki zar, ayn› anda yuvarlan›yor. C) Fulya’n›n 1.sinden beyaz, 2.sinden siyah top Olas› durumlarla ilgili verilen olas›l›klardan biri yanl›flt›r. T Ü 1 Yanl›fl önerme hangi seçenektedir? R çekme olas›l›¤› 10 dur. A) ‹ki yüzünden en az birinin 5 gelmesi olas›l›¤› K D) Fulya’n›n 1.sinden siyah, 2.sinden beyaz top E L P (x , 5) = 11 3 36 ‹ çekme olas›l›¤› 5 dir. B) ‹ki yüzünün de eflit olmas› olas›l›¤› 1 5. Bir torbada, renkleri d›fl›nda ayn› özelliklere P (x , x) = 6 sahip yeflil, k›rm›z› ve sar› renkte toplar vard›r. Bu C) Üste gelen iki yüzünün toplam›n›n 6 olmas› torbadan rastgele çekilen bir topun k›rm›z› olma 9

2

olas›l›¤› 5 d›r. 36 D) Üste gelen iki yüzündeki rakamlar›n çarp›m›n›n 12 olmas› olas›l›¤› 1 dir. 12

3. Çarka ait her seçenekte de¤iflik bir durumun olas›l›¤› verilmifltir. Hangisi yanl›flt›r? (Not: Çark›n s›n›r çizgisinde durmad›¤›n› varsay›n›z.)

28

11

12

1

2 3

10 9

4 8

7

6

5

5 3 , yeflil renkte olma olas›l›¤› dir. Tor12 20 bada 120 tane top oldu¤una göre, k›rm›z› toplar›n say›s› sar›lardan kaç tane azd›r? A) 1 B) 2 C) 17 D) 16 olas›l›¤›

6. Bir torbada 2 de¤iflik renkte ayn› büyüklükte bilyeler vard›r. Mavi bilyelerin say›s›, torbadaki bil1 yelerin say›s›n›n ‘sidir. Mavi d›fl›nda sar› bilyeler 2 torbada bulunmaktad›r. Torbaya geri at›lmamak üzere art arda torbadan çekilen iki bilyenin de mavi olma 3 olas›l›¤› ‘dür. Bu bilgiye göre torbada toplam kaç 13 bilye vard›r? A) 14 B) 16 C) 26 D) 10 KEMAL Türkeli • 8. sınıf SBS MATEMATiK


2. Ünite Test Sorular›

SBS 8 MATEMAT‹K

C) Çekilen say›n›n 2 veya 3 ile bölünebilen bir 7. Ö¤rencilere promosyon olarak bir defter ile bir kalem verilecektir. Defter ve kalem çeflitleri ile say› olma olas›l›¤› 5 dir. 7 say›lar› tabloda verilmifltir. Defterlerin her biri ay›rt11 D) 5’e bölünebilen bir say› olmama olas›l›¤› edilemeyecek ayn› ambalaja konmufltur. Kalemlerin 14 her biri de d›flar›dan ay›rtedilemeyecek flekilde amba- tür. lajlanm›flt›r. A: Kareli defter 4 adet 10. ‹ki zar ayn› anda at›ld›¤›nda her iki yüzde de B: Çizgili defter 6 adet ayn› rakam (2, 2) gibi gelme olas›l›¤› hangisidir? C: Çizgisiz defter 8 adet 1 1 1 1 A) B) C) D) D: Kurflun kalem 9 adet 36 18 6 12 E: Tükenmez kalem 7 adet F: Ucu de¤ifltirilebilen kalem 5 adet G: K›rm›z› kurflun kalem 11 adet A) Rastgele seçilen defterlerin çizgili ve kalemin 7 Aşağıdaki sorularıma cevaplarınız olumlu tükenmez kalem olmas› olas›l›¤› d›r. 96 mu? B) Rastgele al›nan defterlerden 1.sinin çizgisiz, 1. Teorik Olasılığı bir örnekle açıklayabilir 2.sinin kareli ve kalemlerden 1.seçilenin kurflun kalem ve hesaplayabilirim. 2.sininde ucu de¤ifltirilebilir kalem ç›kma olas›l›¤› 2. Deneysel Olasılığı bir örnekle açıklayabi5 tür. lirim. Teorik olasılıkla ilişkisini açıklayabilirim. 1054 K 3. Öznel Olasılığı bir örnekle açıklayabilirim. C) Rastgele al›nan bir defterin kareli veya çizgili E kalemin k›rm›z› renkli kurflun kalem ç›kma olas›l›¤› M (Örneğin Matematik Öğretmeninize göre SBS’de A 20 Matematik Test sorusunu doğru cevaplama 11 dir. L 288 olasılığınız %85 gibi Rasyonel bir sayı olabilir D) Rastgele al›nan 1. kalemin tükenmez, 2.sinin T mi? ucu de¤ifltirilebilir kalem 3.kurflun kalem ç›kma olas›l›¤› Ü 4. Bağımlı ve bağımsız olayları bir örnekle R 21 K açıklayabilirim. tür. 1984 E 5. Bağımlı ve bağımsız olayların olma olasıL ‹ 8. Bir zar ile madeni para ayn› anda rastgele yu- lıklarını bir örnek soru üzerinde hesaplayabilirim. Hangisine cevabınız olumsuz ise başa dönüp kar› at›ld›¤›nda zar›n 5, madeni paran›n ise yaz› yüzü eksiğinizi gideriniz. üste gelecek flekilde yere düflme olas›l›¤› kaçt›r? A) 2 3

B) 1 8

C) 1 12

D) 1 6

9. 2 ile 15 aras›ndaki tam say›lar (2 ile 15 dahil) al›narak efl büyüklükteki küçük kare fleklindeki karton ka¤›tlara her biri yaz›l›yor. Sonra tam say›lar› yazd›¤›m›z kartonlar bir torbaya konuluyor. Torbadan rastgele bir say› yaz›l› karton ka¤›t çekti¤imizde seçeneklerde verilen teorik olas›l›klardan hangisi yanl›fl hesaplanm›flt›r? A) Çekilen say›n›n asal ve 2 ile bölünebilen bir 1 say› olma olas›l›¤› tür. 13 B) Çekilen say›n›n asal veya 2 ile bölünebilen bir 6 tam say› olma olas›l›¤› dir. 7 KEMAL Türkeli • 8. sınıf SBS MATEMATiK

Engeller beni durduramaz, her bir engel kararlılığımı daha da güçlendirir. Leonardo da Vinci SBS adaylarına önerim Matematik temellerini kuvvetlendirecek şekilde günlerini verimli geçirmeleridir. Matematik sorularının pratik çözüm yollarını da araştırınız. Kazananlardan biri olmanız için bilinçli ısrarlı gayret göstermeniz gerekir. Pes etmeyin düşünerek ders çalışırsanız kazanacağınıza inanın. Test sınavlarını ciddiye alıp çalışınız. Öğretmeniniz Matematik Öğretmeni Kemal Türkeli www.kemalturkeli.com 29


KAREKÖKLÜ SAYILAR (Square Roots) 2

2 . 2 = 2 (2’nin karesi) 2 2 . 2 = 2 = 4 olup karesi 4 olan say›y› bulma ifllemine karakök alma ifllemi ad› verilir. 2 2 = 2 olarak yaz›l›r.

4 =

Do¤al say›lar (N), Tam say›lar (Z) ve Rasyonel say›lar (Q, kesirler) say› do¤rusu üzerindeki tüm noktalar› gösteremezler. Bunlarla gösterilemeyen baz› noktalar› gösteren (noktalarla eflleflen) say›lara irrasyonel say›lar (I, rasyonel de¤il anlam›nda) ad› verilir. 2, π = pi = 3,14 gibi say›lar irrasyonel say›lara örnektir. 2

2 3 . 3 = 9 = 3 oldu¤undan 3 = 3 = 9 yani karesi 9 olan say›y› bulma ifllemi “9’un karekökü 3’tür” diye söylenir. Say› do¤rusu üzerinde 2 irrasyonel say›s›n›n S B adresinin nas›l bulunaca¤›n› görelim. S

1

2

2

B 1

C(

2)

2

IOAI = 1 + 1 (Pisagor ba¤›nt›s›) 2 IOAI = 2 IOAI = 2 cm O merkezli IOAI = 2 cm yar›çapl› çember yay›n›n say› do¤rusunu kesti¤i C noktas›n›n da O’ya uzakl›¤› 2 cm’dir. C ( 2 ) dir. ICOI = IAOI = 2

1 . 1 = 1 olup

30

2 cm 1 =

2 1 = 1’dir.

2 .

2 = 2 olup

2 .

2 = 2 olup ifllemin tersi

4 .

4 =

olup

3 =

2

4 =

4 =4

5 .

5 = 5

6 .

6 = 6

7 .

7 = 7

8 .

8 =

8 =8

tersi

8 =

4 .

2 = 2

2 dir.

9 .

9 =

9 =9

10 .

10 = 10 fleklinde yaz›l›r.

2

2

2

2 < 1,41 ≠

2

2 = 2 dir.

9 = 3

2 say›s› 1 ile 2 aras›ndad›r. (1< 1<

3

2 < 2)

2

2 yaklafl›k de¤eri a b

2 say›s›na eflit bir say› ‹ki tam say›y› bölerek bulunamam›flt›r. (1,5) . (1,5) = 2,25 oldu¤undan M 1 < 2 < 2,25 oldu¤undan 1 < 2 < 2,25 A T E 2 nin 1’den büyük 1,5’dan 1< 2 < 1,5 ; M küçük bir say› oldu¤u görülüyor. A T (1,4) . (1,4) = 1,96 oldu¤undan ‹ K 2 < 1,96 < 2,25 ise

1

O

3 = 3

8

A

45°

3 .

2=

2 olur.

1,4 <

2 < 1,5 aral›¤›ndad›r.

1.1=1

1 =1

2.2=4

4 =2

3.3=9

9 =3

4 . 4 = 16

16 = 4

5 . 5 = 25

25 = 5

6 . 6 = 36

36 = 6

7 . 7 = 49

49 = 7

8 . 8 = 64

64 = 8

9 . 9 = 81

81 = 9

10 . 10 = 100

100 = 10

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


2. Ünite

SBS 8 MATEMAT‹K

Karekökleri tam say› olan 1, 4 , 9 , 16 , 81 gibi do¤al say›lara tam kare say› (perfect square) ad› verilir. 16 < 19 < 25

16 <

19 <

25

4 < 19 < 5 19 4,36 olup 4’ten büyük, 5’ten küçük bir say› oldu¤unu tahmin edebiliriz. 2

19 <

(4,3) <

- 25 < - 19 -5 <-

(4,4)

<-

2

4,3 <

-4,36 say›s› -5’ten

büyük, -4’ten küçük bir irrasyonel say›d›r. -4,4 < - 19 < -4,3 yazabiliriz.

25 16 1

4

1 2

9

3

4

5

Do¤al say›lar›n karesi flekilde çevrelerine çizilen karelerin alan›na eflittir. 2 2 x = 25 Karesi 25 cm olan karenin bir kenar›n›n uzunlu¤u 5 cm’dir. Karenin bir kenar uzunlu¤unun pozitif bir gerçek say› olaca¤›na dikkat ediniz. 2 2 25 = (+5) . (+5) = (5) = (-5) . (-5) = (-5) olmas›na ra¤men kenar› -5 cm olan kare çizilemeyece¤inden yaln›z

25 = 5 al›n›r. 2

Alan› 121 m olan kare fleklindeki bir bahçenin bir kenar uzunlu¤unun kaç metre olaca¤›n› bulal›m. 11 . 11 = 121 oldu¤undan 2 a . a = 121 a = 121 a = 121 2

a = 11 = 11 cm bulunur. Tam kare olmayan 55 say›s›n›n karekökünü tahmin etmek için strateji; 49 < 55 < 64 7<

49 <

55 <

7,3 + 7,53 2

14,83 2

7,42

19 < 4,4

16 oldu¤undan

19 < - 4 ; - 19

550 7,3 511 7,53 390 365 250 219 31

64

55 < 8

55 - 49 = 7, 64 - 55 = 9 farklar› karfl›laflt›r›ld›¤›nda 55 say›s› 7’ye daha yak›n oldu¤undan 7,3 ondal›kl› de¤eri yaklafl›k tahmin edilir. 55’i 7,3’ bölelim. KEMAL Türkeli • 8. sınıf SBS MATEMATiK

5500 7,42 a=b.b 5194 7,4 a = b olmal› 3060 b 2968 55 = 7,4 . 7,4 + 0,24 (kalan) 92 veya, 7,4 55 7.2 = 14 144 49 4 600 576 576 K 24 E M Bölen ve bölümün ondabirler basama¤› ayn› A oldu¤undan 55 7,4 alabiliriz. L 0 < a , 0 < b iken a . b = a . b dir. T Ü 20 = 4.5 = 4 . 5 = 2 5 R K Örne¤in alan› 20 cm2 olan karenin bir kenar›n›n E L uzunlu¤u 2 5 cm’dir. ‹ a2. b = a2 . b = a b dir. 72 =

36 .

98 =

72 . 2 =

62 .

2=

72 .

2 = 6 2 = 7

2 dir.

2

98 2 49 7 7 7 1 128 =

4 .

4 .

=2.2.2. 128 64 32 16 8 4 2 1

4 .

2 = 8

2 2

veya

2 veya 128 = 23 . 23 . 2 = 8 . 8 . 2 2 = 64 . 2 oldu¤undan 2 128 = 64 . 2 = 64 . 2 2 2 = 8 2 dir. 2 2 31


Kareköklü Say›lar

KEMAL Türkeli

Dikkat edilirse karakök içindeki say›n›n çarpanlar›ndan biri tam kare ise bu kural› uygulayabiliriz.

Örne¤in; 3

5 + 2

20 = 3

5 +2

4.5

5 dir.

=3

5 +2.2

a b flekindeki karaköklü bir ifadenin a katsay›s›n› kök içine alarak a2. b fleklinde yazabiliriz.

=3

5 +4

=7

5

405 =

81 . 5 =

81 .

= 9

5

a

b =

a2 .

b =

a2. b

2

3 =

2

2 .

3 =

4.3 =

-3

2 =-

2

3 .

2 = -

9.2 = -

5

5 =

52 .

5 =

53 =

a

b =

3

3 =

2

18

32 .

= 10 =

9.3 =

3 =

c + b

c = (a + b)

c

2

5 + 3

5 = (2 + 3)

5

= 5 3 + 3

5 =

27

3 = (7 + 3) = 10

125

3

3 =

300

KAREKÖKLÜ SAYILARIN ÇIKARILMASI a

c - b

c = (a - b)

c

12

3 - 4

3 = (12 - 4)

3

= 8 a,b ≠ 0 iken ediniz.

a+b ≠

a + b oldu¤una dikkat

7

7

7 700

KAREKÖKLÜ SAYILARIN ÇARPILMASI S B S

8 M A T E M A T ‹ K

a

c .a

c = (a . a) veya

c = a2. c

c .

( a c )2 = a2 ( c )2 = a2. c dir.

(2 3 ) . (2 3 ) = 2 . 2 . 3 . 3 = 4 . 3 = 12 veya

(2 3 )2 = 22 . ( 3 )2 = 4 . 3 = 12 (3 5 ) . ( 3 5 ) = 32 . ( 5 )2 = 9 . 5 = 45 (5 7 ) . ( 2 7 ) = 5 . 2 . 72 = 10 . 7 = 70 ( a b )n = a n .

192

7

( 3 4 )3 = 3 3 .

bn 3 43 = 3 .

82

= 27 . 8 = 216 (43 = 82) dir.

16 + 9 ≠

16 +

9

25 ≠

4 +

3

5

7 dir.

3 =

7 + 4

= (6 + 4)

125

5

9.7 + 4

=2.3

a2. b , 0 < a dir.

a

Olumsuz tek örnek kural›n do¤ru olmad›¤›n› göstermeye yeter. Toplama veya ç›karma iflleminin yap›labilmesi için karakök içindeki say›lar›n ayn› olmas› gerekir.

32

7 =2

12

KAREKÖKLÜ SAYILARIN TOPLANMASI

7

63 + 4

5

Çarp›lacak karaköklü say›lar farkl› ise

( a b ) . ( c d ) = ac

bd

(2 5 ) . (3 7 ) = 2 . 3 . 5 . 7 =6

35

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


2. Ünite

SBS 8 MATEMAT‹K Çözüm 1 :

KAREKÖKLÜ SAYILARI BÖLME: 6

2

3

2

a

b

c

d

18

12

2

3

a c

=

b d

18 . 2

12 =9 3 =9

4

49 = 100

49 100

I- 3 =

7 10

0,49 = 7 . 10-1 = 0,7

4 = 100

0,04 = 0,04 =

0,81 +

4 100

=

2 10

1 = 0,2 = 2. 10-1 = 5-1 5 1,44 =

2

9 + 100

144 100

9 12 21 = + = 10 10 10 1 = 2,1 = 2 10

9 11 + 10 10 2 10

K E M A L T Ü R K E L ‹

8 :3

=

3 -- 75

III - 5

3 . 7+

4 10

= 20 . 10 = 20 = 10 10 2 2

Afla¤›daki ifllemlerden hangisinin sonucu bir tamsay›d›r?

4

II - 5

IV -

121 100

9 + 10

Do¤ru cevap B’dir.

Örnek TEST 2 :

22 = 9 . 2 = 18

ONDALIK KES‹RLER‹N KAREKÖKLER‹N‹ ALMAK 0,49 =

1,21

0,04

=2

3

=

=

a=

6

=

0,81 +

48 63

A) II ve IV C) II ve IV

B) II ve III D) I ve III

Çözüm 2 : I-

3

8

3

4

=

II- 5

3 --

III- 5

3 .

8 = 4

2 ∉Q ,

25 . 3 = 5 48 = 5

3 -- 5

2 ∈ Q=I

3 =0∈Z

3 . 16 .

=5. 4

3 .

3 3

= 20 . 3 = 60 IV-

Örnek TEST 1 : 0,81 +

1,21

0,04

7 +

63 = =

= x ise x’i hesaplay›n›z.

A) 20

B) 10

C) 1

D)

9 2

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

=4

7 +

9 .

7+ 3

7

7

7 ∉Z

II ve III’teki ifllemlerin sonucu bir tam say›d›r. Do¤ru cevap B’dir.

İlk çağlarda güçlü olan, endüstri çağında zengin olan kazanırdı. Bilgi çağında ise bilgili olan kazanacaktır. A. Toffler 33


Kareköklü Say›lar Örnek TEST 3 : ( 98 + 18 ) . hangisidir? A) 23,45 C) 46,9

KEMAL Türkeli

22 say›s›n›n yaklafl›k de¤eri 4,69 verildi¤inde 11 iflleminin yaklafl›k sonucu

Örnek TEST 6 : 50 --

72 +

32 --

98

B) 234,5 D) 98,49

Çözüm 3 : ? = (

98 +

=(

afla¤›daki seçeneklerde verilen hangi say› ile çarp›l›rsa çarp›m bir tam say› olur?

18 ) .

49.2 + 2 + 3

= 10

2.

A)

11

9 .

=(7 = 10

2 ).

2

C) 2

11

B)

3

D)

10

Çözüm 6 :

2 ) . 11

25 .

11

2 --

16 .

2 --

=

(5 -- 4 -- 6 + 7)

2

2

A) -8 ile -7 C) -9 ile -8

81 < -- 69 < --

2

=

2

Do¤ru cevap A’d›r. 0,4

Örnek TEST 7 :

= a ifllemler 0,8 . 0,2 sonucunda bulunacak a kaçt›r? B) 0,1 D) 1

A) 4 C) 2

Çözüm 7 : 0,4 a= = 0,8 . 0,2

4 .

5 + 2

3 3

=

2(

5 +

4.

5 +

3

5 + 5 +

3 ) 3

3 =

0,4 16 100

=

0,4 4 10

0,4 8 . 2 10 10 =1

= 2 olur.

Do¤ru cevap D’dir.

34

2

2 ! Z bulunur.

64

B) 3 D) 2

5 +

2

= a say›s› kaçt›r?

Çözüm 5 : a = 2

2

2

=

M A T -- 9 < -- 69 < -- 8 oldu¤undan E -- 9 < -- 8,3 < -- 8 M A Do¤ru cevap C’dir. T ‹ K

--

A) 5 C) 4

=

2

8

Örnek TEST 5 : 3

49 .

S -- 69 say›s› hangi ard›fl›k B S iki say› aras›ndad›r? ‹fllem sonucu bulunan 2 say›s›n› A seçene¤inB) -7 ile -6 deki 2 say›s› ile çarparak D) -10 ile -9 2. 2=2!N

Örnek TEST 4 :

5 +

(12 -- 10)

=

Do¤ru cevap C’dir.

12

2+

2

22

= 46,9

20 +

36 .

2

= 10 . 4,69

Çözüm 4 :

iflleminin sonucu

4

Do¤ru cevap D’dir.

KEMAL TÜRKELİ • 8. sınıf SBS MATEMATİK


2. Ünite

SBS 8 MATEMAT‹K

Örnek TEST 8 :

A) 10

B) 5

C) 2

D)

A)

360 = 22 . 32 . 2 . 5

360 180 90 45 15 5 1

360 =

22 .

32 .

=2.3. =6

360 = 6 10 = a

10

10 =

a = 6, b = 10 dur.

A) 2

B)

2

C) 3

12 .

2

6 .12 .

2

9. 4

=

144 36

=

4 =2

Örnek TEST 10 :

4

48

3 .

2

B)

5 4

C) 20

B)

1 2

11

D)

5 6

11

iflleminin

D)

2

=

2

5

1 4 11

3

Do¤ru cevap C’dir.

6

Örnek TEST 12 : 10 (

0,18 +

0,32 --

0,72 ) :

(

=(

9.

4

3 .

48 2

=

=

25 . 4 5.4 4

2 . 3 . 3

3

16 .

3

32 --

72

2 + 16 .

2 + 4

2 -- 6

=( 7

2 -- 6

2

= =5 Do¤ru cevap A’d›r.

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

2 :

1 2

=

2 D) 2

2

):

): 2 .

2

1

1 2 2 ):

2 -- 36 .

=( 3

2

1

100 . 0,32 -- 100 . 0,72 ) :

100 . 0,18 +

= ( 18 +

C)

2 ):

Çözüm 10 : 50 .

11

6

(3)

T Ü iflleminin sonucu kaçt›r? R K A) 1 B) 2 E L ‹ Çözüm 12 :

sonucu kaçt›r? A) 5

kaçt›r?

11

=

Do¤ru cevap D’dir.

50 .

11

3

2

D) 2

Çözüm 9 :

iflleminin sonucu

12 4

11 (2)

K iflleminin E M 9. 4 A sonucu hangisidir? L

6.

11

9 2 + 9 9

Do¤ru cevap A’d›r.

Örnek TEST 9 :

3 1 6

1 4

3 --

Çözüm 11 :

10

b

--

11

C)

22 . 32 . 2 . 5

=

2 9

1+

30

Çözüm 8 : 2 2 2 3 3 5

Örnek TEST 11 :

360 = a b ise b sayma say›s›n›n en küçük say› de¤eri kaçt›r?

1 2

1 2

1 2 2 =2

Do¤ru cevap B’dir.

35

2


ÜN‹TE 2

TEST SORULARI Do¤ru cevaplar›, aç›klamal› çözümleri 189. sayfadad›r.

1 1 : 16 36 nucu hangisidir?

1 4

1.

A) 1

B)

C) 1,1

6 . 10 . 15

A) 1 4. a =

2, b =

A) 6 C) 15

7, c =

D) 30

3 oldu¤una göre

378 in a, b ve c cinsinden de¤eri hangi seçenektedir? A) abc

B) 7

B) 2abc

C) 3abc

C) 2

4,4 + 17,6 1,1

= a ise, a’y› hesaplay›n›z.

B) 2

D) 6,4

D) 3

D) 0,9 10.

2.3.5

C) 8

9. 147.a = b, a ve b pozitif birer tam say› olacak flekilde a rakam›n›n alabilece¤i en küçük de¤er kaçt›r? (a do¤al say›d›r.) A) 27

B) 10-2

3.

B) 6

D) 2

iflleminin sonucu kaçt›r?

10-2

A) 1

2 . 32 iflleminin sonucu kaçt›r? 0,09 + 0,49

8.

iflleminin so-

A) 4 C) 0,5

5

10-2 -- 10-4

2.

1 9

D) a

bc

iflleminin sonucu kaçt›r?

B) 20

C) 12

(

D) 18

)

75 108 = a iflleminin sonucu S 11. 20 16 25 B S olan a gerçek say›s› hangi seçenektedir?

8

M A T ( 2 2 . 5 ) + 3 10 5. . a iflleminde a yerine E 6 5 -- 5 M A seçeneklerden hangisi yaz›l›rsa, ifllem sonucu bir T ‹ tam say› olmaz? K A) 2 B) 10 C) 8 D) 18

A) 2

5

12.

11 --

A) 1

13.

B)

C)

3

1+

C) 3

1 1 + -64 36

D) 9

7 5 -2 4

) .12 iflleminin

sonucu hangisidir? 6. 5 6, 6 4 ve 9 do¤ru s›ral›n›fl› hangisidir? A) 6

4>9

2>5

6

B) 9

2>6

4>5

6

C) 5

6>9

2>6

4

D) 9

2>5

6>6

4

7.

2 irrasyonel say›lar›n›n

B) 32

B) 2

14. ? =

2 -5

A)

(-3)2 -- (-2)2 -- (-3)3 iflleminin sonucu kaçt›r?

A) 28

A) -15,5

C) 22

D) -22

C)

3 10 10 3

10

3

9 say›s› hangisine eflittir?

B) 2

(

D) 2

5

C) 4

5 2

D)

1 2

iflleminin sonucu kaçt›r? B) D)

3 10

10

3 10

Bütün büyük işler, küçük başlangıçlarla olur. Cıcero 36

KEMAL TÜRKELİ • 8. Sınıf SBS MATEMATİK


ÜN‹TE 2

SBS TEST Sorular› Do¤ru cevaplar›, aç›klamal› çözümleri 191. sayfadad›r.

Afla¤›daki test sorular›n› verilecek bilgiden yararlanarak yan›tlay›n›z.

5. (2 + 2 2 ) - (2 2 - 1) = x iflleminin sonucu olan x say›s› afla¤›daki say› kümelerinden hangisinin eleman› de¤ildir? A) Rasyonel say›lar kümesi B) Tam say›lar kümesi C) ‹rrasyonel say›lar kümesi D) Gerçek say›lar kümesi

Bir pazar günü bir hayvanat bahçesini ziyaret eden çocuklar›n yafllar›: 6, 7, 8, 8, 9, 9, 10, 11, 11, 11, 12, 15, 15, 16, 17’dir. 1. Seçeneklerin hangisinde aç›klanan ifade yanl›flt›r? A) Veri grubunun aç›kl›¤› 11’dir. B) Veri grubunda tepe de¤er (mod) 11 yafl›ndaki çocuklard›r. C) Veri grubunda medyan 10’dur. D) Veri grubu küçükten büyü¤e s›raland›¤›nda alt çeyrek 8 yafl›ndad›r.

6. Onur’un torbas›nda 3 sar›, 5 yeflil renkte bilye bulunmaktad›r. Seçeneklerden hangisindeki önerme yanl›flt›r? A) Onur 1. bilyeyi torbadan çekiyor ama torbaya geri atmadan 2. bilyeyi çekerse 1.’nin sar› 2.nin yeflil 15 gelme olas›l›¤› dir. 56 S B) Onur çekti¤i bilyeyi torbaya geri at›p 2.yi B 2. Veri grubuna göre seçeneklerin hangisinde S çekiyor. 1yi sar›, 2.yi yeflil çekme teorik olas›l›¤› 15 64 aç›klanan ifade yanl›flt›r? tür. A) Veri grubunda üst çeyrek 15 yaflt›r. C) Onur, çekti¤ini yerine koymadan yeflil renkli B) Merkezi e¤ilim ölçülerinden aritmetik ortalama 5 bilyeleri çekme olas›l›¤› tür. 12 yaflt›r. 14 M A C) Çeyrekler aç›kl›¤› 7 yaflt›r. D) Onur çekti¤i bilyeyi tekrar torbaya at›yor. D) Yay›lma ölçülerinden Standart sapma 3,4 T 9 E ‹kisinin de sar› gelme olas›l›¤› d›r. 56 yaflt›r. M A T 7. Medeni Berk ‹lkö¤retim Okulu’nda 8 A flu3. {3, 4, 6, 8, 9} say›lar›n›n standart sapmas›n›n ‹ besinde 39 ö¤renci bulunmaktad›r. Ayn› gün yap›lan K karesi (variance) hangisidir? Matematik ve Türkçe yaz›l›s›nda de¤iflik gerekçelerle A) 26 B) 5 C) 6,5 D) 6 6 ö¤renci kat›lamam›flt›r. Matematik dersinden baflar›l› olan 26 ö¤renci, 16 ö¤renci de Türkçe’den baflar›l› 4. 8. s›n›fta okuyan 11 ö¤renciye 100 soruluk olmufltur. Matematik veya Türkçe yaz›l›s›na giren SBS deneme s›nav› uygulanm›fl ve biri ad›n› yazmay› ö¤renciler aras›ndan her ikisinden baflar›s›z olan unuttu¤u için 10’unun netlerinin aritmetik ortalamas› ö¤renci yoktur. 60 net olarak hesaplanm›flt›r. Sonradan ad›n› yazmay› Hangi seçenekteki önerme yanl›flt›r? unutan Fulya baflvurarak puan›n› 71 olarak optik A) Herhangi bir gün s›n›ftaki 39 ö¤rencisinden okuyucuda hesaplatm›flt›r. biri ile konufltu¤umuzda bunun hem Matematik hem 11 kiflilik s›n›f›n matematik netlerinin aritmetik Türkçe’den baflar›l› bir ö¤renci olmas› olas›l›¤› 7 39 ortalamas› kaçt›r? dur. B) 39 ö¤rencisinden rastgele bir ö¤renci seçilA) 64 B) 63 C) 62 D) 61 di¤inde bunun sadece Matematik yaz›l›s›ndan baflar›l› 17 olmufl bir ö¤renci olmas› olas›l›¤› dur. 39 C) 39 kiflinin oldu¤u bir gün rastgele bir ö¤renci Bilginin efendisi olmak için seçildi¤inde bunun yaln›z Türkçe’den baflar›l› olabilmifl çalışmanın uşağı olmak şarttır. 7 Balzac bir ö¤renci olmas›n›n teorik olas›l›¤› dur. 39 42 KEMAL Türkeli • 8. sınıf SBS MATEMATiK

8


2. Ünite Test Sorular›

SBS 8 MATEMAT‹K

D) 39 kifli s›n›ftayken rastgele bir ö¤renci seçildi¤inde bunun Matematik veya Türkçe yaz›l›s›nda 11 baflar›l› olmufl bir ö¤renci olmas› olas›l›¤› tür. 13 8. Bir markete gelen müflteriler 14, 12, 5, 7, 7, 8, 8, 9, 8, 10, 11 TL’lik al›fl verifl yap›yorlar. Seçeneklerde verilen hangi önerme yanl›flt›r? A) Al›fl verifl yapanlar›n aritmetik ortalamas›, 9 TL’dir. B) Veri grubunun standart sapmas› 6,1 2,5’tir. C) Veri grubunun çeyrekler aç›kl›¤› 4 TL’dir. D) Aritmatik ortalama 9 TL, ortanca (medyan) 8 TL, tepe de¤eri (mod) 8 TL merkezi e¤ilim ölçütlerindendir.

A

12.

B

E

F

D

C

fiekildeki alt› nokta, efl karelerin köfleleri üzerinde bulunmaktad›r. Söz konusu alt› noktadan rastgele seçilen üç noktas› birlefltirildi¤inde bir üçgen oluflturmam›z olas›l›¤› afla¤›dakilerden hangisidir? (Ayn› 9. ( 5 + 2 ) . x = 3 eflitli¤ini (aç›k önermesini) do¤ru üzerindeki üç noktan›n bir üçgen oluflturamayado¤ru yapan x gerçek say›s› hangi seçenektedir? ca¤›na dikkat ediniz.) A) 5 -- 2 19 9 A) B) K B) 5 -- 2 2 20 10 E C) 2 5 -- 2 M 4 17 C) D) A D) ( 5 + 2 )-1 5 20 L 10.

D

C

T SBS ile kazanabilece¤iniz ‹stanbul Befliktafl Ü Kabatafl Anadolu Lisesi’ni (1908-2008) tan›tan R b K k›sa bilgi; E Ç›ra¤an Caddesi No: 40 L ORTAKÖY Befliktafl / ‹STANBUL A B ‹ a Tel : 0212 260 48 70 – 71 Seçeneklerdeki ABCD dikdörtgeninin uzun kenar e-Posta : kabatasel@yahoo.com uzunlu¤u k›sa kenar uzunlu¤unun 3 kat›d›r. ABCD www.kabataserkeklisesi.k12.tr dökdörtgeninin çevresi 40 2 cm ise alan› kaç cm2 dir? 2008’de ‹stanbul KABATAfi Erkek Lisesini kaA) 96 cm2 zanabilen 176. sonuncu ö¤rencisinin puan› 487,832, B) 150 cm2 Türkiye s›ras› 2450, ‹l Baflar› s›ras› 526 ve neti 96,7 C) 75 2 cm2 oldu. 2008 ÖSS’de mezun 174 ö¤rencisinin en iyi D) 300 cm2 %10’u 30 Matematik-2 Test sorusunun en az 29,1 11. 2 27 + 3 3 - ( 27 + 2 3) iflleminin sonucuna eflit olmayan seçenek hangisidir? A) 4 3 B) 48 C) 2 12 D) 3 3

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

netini do¤ru cevaplad›. En iyi %10’ luk grup en çok 300 olabilen Say›sal-2 puan türünde en az 293,1 veya üstü puan ç›kard›. 100. y›l›n› geçen y›l kutlad›. 1942 y›l›nda Ortaokul k›sm› kapat›ld›¤› için yaln›z Lise k›sm› mezun vermektedir. Ö¤retim süresi 5 YIL (Haz›rl›k + 4 Y›l)’d›r. K›z + Erkek ö¤renci almaktad›r. Yat›l› Ö¤renciler için Okulla ayn› alan içinde 75 K›z ve 150 Erkek Ö¤rencilik Pansiyonlar vard›r. KABATAfi ERKEK L‹SES‹'nde Birinci YABANCI D‹L ‹NG‹L‹ZCE, ‹kinci Yabanc› Dil ALMANCA veya FRANSIZCA’d›r. 43


3. Ünite

SBS 8 MATEMAT‹K

Pergelin sivri ucunu A’ya koyup do¤ruyu M ve N noktalar›nda kesecek bir yay çizeriz. A

D‹K ÜÇGENLERDE P‹SAGOR

(Pythagoras, Pythagoras theorem)

BA⁄INTISI H α

B

M

N

C

α < 90°

A›

Bir çat›ya yerlefltirilecek kiremit say›s›n› hesaplayabilmek için Pisagor ba¤›nt›s›ndan yararlan›r›z. s(C) = 90° Diküçgende en büyük aç› (90°) karfl›s›nda en uzun kenar bulunur. Dik aç› karfl›s›ndaki AB do¤ru parças›na hipotenüs ad› verilir. Birbirine dik olan BC ve AC kenarlar›na dik kenarlar ad› verilir. A

Çat› kiremiti

5 Sonra pergelin aç›kl›¤›n› bozmadan sivri ucunu 3 5 M ve N noktalar›na koyup çizece¤imiz iki yay›n D B 4 4 C kesiflme noktas›na A› diyelim. AA› do¤rultusunun K BC’yi kesti¤i nokta H dikme aya¤›d›r. E › [AA ] ⊥ BC M A noktas›n›n BC do¤rusuna en k›sa uzakl›¤›n›n A 52 = 42 + 32 Bir dik üçgenin hipotenüs uzunIAHI oldu¤una dikkat ediniz. Çünkü AHC dik üçge- L lu¤unun karesi, dik kenarlar›n›n uzunluklar› kareleri ninde dar aç› karfl›s›ndaki kenar hipotenüsten daha T toplam›na eflittir. Ü k›sad›r. R IAHI < IACI, IAHI < IABI dir. K 5 Tersine s›navda flöyle de söylenir. BC do¤rusunun E L A’ya en yak›n noktas› hangisidir? Do¤ru Cevap H’dir. ‹ H ∈ BC 25 cm2 A Bir ABC üçgeninde, A köflesinden çizilen yük3 seklik, aç›ortay ve kenarortay do¤ru parçalar›n›n 5=b 9 cm2 uzunluklar› aras›nda ha < nA < Va s›ralama ba¤›nt›s› 5 3=c oldu¤una dikkat ediniz. (IABI < IACI) A c=6 5

B

6

ha

H

B

4=a

C

16 cm2

b = 20 cm Va=13 E D

11

C

IAHI = ha, IAEI = nA Aç›ortay do¤rusu IADI = Va Kenarortay do¤rusu IBDI = IDCI = 11 cm, IHDI = 5 cm, IBHI =6 cm, IAHI = 12 cm, IAEI = Aç›ortay = nA = 12,3 cm,

b2 = a2 + c2 25 = 16 + 9’a eflittir. Pisagor ba¤›nt›s›n›n 78 yoldan ispat› vard›r.

m(BAE) = m(EAC) IADI = Va = 13 cm Kenarortay do¤ru parças› 12 < 12,3 < 13 oldu¤una dikkat ediniz. KEMAL Türkeli • 8. sınıf SBS MATEMATiK

51


Pisagor

KEMAL Türkeli

Kenarlar› do¤al say› olan baz› dik üçgenler; (3k, 4k, 5k), (5k, 12k, 13k), (7k, 24k, 25k), (8k, 15k, 17k), (9k, 40k, 41k), (11k, 60k, 61k)

5 A

b=5

c=4 D B

Y Z

D H

a=3

a=3 E1 C

3

5

T B

M

53°

10 5 M Böylece 78 farkl› yoldan do¤rulu¤u ispatlanabilen pisagor ba¤›nt›s›n› bu yollardan biri ile daha ispatlam›fl olduk.

3=a K

Pisagor (Pythagoras) ba¤›nt›s›: D

A(EKG) = A(FHG) = 6 cm2 c2 + a2 = 16 + 9 = 25 A(AEGF) = 25

a S B S

Pisagorun do¤rulu¤unu gösterme: fiekli kareli ka¤›da çiziniz. 102 = 62 + 82 T, V, X, Y, Z ile isimlendirilen befl parçay› makasla keserek bir kenar› 10 cm olan bir kare oluflturunuz. M A T K 8 A D E 53° M L X A 5 T 5 10 ‹ T H Y K 5 5 37° 53° M V C 6 G B N

8

Z

E

6

V G

3 5

10

6

5

A(ABE) = A(ADF) = 6 cm2

F

Karenin bir kenar› olan 10’un DCG dik üçgeninin hipotenüs uzunlu¤una eflit oldu¤una dikkat ediniz.

Neyi arad›¤›n› bilmeyen,onla karfl›laflsa da onu buldu¤unu anlayamaz. Cladue Bernard 52

X

L

D 4

53°

5

F

K

5

H

a

45°

E

K a 45° M

L c

C a

N

F 10

H

P

a A

a

I

O J

G

B

1- Karenin AC ve BD köflegenlerini çiziniz. 1 2- EF //CD (IEDI ≤ IADI) çiziniz. 2 3-[EF] do¤ru parças›n›n›n köflegenleri kesti¤i M, N noktalar›ndan geçen AD’ye paralel IK ve JL do¤ru parçalar› ve bu do¤ru parçalar›n›n köflegenleri kesti¤i P ve O noktalar›ndan geçen [HG] do¤ru parças›n› çiziniz. 4- K ile F, F ile J, J ile H ve H ile K’y› birlefltren [KF], [FJ], [JH], [HK] do¤ru parçalar›n› çiziniz. FJHK dörtgeni bir karedir. IKFI = c ab A(HAJ) = A(FJB) = A(CKF) = A(DHK) = 2 IKMI = IKDI = IDEI = IEMI = a, IMFI = IKCI = IPGI = IIBI = b IKFI = IFJI = IHJI = IKHI = c b = IDHI = IAJI = IBFI = IKCI A(ABCD) = (a + b)2 ab (a + b)2 = 4 . + c2 (içteki karenin alan›) 2 a2 + b2 + 2ab = 2ab + c2 c2 = a2 + b2 (Pisagor ba¤›nt›s› ispatlanm›fl olur.)

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


3. Ünite

SBS 8 MATEMAT‹K A

Bir dik üçgenin dik kenarlar›n›n uzunluklar›n›n kareleri toplam›, hipotenüsün karesine eflittir. 52 = 42 + 32 = 16 + 9 = 25

10 cm

6 cm

A

B

5=c

3=b

C

C 8 cm IACI = hipotenüs uzunlu¤u IACI2 = 62 + 82 = 36 + 64 = 100 = 102 IACI = 10 cm bulunur.

hipotenüs

B

4=a

A

Eski M›s›rl›lar da Pisagor ba¤›nt›s›n› biliyorlarm›fl. Pisagor ba¤›nt›s›n›n do¤rulu¤unu göstermek için bir di¤er yol; Geometri tahtas›nda afla¤›daki flekli oluflturarak gösterelim. a=3

D

53°

b=4

E

53°

a=3

37°

b=4

(a + b) 2

=2.

C

dik kenar

A 17 cm

8 cm

B

C

15 cm

IACI2 = 152 + 82 = 225 + 64 = 289 = 172 IACI = 17 cm A

B

IABI + ICDI (a+b).(a+b) A(ABCD) = . IADI = 2 2 2

a = 12 cm

IACI2 = 52 + 122 = 25 + 144 = 169 = 132 IACI = 13 cm

T Ü R K E L ‹

90°

A

B

K E M A L

37°

hipotenüs

dik kenar

C

c=5

13 cm

c = 5 cm

ab c.c + 2 2

(a + b)2 = 2ab + c2 a2 + b2 + 2ab = 2ab +c2 gene a2 + b2 = c2 Pisagor ba¤›nt›s›n› buluruz. 52 = 32 + 42 = 9 + 16 = 25

Ne kadar bilirsen bil, söylediklerin karfl›ndakilerin (dinleyicilerinin) anlayabilece¤i kadard›r. Mevlana KEMAL Türkeli • 8. sınıf SBS MATEMATiK

1

B

2

1

IACI2 = 12 + 12 = 2 IACI = 2 ⋲ 1,4 cm C A

IAHI2 + 32 = 62 IAHI2 = 36 - 9 IAHI2 = 27 = 9.3 = (3 3) 2 IAHI = 3 3 = 5,2 cm 6

30°

3

60° B

3

H 53

3


Üçgenler

KEMAL Türkeli

Örnek TEST 1 :

IDCI = IACI -- IADI = 10 -- 5 = 5 cm bulunur.

C

Çevre (BCDE) = x = 3 + 8 + 4 + 5 x = 20 cm’dir.

D dik yamuk 4 A

3cm

E

3cm

Alan (BCDE) = y =

IBCI + IEDI . IBEI 2

dik yamuk

8+4 . 3 2

y=

y=6.3 y = 18 cm2 ’dir.

B

ABC diküçgeninde IAEI = IEBI = 3 cm IEDI = 4 cm, s(B) = s(E) = 90° ise

Do¤ru cevap D’dir.

x = Çevre (BCDE) cm = BCDE yamu¤unun çevresi (cm birminde) y = A(BCDE) = BCDE yamu¤unun alan› (cm2) A) x = 20 cm y = 24 cm2

B) x = 18 cm y = 20 cm2

C) x = 21 cm y = 18 cm2

D) x = 20 cm y = 18 cm2

Örnek TEST 2 :

IBCI IABI IACI = = IEDI IAEI IADI IBCI 6 = 4 3

IBCI = 4 . 2

IBCI = 8 cm’dir. IACI 6 = 5 3

IACI = 5 . 2

30° 30°

8

M A Çözüm 1 : Pisagor ba¤›nt›s›n› AED dik üçgenine T E uygularsak M A IADI2 = 32 + 42 = 9 + 16 = 25 = 52 T IADI = 5 cm olur. ‹ K ADE dik üçgeni ile ABC dik üçgenleri s(EAD) = s(A) = 53° aç›lar› ortak oldu¤undan benzerdirler.

A

S B S

a=2 h=?

B

60°

1

C

1

H

ABC eflkenar üçgeninin bir kenar›n›n uzunlu¤u a = 2 cm ise IAHI yüksekli¤i kaç cm’dir? A) 3 C)

B) D) 2

2

Çözüm 2 :

3 3

ABH (30° - 60° - 90°) dik üçgeninde Pisagor ba¤›nt›s›n› uygularsak

IABI2 = IBHI2 + IAHI2 22 = 12 + IAHI2 IAHI2 = 4 - 1 IAHI2 = 3 IAHI = 3 cm bulunur. Do¤ru cevap B’dir.

IACI = 10 cm’dir.

Güçlükler baflar›n›n de¤erini art›ran süslerdir. Moliere 54

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


3. Ünite

SBS 8 MATEMAT‹K A

Özel üçgenlerden ikizkenar dik üçgende hipotenüs ile dik kenarlar aras›ndaki ba¤›nt›;

fiayet bir dik üçgenin k›sa kenar› k ise uzun dikkenar k 3 cm, hipotenüs 2k uzunluk birimidir. (2k)2 = k2+(k 3 )2 dir.

30°

2k

k 3

A 45°

x

Pisagor ba¤›nt›s›

45°

B

60°

B

C

a Pisagor ba¤›nt›s›ndan x2 = a2 + a2 = 2a2 = ( 2a)2 x = 2a = a 2 bulunur.

C

k

a

Örnek TEST 3 :

Seçeneklerin birinde bilinmeyen yanl›fl verilmifltir. Yanl›fl çözülen hangisidir?

A 45°

A)

A

B)

A

30°

IABI = 10

B

x=5

x

C

5

2

60°

B

T Ü R K E L ‹

C

2

3

x=4

C)

A

D)

3

45°

Örnek TEST 4 :

2

x

2

Seçeneklerin hangisinde bilinmeyen yanl›fl hesaplanm›flt›r? B)

30°

3

C

a

A)

A

30°

2

K E M B 3 A L

30°

x=?

60°

2a

‹kizkenar dik üçgende dik kenarlar›n uzunlu¤u a ise hipotenüsün uzunlu¤u a 2 uzunluk birimia dir.

6

5

45°

2

45°

3 B

60°

C

x x=

B

60°

3

Çözüm 3 :

2

k=

olmal›d›r. k

3=

2.

3=

2

2

6 45°

2

6 d›r. Do¤ru cevap D’dir.

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

x=5 D)

x

x = IBCI =

2

C)

D seçene¤inde 2k = 2

x

x=3

C

x x=2

x

45°

x x=

x

x 3

x=

3

55


3. Ünite

SBS 8 MATEMAT‹K

Aritmetik Dizi (Arithmetical sequences): Ard›fl›k iki teriminin fark› sabit olan say› dizisidir. Farka dizinin ortak fark› ad› verilir. Örne¤in, Beliz kumbar›na ay›n birinci günü 3 TL at›yor. Sonra 2. günü 2 TL at›yor. Beliz her gün kumbaras›na 2 TL atarsa ay›n 17. gününün akflam› kumbaras›n› açarsa kaç liras› oldu¤unu görür? an = a + (n -1) r = 3 + (17-1) 2 = 3 + 16 . 2 = 3 + 32 a17 = 35 TL’si kumbaras›nda birikecektir. 3, 3 + 2 = 5, 5 + 2 = 7, 7 + 2 = 9, 1.gün

2.gün

3.gün

4.gün

Hergün kumbaradaki paras›n›n 2 TL artt›¤›na dikkat ediniz.

1 101 1 = n 2 2 2 1 101 an = n dir. n. terimdir. 2 2 50 - (n - 1) .

Geometrik Dizi (Geometric sequences): Ard›fl›k terimlerinin oran› ayn› (sabit say›) olan say› dizisine denir. Sabit orana geometrik dizinin ortak çarpan› ad› verilir. Say› örüntüsünün birinci say›s›n› 2 olarak alal›m. Say› örüntüsünün 2. terimini bulmak için dizinin ortak çarpan› olarak 3 say›s›n› seçelim. a2 = a1 . r = 2 . 3 = 6, 3. terimi bulmak için a3 = 2 . 3 . 3 = 2 . 32 = 18, Geometrik dizinin 4. terimi a4 = 2 . 34-1 = 2 . 33 = 2 . 27 a4 = 54 olur.

Elif’in 35 TL paras› oldu¤unu (babas› harçl›k veriyor) ertesi gün ve hergün 2 TL harcad›¤›n› düflünelim. 17. günün akflam› kumbaras›nda kaç TL’si K n. terimi an = 2 . 3n-1 kalacakt›r? E M an = 35 - (n - 1) . 2 2, 6, 18, 54, ..., 2 . 3n-1, say› örüntüsüne geometrik A 35, 35 - 2 = 33, 33 - 2 = 31, L dizi ad› verilir. T Ü R K E Elif’in ilk günü 35 TL’yi kumbaras›na koydu¤unu L paray› ertesi gün bafllayarak hergün 2’fler TL alarak ‹ harcad›¤›n› varsayd›k. 35, 33, 31, 29, 27, ... , 3 1.gün

2.gün

3.gün

35 - 16 . 2 = 35 - 32 = 3 TL’si kalacakt›r. an = 35 - (17 - 1) 2 = 35 - 16 . 2 = 35 - 32 = 3

‹lk say›s› -3, dizinin ortak fark› 5 ise Aritmetik diziyi yazal›m. -3, -3 + 5 = 2, -3 + 2 . 5 = 7, 1.say› 1. terim

2.say› 2. terim

3.say› 3. terim

-3 + (4 - 1) 5 = -3 + 15 = 12, ... 4.say› 4. terim

an = -3 + (n - 1) 5 = 5n - 8 n. say›, n. terim say› örüntüsünün n. eleman›n› veren ba¤›nt›d›r. 1 ‹lk terimi 50, dizinin ortak fark› olan Aritmetik 2 dizinin say›lar›n› s›ralay›p bir say› örüntüsü olufltural›m. 50, 50 1. terim

50 - (

1 99 = , 2 2 2. terim

1 1 1 + ) = 50 - 2 . = 50 - 1 = 49, 2 2 2 3. terim

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

Örnek TEST 14 : ‹lk terimi -10, ortak fark› -3 olan Aritmetik dizinin n. terimi hangi seçenektedir? A) -10 + (n-1).3

B) -10 + (n-1) + 3

C) -10 - (n-1).3

D) -7 + 3n

Çözüm 14 :

an = a + (n-1) r a = -10, r = -3 yaz›l›rsa n. terimi

an = -10 + (n-1) . (-3) an = -10 - (n-1). 3 = -10 + 3 - 3n= -7 - 3n Do¤ru cevap C’dir. Say› örüntüsü; -10, -13, -16, -19, -22 olup bir aritmetik dizidir. 28 26 22 , , 8, , a say› 3 3 3 örüntüsü bir kurala göre oluflturulmuflsa a afla¤›dakilerden hangisidir? Örnek TEST 15 : 10,

A)

19 3

C) 7

20 3 17 D) 3 B)

61


Örüntüler ve ‹liflkiler

KEMAL Türkeli

Çözüm 15 :

Say› örüntüsünde ard›fl›k iki terimin fark›, 26 28 26 - 28 2 = =olup sabit oldu¤undan 3 3 3 3 örüntü bir Aritmetik dizidir. 22 2 a=olmal›d›r. 3 3 a=

2 22 22 - 2 20 = = 3 3 3 3 Do¤ru cevap B’dir.

Örnek TEST 16 : Seçilen 64 say›s› ard›fl›k olarak 2’ye bölünerek veya 1 ile çarp›larak bir geometrik dizi oluflturulursa 2 n. terimi hangisidir?

( 12 ) C) 32 . ( 1 ) 2 A) 64 .

n

B) 64 . 2n

n

D) 64 . an = a . rn -1

Çözüm 16 :

( 12 )

n -1

a = 64, r =

oldu¤undan

( )

1 an = 64 . 2 = 64 . 2 .

n -1

( 12 )

n

= 64 .

( 12 ) . ( 12 )

= 128 .

n

( 12 )

1 2

-1

n

Örnek TEST 18 : 81, 54, 36, ? , 16 say› örüntüsü bir kurala göre oluflturulmufltur. ? yerine hangi say› olmal›d›r? A) 26 B) 22 C) 24 D) 54 54 36 18 . 2 2 = = = olup 81 54 18 . 3 3 ard›fl›k iki terimin oran›n›n sabit oldu¤u görülüyor. ? = 2 = 2 x 12 = 24 ? = 24 veya 36 3 3 x 12 36 Çözüm 18:

36 . 2 = 12 . 2 = 24 bulunur. 3 Do¤ru cevap C’dir. Örnek TEST 19 : 1, 3, 6, 10, 15, a say› örüntüsündeki say›lar bir kurala göre yaz›lm›flt›r. a yerine yaz›lmas› gereken say› hangisidir? A) 19 B) 21 C) 25 D) 20 Çözüm 19 :

1, 3, 6, 10, 15, a say›lar›n›n n. n(n+1) eleman›n›n kural›na göre 2 yaz›lmas› gerekir. a n = 6. say› örüntüsünün 6. eleman› oldu¤undan n(n+1) 6(6+1) a6 = = = 3 . 7 = 21 say›s› yaz›l2 2 mal›d›r. Do¤ru cevap B’dir.

Do¤ru cevap D’dir.

Örnek TEST 17 : Verilen say› örüntüsü belli bir kurala göre oluflturulmufltur. ? yerine hangi say› yaz›lmal›d›r? 5, 15, 45, 135, ? A) 405 B) 180 C) 195 D) 270 Çözüm 17 :

Say› örüntüsünde ard›fl›k iki teri45 135 min oran› = = 3 olup ay15 45 n›d›r. Geometrik dizinin ortak çarpan› 3’tür.

Örnek TEST 20 : 3, 7, 15, 31, a, 127 say› örüntüsü bir kurala göre oluflturulmufltur. a yerine hangi say› yaz›lmal›d›r? A) 65 B) 60 C) 61 D) 63 Çözüm 20 :

2 . 3 + 1 = 7, 2 . 7 + 1 = 15, 2 . 15 + 1 = 31, 2 . 31 + 1 = 63, 2 . 63 + 1 = 127 oldu¤undan a = 63 olmal›d›r. Kural önceki say›n›n iki kat›n›n 1 fazlas›n› hesaplayarak sa¤›ndaki say›y› buluruz. Do¤ru cevap D’dir.

? = an = a . rn -1

= 5 . 3n -1 = 5 . 34 = 5 . 81 = 405 veya

? = 135 . 3 = 405 bulunabilir. Do¤ru cevap A’d›r.

62

Örnek TEST 21 : 9, 16, 30, 58, a, 226 say› örüntüsünde yaz›lmayan a say›s› hangisidir? A) 114 B) 118 C) 116 D) 98 KEMAL Türkeli • 8. sınıf SBS MATEMATiK


3. Ünite

SBS 8 MATEMAT‹K x2 - 4x + 4

Örnek TEST 29 :

x2 +

rasyonel

x-6 ifadesinin pay ve paydas›nda bulunan cebirsel ifadeleri (Polinom) çarpanlar›na ay›r›n›z. Bu çarpanlardan pay ve paydada ayn› olanlar› sadelefltiriniz. Hangi seçenekteki rasyonel ifadeyi elde ettiniz? A)

x-2 x+3

x-2 x-3

B)

(x - 2)2 D) x+3

x+2 C) x+3

x2 - 4x + 4 = (x - 2) . (x - 2)

Çözüm 29 :

= (x - 2)2 olup

x-2 x-2

x2 + x - 6 = (x - 2) . (x + 3) dir. x-2 x+3

K E M A Do¤ru cevap A’d›r. L

(x - 2) . (x - 2) x-2 x2 - 4x - 4 = = dir. (x + 3 . (x - 2) x+3 x2 + x - 6

T Ü Örnek TEST 30 : Afla¤›daki rasyonel ifade- R lerden hangisi yanl›fl sade- K E lefltirilmifltir? L ‹ 8x + 16 A) = 2x + 4 4 B)

C)

D)

6a2 + 12a

= 2a + 4

3a 2x - 3x -x-3

2y - 5y - 3

Çözüm 30 :

=

dir.

y+1 2y + 1

Örnek TEST 31: Seçeneklerdeki rasyonel ifadelerle yap›lan ifllemler sonucunda hangisinde ifllem hatas› yap›lm›flt›r? 1

A)

2x 3

B)

3x 2

-

4x 2x2

C)

2

+

2

3x

5x

:

7y

14y

x-1

D)

:

x+1

7

=

6x 9x - 8

=

12x2 4x

=

5

x2 - x 2x + 2

1

Çözüm 31 :

2x

+

(3)

3

-

4x

(3x)

2 3x2

=

(4)

2x2

.

7y .2 5x .

=

x+1

=

x

2 3x

=

=

7

A do¤ru

6x

B do¤ru

12x2 4x

C do¤ru

5

x (x - 1)

6x

(2)

9x - 8

2 (x + 1)

3+4

=

2 x Do¤ru cevap D’dir.

2y + 1

4

16

+

4

4 6a2

x+1

y+1

8x

3a

(2y + 1).(y - 3)

x

Do¤ru cevap C’dir.

x+1

4 (2x + 4)

=

(y + 1).(y - 3)

=

- 5y - 3

=

(x + 1) (2x - 3)

x-1

=

2

3a

y2 - 2y - 3

7y

x

=

y2 - 2y - 3

6a2 + 12a

2x - x - 3

2y2

x (2x - 3)

=

2

x-1

2

2x2

2x2 - 3x

+

12a 3a

Örnek TEST 32 : = 2x + 4 veya

= 2x + 4

= 2a + 4

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

A) C)

x+5 x2

-1

2x + 3 x2

-1

1

1

-

+

3

ifllex-1 x+1 x -1 minin sonucu hangisidir? B) D)

2

5 x2

-1

3 x+1

67


Cebirsel ‹fadeler

KEMAL Türkeli

1

Çözüm 32 :

1

-

x-1

x+1

(x + 1)

= =

+

(x - 1)

3

9x2 - 4

C)

2

x -1

3x2

(1)

(x + 1) - (x - 1) + 3 5 x -1

+ 4x - 4

4a2

+ 20a + 25

bulunur. Çözüm 34 : Do¤ru cevap B’dir.

2

x +x-2

A)

x2

+ 4x + 4

2

3x + 21x + 30

C;

4x2

- 12x + 9 2x - 3 -3 2 = 10x - 15x 5x2

B)

4x2 - 9a2

C)

2x - 3a 2a2 + 5a + 2

D)

2

6a + 3a

=

a+2

8

3a

(3x)2 - 22 (x + 2) (3x - 2)

a2 D;

-

b2

3a + 5

=

3a (a + 1)

=

(1 - a)(a + 1)

3a 1-a

(x - 2)(x + 5) 3(x2 + 7x + 10) (x - 2)(x + 5) 3 (x+2)(x + 5)

=

x-2 3(x + 2)

(3x - 2) ( 3x + 2)

=

(x + 2) (3x - 2)

=

S B S

= 2x + 3a

=

=

x+2

a+2

(1 - a)(1 + a)

x+1

=

=

3a2 + 3a

x2 + 3x - 10

Örnek TEST 33: Afla¤›daki ifadeler en sade biçmde yaz›l›rken birinde hata yap›lm›flt›r. Hangi seçenekte yanl›fl yap›lm›flt›r?

x+2

2a2 + 11a + 15

D)

x2 - 1 2

3x + 2

=

3x + 2 x+2

= (a - b) (a + b) özdeflli¤inden yararland›k.

2a2 + 11a + 15 2

4a + 20a + 25

=

(a + 3) (2a + 5) (2a + 5) (2a + 5)

=

a+3 2a + 5

Do¤ru cevap D’dir. M x-1 A Çözüm 33 : 2 = = x + 4x + 4 (x + 2)(x + 2) x + 2 T x2 + mx + 3 x+3 E Örnek TEST 35 : = olaM 2 2 4x - 12x + 9 (2x - 3)(2x - 3) 2x - 3 x -1 x-1 A = = rak sadeleflebilmesi için m T 10x3 - 15x2 5x2 (2x - 3) 5x2 ‹ 4x2 - 9a2 (2x)2 - (3a)2 (2x - 3a)(2x + 3a) K tam say›s› kaç olmal›d›r? = = 2x - 3a 2x - 3a 2x - 3a A) 2 B) 3 x2 + x - 2

= 2x + 3a 2

2a + 5a + 2 2

6a + 3a

(x -1)(x + 2)

a2 - b2 = (a - b) (a + b) oldu¤undan =

(a + 2)(2a + 1) 3a (2a + 1)

=

C) 4

a+2 3a

Çözüm 35 :

Do¤ru cevap A’d›r.

D) -4 x2 + mx + 3 (x - 1) (x + 1)

=

(x + 3) (x - 1)

.

(x + 1) (x + 1)

pay ve payday› x + 1 ile çarp›yoruz. Örnek TEST 34: Seçeneklerdeki ifadelerden biri yanl›fl sadelefltirilmifltir. Yanl›fl sadelefltirilen rasyonel ifade hangisidir? A) B)

68

3a2

+ 3a

1-

a2

=

3a

x2 + mx + 3 = x2 + 4x + 3

iki ifadenin eflit

olabilmesi için x’in katsay›s› olan m = 4 olmal›d›r. (4 ∈ Z)

1-a

x2 + 3x - 10

= 3x2 + 21x + 30

x-2

Do¤ru cevap C’dir.

3 (x + 2) KEMAL Türkeli • 8. sınıf SBS MATEMATiK


SBS TEST Sorular›

ÜN‹TE 3

Do¤ru cevaplar›, aç›klamal› çözümleri 194. sayfadad›r.

1. Fibonacci (Fibonaçi) dizisinde afla¤›daki say›lardan hangisi yanl›flt›r? 0, 1, 1, 2, 3, 5, A, 13, B, 34, C, 89, D, 233, ... A) 8 B) 21 C) 55 D) 143 2. Melis ay›n birinci günü kumbaras›na 1 TL, ikinci günde 2 TL koyuyor. Her gün ay›n kaç›nc› günü ise örne¤in 11. günü ise kumbaras›na 11 TL koymay› sürdürüyor. Üçgensel say›lar örüntüsünden yararlanarak 21. gün 21 TL kumbaras›na koyduktan sonra kumbaras›nda kaç TL birikti¤ini hesapl›yor. 21. günün sonunda Melis’in kumbaras›nda kaç TL birikmifltir? 1. gün 2. gün 3. gün 4. gün

7. Bir dikdörtgenin a ve b kenarlar›n› cm cinsinden gösterelim.

D

C b

A

B

a

a2 + b2 = 25 ve Alan› a . b = 12 cm2 ise çevresi kaç cm’dir? A) 10

B) 13

C) 7

8. ABCD dikdörtgeninin kenar uzunluklar› a ve b cm olsun. D

A) 231

B) 462

C) 210

4. Seçeneklerde yaz›lan Geometrik dizilerden birinin bir say›s› yanl›fl yaz›lm›flt›r. Afla¤›daki hangi seçenekteki dizi geometrik dizi de¤ildir? A) 2, 4, 8, 16, 32, 64, 128, 256, ... B) 2187, 729, 243, 81, 27, 9, 3, 1, 3-1, ... C) 2, -6, 18, -54, 162, -486, 1457, -4374, ... D) -729, 243, -81, 27, -9, 3, -1, 3-1, ... 2

5. a + 2 = x, a - 2 = y, a - 7 = 0 ise xy say›s› kaçt›r? A) 11

B) 3

C) 5

72

B) 11

C) 22

b A

B

a

a - b = 7 (iki kenar›n›n uzunluklar› fark›) a2 + b2 = 180 ise dikdörtgenin alan› kaç cm2 dir? A) 131 C) 49

B) 65,5 D) 114,5 cm2

9. x2 + y2 = 169 ve xy = 60 ise (x + y) = ? bulunuz. A) 14

B) 13

C) 17

D) 18

10. x - 3y = 1, xy = 4 ise x 2 + 9y2 = ? afla¤›dakilerden hangisidir? A) 9

B) 24

C) 23

D) 25

11. 2x2 + 7x + 6 üç terimli ifadenin verilen cebir karolar›n› kullanarak çarpanlar›na ayr›lm›fl ifadesi afla¤›daki hangi seçenekte do¤ru oluflturulmufltur?

D) 9

6. a ile b birer do¤al say› iken (a + b) . (a - b) = 11 ise 2a + 3b nin de¤eri kaçt›r? A) 27

C

D) 220

3. Seçeneklerde yaz›lan Aritmetik dizilerden birinin bir say›s› yanl›fl yaz›lm›flt›r. Yanl›fl yaz›lan Aritmetik diziyi bozan say› hangi seçenektedir? A) 1, 4, 7, 10, 13, 16, 19, 22, 25, ... B) 38, 33, 28, 23, 18, 13, 8, 3, -2, ... C) -33, -29, -25, -21, -17, -13, -9, -5, 0, ... D) -7, -9, -11, -13, -15, -17, -19, -21, ...

D) 14 cm

D) 28

x2

x 1 1

1

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


3. Ünite A) x

x

SBS 8 MATEMAT‹K 15.

B) x2

x

2

x x x

x2

x

x x

2

x

x

x x

1 1

x x x

1 1 1 1 1 1

C) x

2

x

2x - 5

3 - 5x

x + 1 x2 - 1

A

B

x + 3 x2 + 2x - 3

C

D

A) D = 9 - 12x - 5x2 B) A = 2x2 - 3x - 5 C) C = 2x2 - x - 15 D) B = 3 - 2x - 5x2

x2

x

x-1

Cebirsel ifadelerin çarp›m tablosunun baz› sonuçlar› afla¤›daki seçeneklerdedir. Yanl›fl yaz›lan› bulunuz.

D) 2

.

x 16. Afla¤›daki ifadelerden hangisi özdefllik de-

1 1 1

1 x

x

2

x 1 1 1 1

x 1 x

12. Afla¤›daki rasyonel cebirsel ifadelerde gerekli ifllemler yap›larak ifadeler sadelefltirilmifltir. Hangi seçenekte ifllem hatas› yap›lm›flt›r?

13. (997) . (1003) çarp›m› afla¤›dakilerden hangisine eflittir? B) 105 - 9

C) 104 - 9 D) 106 - 3

(x + 2y - 3)2 - (x - 2y + 3)2 ifadesinin en 2y - 3 sade flekli afla¤›daki hangi seçenektedir? 14.

A) 2x + 1 C)

4x + y 3

17. 3, a, 12, x, 48, b, 192, ... terimleri pozitif gerçek say›lardan oluflan geometrik dizisinde a .b x2 ifadesinin de¤eri afla¤›dakilerden hangisidir? B) 1 2

C) 1

D) 9

18. Televizyon veya bilgisayar ekranlar›n›n büyüklükleri al›c›y› büyük say› ile etkileyebilmek için dikdörtgensel bölge fleklindeki ekran›n köflegen uzunlu¤unu söyleyerek belirtilmektedir.

15a2 . b 5b : = 6a c2 2ac2

A) 106 - 9

1 2 1 ) =x+ -2 x x2 C) 2x + 26 = (5 + 2x) . 3 - 4x + 11 D) x + x + x + 5 = x3+ 5 B) (x -

A) 1 3

24 x3 y 4x2 = 2 2 x y2 y 4 3 -16a . b B) = - 4 a3 4a . b3 6 + 4x 2 4 + = C) x 3 3x A)

D)

¤ildir? A) x2 - 172 = (x - 17) . (x + 17)

B) 4x D) 2xy

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

D

C 5k

A

a = 4k

3k = b B

Pisagor ba¤›nt›s›na göre bir standart 3k, 4k, 5k diküçgenidir. Uzunluk birimi standard› olarak 1in = 2, 54 cm = 1 inç (inch) kullan›lmaktad›r. 42 inç olan bir televizyonun geniflli¤i ve yüksekli¤i kaç inç’dir? A) a = 33,6 inç , b = 25,2 inç B) a = 33,6 inç , b = 26,04 inç C) a = 33,12 inç , b = 25,2 inç D) a = 36, 96 inç , b = 25,2 inç 73


KEMAL Türkeli

3 Ünite Testi 19.

A

21.

40°

A B 3 km

65°

D

2 km E

C H

d

›rmak

12 km

[AH]

d, [BE]

B

d

fiekilde s(ABC) = 90°,

IAHI = 3 km, IBEI = 2 km A köyünden bir çoban 101 koyunu satmak için B noktas›ndaki pazara götürmek istiyor. Yolda en az bir kez C ∈ [ME] olacak flekilde bir C noktas›nda koyunlar›na d do¤rusu boyunca akan ›rmakta su içirmek istiyor. Bizden IACI + ICBI yolunun en az kaç km olaca¤›n› hesaplamam›z için yard›mc› olmam›z› istiyor. Sizce IACI + ICBI toplam yolu en az kaç km olabilir? A) 15 km

C

B) 13 km

C) 14 km

D) 16,3 km

20. M noktas›nda boynunda uzunlu¤u esnemeyen 15 m uzunlu¤unda ip bulunan bir koyun ip ile ba¤lanm›flt›r.

s(CAD) = 40° dir.

s(ADC) = 65° ise seçeneklerdeki kenar uzunluklar› içinde en uzun kenar hangisidir? A) IBCI

B) IABI

C) IADI

22.

D) ICDI

A

5 cm

B

C

fiekilde IABI = 12 cm, IACI = 5 cm olan üçgende IBCI kenar›n›n uzunlu¤unun olabileci¤i tüm tam say› de¤erlerinin (cm olarak) toplam› kaçt›r? A) 108 cm B) 95 cm

C) 100 cm D) 125 cm

y

E (0, 12)

23. Afla¤›daki ifadelerden yanl›fl olan› hangi

D (0, 9) C (0, 7) F (0, y) B (0, 4) A (0, 2) O

IOMI = 12 m’dir.

M (12, 0)

IOEI = 12 m do¤ru parças›

üzerinde koyunun su içebilece¤i yalak bulunmaktad›r. Sizce koyun hangi noktadan su içemez? A) B(0, 4) C) D(0, 9)

B) A(0, 2) D) E(0, 12)

Kararlılık insan iradesinin uyandırma zilidir. Anthony Robbins 74

seçenektedir? A) Dar aç›l› bir ABC’nde yükseklikler üçgenin içinde noktadafl, üçgen genifl aç›l› ise yükseklikler üçgenin d›fl›nda noktadaflt›r. Dik üçgenlerde ise yükseklikler dik aç›n›n köflesinde kesiflirler. (noktadafl) B) Bir üçgende aç›ortay do¤rular› daime üçgenin iç bölgesinde kesiflirler. (noktadafl) Kesiflme noktas› üçgenin üç kenar›na da te¤et olan iç te¤et çemberin merkezidir. ‹ki aç›ortay do¤rusunun kesiflme noktas›ndan üçüncüsü de geçer. C) Üçgenin kenarlar›n›n orta dikme do¤rular›n›n kesiflme noktas› köflelerinden (A, B, C) geçen çemberin merkezidir. (Çevrel çember denir.) ‹ki ortadikme do¤rusunun kesiflme noktas›ndan üçüncüsü de geçer. D) Bir üçgenin üç kenarortay› üçgenin d›fl›nda bir noktada kesiflirler. (noktadafl) ‹ki kenarortay›n kesiflme noktas›ndan üçüncüsü bazen geçmeyebilir. Bu noktada üçgenin a¤›rl›k merkezi ad› verilir. KEMAL Türkeli • 8. sınıf SBS MATEMATiK


3. Ünite

SBS 8 MATEMAT‹K

24. fiekilde d do¤rusu (y = 5) Ox eksenine

26. x =

5+

3 ve

y=

5-

3 ise

paraleldir. A(-3, 0), B(2, 0), C(0, 5), D(6, 5), E(5, 0), F(0, 8) noktalar› koordinat düzleminde gösterilmifltir.

A) 2 C) 2

y F(0, 8) C(0, 5)

D(6, 5) d

B(2, 0)

x.a 2 + y.a 2 5 3

ifadesinin de¤eri hangisidir? B) -2 5 D) 16

y=5

E(5, 0)

Hangi seçenekteki önerme verilen bilgilere göre yanl›flt›r? (x ve y ekseninde 1 birim uzunluk = 1 cm al›n›z.) A) A(ABC) < A(AED) B) A(ABF) < A(ABD) C) A(ABC) = A(ABD) D) A(ABC) < A(ABF)

5x3 - 5x2 - 30x x3 - x2 - 6x

5 x

x+3

x2 - x - 6 x-3

Cebirsel ifadenin çarpanlar› çarpan a¤ac› yöntemi ile bulunmufltur. Hangi seçenekteki çarpan yanl›fl bulunmufltur? A) x3 - x2 - 6x C) x + 3

x2a 2 - y 2a 2

x

O A(-3, 0)

25.

?=

B) x2 - x - 6 D) x - 3

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

Adnan Menderes Anadolu Lisesi (‹stanbul Bahçelievler, www.adnanmenderes.net) Tel:0212. 641 35 35 ) 2008 Liselere Giriflte Adnan Menderes Anadolu Lisesi’ni kazanan en yüksek puanl› ö¤rencinin puan› 495,62 (Türkiye baflar›s› : 443, neti: 98,75 ‹stanbul baflar› s›ras›: 95 idi). 2008’de Liselere Girifl s›nav› ile Liseyi kazanan en düflük puanl› 150. ö¤rencisinin puan› 472,887 Türkiye baflar› s›ras› 9713 ‹stanbul baflar› s›ras› 1921, neti ise 93 oldu. 2008 ÖSS s›nav›nda Bahçelievler Adnan Menderes Anadolu Lisesinin 185 mezun ö¤rencisinin en iyi %10 ‘u Matematik-2 Testinde sorulan 30 sorunun en az 28,4 netini veya fazlas›n› yapt›. En çok 300 olan ÖSS Say›sal-2 puan türünde en iyi %10’luk grup 287,8 puan›n›n üstüne ç›kt›. 2008 ÖSS’de, Say›sal-2 puan türünde Türkiye 7.si, EA-2 puan türünde ise Türkiye 5.si ve Söz-2’de Türkiye 4. sü Liseden ç›kt›. Yabanc› dil e¤itimi olarak ‹ngilizce, seçmeli dil olarak da Almanca e¤itimi verilmektedir. Lise 1989 y›l›nda e¤itime bafllad›. 2008 mezunlar›n›n %85’i Üniversite kazand›.

75


ÜN‹TE 4

KOMB‹NASYON, PERMÜTASYON

Olas› durumlar› belirleme: n = 5 elemanl› bir A = {a,b,c,d,e} kümesinin r = 2 li alt kümelerinin say›s›n› bulmaya 5 elemanl› bir kümenin 2 elemanl› kombinasyonunu hesaplamak diye söylenir.

Görülüyor ki ö¤renci 5 sorudan cevapland›rmayaca¤› 2 soruyu 10 farkl› flekilde seçebilir. Veya formülle yaparsak; =

a , b , c , d , e

= C(5,3) =

{a,b} , {a,c} , {a,d} , {a,e} {b,c} , {b,d} , {b,e} {c,d} , {c,e} {d,e}

=

=

=

= 10 Do¤ru cevap A’d›r.

Görüyoruz ki, 5 elemanl› bir kümeden oluflturulabilecek 2 elemanl› alt kümelerin say›s› 10’dur. denir.

Ö¤renci 5 s›nav sorusundan 3’ünü 10 farkl› flekilde seçebilir. Dikkat ederseniz 1, 2, 3, 4, 5 sorular›ndan örne¤in Formülle bulmak istersek; = 5.4 = 5.2 = 10 veya (1,2) yi yapmaz ise {3,4,5} sorular›n› cevapland›rabilir. 1.2 S Kombinasyon (Combination) C(5,2) C(5,3) = C(5,2) = 10 oldu¤una dikat ediniz. B S Yani 5 kifliden 3 kifliyi seçmek, 5 kifliden 2 kifliyi C(n,r) = C(5,2) = = gruptan ç›karmaya denktir. =

=

= 10

8

A = {1 , 2 , 3} üç elemanl› bir kümenin 2 elemanl› alt kümelerinin say›s›n› bulal›m. M = 10 = C(5,2) dir. A {1,2} , {1,3} , {2,3} görüyoruz ki 3 elamanl› T E bir kümenin 2 elemanl› kombinasyonlar›n›n say›s› M 3’tür. Dikkat ederseniz 3 elemandan rastgele birini A Örnek TEST 1 : Matematik yaz›l› s›nav›nda almaz kalan 2’sini al›rsak bunu 3 farkl› flekilde T matematik ö¤retmeni 5 ‹ yapabiliriz. soru sormufltur. Fakat ö¤rencilerden seçecekleri K Formülle ; 3 soruyu cevapland›rmalar›n› istemifltir. Bir = C(3,2) = = ö¤renci 5 soru içinden cevapland›raca¤› 3 soruyu kaç farkl› flekilde seçebilir? A) 10 C) 24

B) 20 D) 96

Çözüm 1 :

Befl soruyu 1, 2, 3, 4, 5 diye numaralarla gösterelim. Yukar›daki örnekten yararlan›rsak,

=

=3

Kitapl›k kolunda çal›flmak isteyen 4 ö¤renciden 2’sini ö¤retmen kaç farkl› flekilde seçebilir? Ö¤rencileri a , b , c , d ile gösterelim.

1 , 2 , 3 , 4 , 5

(1,2), (1,3), (1,4), (1,5) yapmayabilir. (2,3), (2,4), (2,5) yapmayabilir. (3,4), (3,5) yapmayabilir veya (4,5) yapmayabilir. 76

(a,b), (a,c), (a,d) (b,c), (b,d), (c,d) 4 eleman›n 2’li kombinasyonlar›n›n say›s› 6’d›r denir. KEMAL Türkeli • 8. sınıf SBS MATEMATiK


4. Ünite

SBS 8 MATEMAT‹K

Çözüm 5 :

n = 4 elemanl› A = {a,b,c,d} küme-

Çözüm 6 :

sinin r = 3’lü permütasyonlar›n›n

= -1

= -1=

x + 1 = 2 (- 1) = - 2 x=-2-1 x = - 3 bulunur.

say›s› x = P(n,r) = P(4,3) =

-

=

Do¤ru cevap A’d›r.

= 4 ! = 4 . 3 . 2 . 1 = 24 n = 4 elemanl› A = {a,b,c,d} kümesinin 3 elemanl› alt kümeleri A1 = {a,b,c} , A2 = {a,b,d} , A3 = {a,c,d}

Örnek TEST 7 :

A4 = {b,c,d} Veya y = C(n,r) =

?=

=

= 4 bulunur.

A) {-3}

B) {3}

C) {4}

D) {-4}

Çözüm 7 :

= 6 = 3! oldu¤una dikkat ediniz.

-8=

Genel yoldan çözüm;

?=

=

+ =r!=3!=6=

Do¤ru cevap D’dir.

K E M A L

T Permütasyonda 3 eleman›n 3 ! s›ralan›fl› önem- Ü R senirken kombinasyonda elemanlar›n s›ralan›fl› K E önemsenmemektedir. L ‹

DENKLEM S‹STEMLER‹ -4=0

=

8 (x - 3) = 2x 4x - 12 = x

4 (x - 3) = x 4x - x = 12

4x - 3x = - 2

x = - 2 bulunur. Çözüm kümesi = {-2} Rasyonel denklemde payday› s›f›r yapan x = 0 say›s›n›n çözüm kümesinin eleman› olamayaca¤›na dikkat ediniz.

Örnek TEST 6 :

-1=

rasyonel

denkleminin çözüm kümesinin eleman› hangisidir? A) -3 C) 0

B) -1 D) 1

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

3x = 12

x=4

bulunur. Do¤ru cevap C’dir.

Örnek TEST 8 :

bir bilinmeyenli rasyonel denk-

= 3x - 2 = 4x

=8

=8

+

= 0 rasyonel

denklemini sa¤layan say› hangisidir?

lemin çözüm kümesinin eleman›n› bulunuz. =4

rasyonel

denkleminin çözüm kümesini bulunuz?

= C(4,3) =

=

-8=

A)

B) -

Çözüm 8 : 2 (5x + 6) = - 3x

C) -

=-

D)

=

10x + 12 = - 3x

13x = - 12

x=Do¤ru cevap B’dir. 79


4. Ünite

SBS 8 MATEMAT‹K Örnek TEST 15 :

(x - 7) . (x + 5) = x (x - 9) x2 + 5x - 7x - 35 = x2 - 9x - 2x - 35 = - 9x x=5

9x - 2x = 35

x=

Ç = {5} Do¤ru cevap C’dir.

DO⁄RUSAL DENKLEM S‹STEMLER‹N‹N CEB‹RSEL YÖNTEMLE ÇÖZÜMÜ Birinci dereceden (do¤rusal) iki bilinmeyenli denklem sistemini yok etme metodu ile çözmek: (Solving systems of linear equations in two variables)

YOK ETME METODU (Linear-Combination Method)

7x + 3y = -15 5x + 4y = -7 Denklem sistemini çözerek

x + 2y’yi hesaplay›n›z. A) -1 C) 1

B) 0 D) -7

Çözüm 15 : Verilen denklem sisteminde y bilinmeyenin katsay›lar›n› ters iflaretli olacaklar› flekilde en küçük ortak katlar›na eflitleyelim. 4/ 7x + 3y = -15 -3/ 5x + 4y = -7 28x + 12y = - 60 -15x - 12y = 21 28x - 15x = - 60 + 21 13x = -39 x = - 3 hesaplan›r. 5x + 4y = - 7 5 (- 3) + 4 y = - 7 4y = 15 - 7 4y = 8 y = 2 bulunur. Soruda x + 2y = - 3 + 2 (2) = - 3 + 4 = 1 bulunur.

K Do¤ru cevap C’dir. 3x - 2y = 5 Birinci dereceden (do¤rusal) iki E M 2x + 3y = 12 bilinmeyenli denklem sistemini A yok etme metodu ile çözmek için L DENKLEM S‹STEM‹N‹ YER‹NE KOYMA y bilinmeyenini yok etmek isteyelim. y’nin katsay›lar›n› T METODU ‹LE ÇÖZME eflit yapabilmek (en küçük ortak katlar›na eflitleriz.) Ü (Substitutions) için gereken denklemi uygun say›larla (s›f›rdan farkl›) R K çarpmal›y›z. y’nin katsay›lar› z›t iflaretli oldu¤undan E Denklemlerin birinden bilinmeyenlerden birini y katsay›lar›n› eflitledi¤imiz iki denklemi taraf tarafa L ‹ di¤eri cinsinden buluruz. Bulunan bilinmeyenin bu toplayarak x’i buluruz. ifadesini di¤er denklemde yerine yazarak denklemi 3/ 3x - 2y = 5 9x - 6y = 15 bir bilinmeyenli bir denkleme dönüfltürürüz. Elde 2/ 2x + 3y = 12 4x + 6y = 24 edilen bir bilinmeyenli denklemi çözerek bilinmeyeni 9x + 4x = 15 + 24 buluruz. Bulunan bilinmeyenin de¤eri verilen denk13x = 39 lemlerin birinde yazarak di¤er (ikinci) bilinmeyeni buluruz. x= x=3 Buldu¤umuz bilinmeyenlerden birini (x = 3) verilen iki denklemden birinde yerine yazarak di¤er bilinmeyeni buluruz. 3x - 2y = 5 3 . 3 - 5 = 2y 2y = 4 y=2 ‹ki denklemi de do¤rulayan (gerçekleyen) (x,y) = (3,2) s›ral› ikilisine verilen denklem sisteminin çözümü ad› verilir. Ç = {(3 , 2)} Sa¤lamas›: 3.3-2.2=5 9-4=5 5=5√ 2 . 3 + 3 . 2 = 12 6 + 6 = 12 12 = 12 √ Görülüyor ki, s›ral› say› çifti iki denklemi de sa¤lamaktad›r. KEMAL Türkeli • 8. sınıf SBS MATEMATiK

5x - 3y = 7 2x - y = 3 denklem sistemini yerine koyma metodunu kullanarak çözelim: 2x - y = 3 y = 2x - 3; y’yi x cinsinden bulduk. 5x - 3y = 7 5x - 3 (2x - 3) = 7 5x - 6x + 9 = 7 x=9-7 x = 2 bulunur. 2x - y = 3 2.2 - y = 3 y = 4 - 3 y = 1’dir. Ç = {(x,y)} = {(2,1)} buldu¤umuz (x,y) = (2,1) s›ral› ikilisi verilen iki denklemi de sa¤lar.

81


‹ki Bilinmeyenli Denklemler

KEMAL Türkeli

Örnek TEST 16 :

2x + 5y = 3 x - 3y = 7 Denklem sistemini yerine koyma yöntemi ile çözerek bulaca¤›n›z (x, y) s›ral› ikilisinin seçeneklerde verilen hangi denklemi sa¤lad›¤›n› bulunuz. A) x + 8y = 4 C) 4x - y = 16

Beliz; 2x + 3y = 22 Elif; 3x + y = 19 Yok etme metoduyla çözelim. - 9x - 3y = - 57 2x + 3y = 22 - 9x + 2x = - 57 + 22 - 7x = - 35

B) 3x + 2y = 9 D) x + y = 3

x=

3x + y = 19 3.5 + y = 19 y = 19 - 15 y = 4 TL x + y = 5 + 4 = 9 TL

Çözüm 16 : x - 3y = 7 x = 7 + 3y 2(7 + 3y) + 5y = 3 14 + 6y + 5y = 3 11y = 3 - 14

y=-

x = 5 TL

Do¤ru cevap C’dir.

y = -1

x = 3 (-1) + 7 = 4 bulunur. x + y = 4 + (- 1) = 3 oldu¤undan

Örnek TEST 18 :

Do¤ru cevap D’dir.

+

=-1

+

= 7 denklem sis-

teminin çözüm kümesi olan (x, y) s›ral› ikilisinin 2x + 3y = 4 toplam› (x + y = ?) kaçt›r? 3x + 2y = 3 S A) - 8 B) 8 denklem sistemini çözmek için di¤er bir yöntem B S C) 7 D) 9 flöyledir. x ve y‘yi içermeyen 4 ve 3 sabit terimlerinin en küçük ortak katlar›na eflit olmalar› için denklemler Çözüm 18 : + = - 1 4x + 9y = - 12 gereken say›larla çarp›l›r. 6x + 9y = 12, 12x + 8y = 12 + =7 x + 10y = 28 M 12 = 6x + 9y = 12x + 8y’den A x = 28 -10y yerine koyma metodu 12x - 6x = 9y - 8y y = 6x ba¤›nt›s› bulunur. T 4 (28 -10y) + 9y = -12 112 - 40y + 9y = -12 E 2x + 3y = 4 2x + 3.6x = 4 M 31y = 124 y= y = 4 bulunur. A 20x = 4 x= = 0,2 bulunur. T x + 10.4 = 28 x = 28 - 40 x = - 12’dir. ‹ y = 6x = 6 . = = 1,2 x + y = 12 + 4 = 8 bulunur. K Do¤ru cevap A’d›r. , Ç = {(x,y)} = = {(0,2 , 1,2)}

8

Örnek TEST 17 :

Beliz ve Elif Beyaz Adam kitabevinden iki farkl› kal›nl›ktaki defterlerden farkl› say›larda sat›n alm›fllard›r. Beliz 2 adet kal›n defter ile 3 adet ince defter için 22 TL ödemifltir. Elif ise 3 adet kal›n defter ile 1 adet ince defter için 19 TL ödemifltir. E¤er bir kal›n defter ile bir ince defter al›rsak kaç TL öderiz? A) 10

B) 7

C) 9

D) 8

Çözüm 17 : Bir adet kal›n defterin fiyat›n› d = x ile bir ince defterin fiyat›n› y ile gösterelim.

82

Örnek TEST 19 :

Tamam› x litre su alan bir su deposunun (bidon) içinde y litre su vard›r. Depoya (bidona) 25 litre su ilave edilirse bidonun

‘ü dolu, di¤er yandan

bidondan 21 litre su kullan›l›rsa bidonun

‘ü

bofl olacakt›r. Söz konusu bidonun tamam›na kaç litre su depolanabilir. Yukar›daki problemin çözülebilmesi için oluflturman›z gereken denklem sistemi hangi seçenektedir. A) y + 25 =

x

B) y + 25 =

x

y - 21 =

x

y - 21 =

x

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


4. Ünite

SBS 8 MATEMAT‹K

Çözüm 29:

ABC D EF bire bir efllemesini yaparsak

IABI = IEDI = 5 cm

ÜÇGENLER‹N BENZERL‹⁄‹ (Üçgenlerde Benzerlik)

KAA kural›ndan iki üçgenin eflit oldu¤unu söyleyebiliriz.

s(ABC) = s(DEF) = 37° s(BCA) = s(EFD) = 90°

Bir ka¤›da bir üçgen çiziniz. Sonra fotokopi makinas›nda Zoom = 70’i ayarlayarak bir tane fotokopisini yap›n›z. Sizin üçgende bir kenar 10 cm ise fotokopide 7 cm olacakt›r. Sizin üçgeniniz fotokopideki üçgenle benzer olacakt›r. Bir bebek 52 cm do¤uyor, 10 y›l sonra benzer olarak uzad›¤›n› gözlemleriz. Mimarlar yapacaklar› binalar›n benzerlerini kartondan yaparak (maket denir) bir masa üstüne koyarlar.

Eflit üçgenlerde eflit aç›lar karfl›s›nda eflit kenarlar bulunaca¤›ndan IACI = IDFI,

IBCI = IEFI,

s(BAC) = s(EDF) = 53°’dir. ABC

DEF ‘dir. Do¤ru cevap D’dir.

Üçgenlerin benzer olabilmesi için üç aç›s›n›n da kendi aralar›nda eflit olmas› gerekir. Di¤er yandan üçgende iç aç›lar›n toplam› 180° oldu¤undan ikifler Üç kenar› farkl› uzunlukta iki efl üçgenle bu üçaç›lar›n›n birbirine eflit olmas›n›n benzer olabilmeleri genleri çeflitli flekillerde bir araya getirerek kaç de¤iflik için yeterli oldu¤u sonucuna var›r›z. AA (Aç› - Aç›) paralelkenar oluflturabilirsiniz? olan iki üçgende eflit aç›lar karfl›s›nda orant›l› kenarlar Ortak kenar› 3 farkl› flekilde alabilece¤imizden 3 K bulunur. farkl› paralelkenar oluflturabiliriz. E M D A L 6 5

3

6

6

3

3

5 3

5

3

5

6

6

5

‹sterseniz 6 cm köflegen (ortak kenar) iken 3 ile 5’in de yerini de¤ifltirebilirsiniz.

5

A 26 13

12

68°

C

24

3 6

3

T Ü R K E L ‹

B

5

5

Üçgenlerin eflli¤inde AAA (Aç› - Aç› - Aç›) yeterlik koflulu uygulanabilir mi? Bire bir eflleme yapt›¤›m›zda karfl›l›kl› üç aç›s› eflit olan üçgene benzer üçgenler diyoruz. Eflit aç›lar› karfl›s›ndaki kenarlar›n oran› (benzerlik oran›) 1 (bir) ise ancak iki üçgene eflittirler diyebiliriz.

Sizi sınırlayan düşüncelerinizdir. Zihin bir şeyi yapabileceğine inandığı kadar başarılı olur. Yüzde 100 inandığınız sürece her şeyi yapabilirsiniz. Arnold Schwarzenegger KEMAL Türkeli • 8. sınıf SBS MATEMATiK

68°

E

F

10

ABC DEF efllemesini yapal›m. s(B) = s(E) = 68° s(C) = s(F) = 90° AA kural›na göre iki üçgen benzerdir. ABC

DEF yaz›l›r.

IACI IBCI IABI = = IDFI IEFI IDEI 12 5 13 = = 24 10 26

=k

k=

1 2

benzer

iki üçgenin benzerlik oran›d›r. Birer dar aç›s› efl olan iki dik üçgenin benzer üçgenler olaca¤›na dikkat ediniz. 87


4. Ünite

SBS 8 MATEMAT‹K

Çözüm 32:

3 IBCI 9 3 , IACI 6 = = = = 2 ICEI 6 2 ICDI 4

oldu¤undan

IBCI IACI = = ICEI ICDI

Örnek TEST 33: A

3 ve 2

Ters aç›

s(ACB) = S(DCE)

G

D

‹ki üçgenin birer aç›s› eflitken aç›n›n kenarlar› da orant›l› ise KAK koflulu gerçekleflti¤inden iki üçgenin benzer oldu¤u sonucuna var›r›z. IABI 3 = IDEI 2

x 3 = 3 2

9 2

x=

cm’dir.

Ç(DEF)

seçenekteki bilgi yanl›flt›r?

c=3

C) K E M A L

B

D

2=b C

a=4

f=1,5 E

ABC ~ DEF

d=2

A(DEF)

Ç(ADE) A(ADE) A(BCED)

= k2

B)

=

4 5

D)

2 3

A(ADE) Ç(ADG) Ç(ABP)

=

9 4

=

3 2

2

2

4

G

60°

D

B

A(ABC)

A

4

E

2

2

3 60°

P

3

C

3

Eflkenar üçgende a 6 Va = IAPI = 3= 3 = 3 3 cm 2 2 Kenarortaylar›n kesim noktas› G için IGAI = 2IGPI = 2k

Ç(ABC) Ç(ADE)

3

k=

3 cm

=

6 3 = 4 2

IGAI = 2

3 cm dir.

benzerlik oran›d›r.

Veya ABC ~ ADE (A.A) oldu¤undan IAPI

k=

a b c = = d e f

k=

k=

ha h h n V = b = c = a = a hd he hf nd Vd

Ç(ABC)

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

3 2

a=6

3k = 3

Benzer iki üçgenin karfl›l›kl› bütün elemanlar›n›n uzunluklar› oran›n benzerlik oran›na eflit oldu¤una dikkat ediniz.

=

Çözüm 33:

T 1=e Ü R F K E L ‹

Benzer iki üçgenin alanlar› oran›, benzerlik oran›n›n karesine eflittir. A(ABC)

Ç(ABC)

A)

a+b+c a b c =k= = = d+e+f d e f

A

C

G a¤›rl›k merkezinden [DE] // [BC] çiziliyor. Hangi

Benzer iki üçgenin çevreleri oran› benzerlik oran›na eflittir. =

P 3 a=6 cm

Bir ayr›t› a = 6 cm olan ABC eflkenar üçgeninde

Do¤ru cevap A’d›r.

Ç(ABC)

3

B

E

IAGI

Ç(ADE)

=

=

3

3

2

3

=

3 IACI 6 = = 2 4 IAEI

3.6 6 3 = = dir. 3.4 4 2

bulunur.

A do¤ru

91


4. Ünite

SBS 8 MATEMAT‹K Taban çevresi = Ç = a + b + c = 5 + 4 + 3 = 12 cm’dir. Prizman›n 6 köflesi 9 ayr›t› vard›r.

GEOMETR‹K C‹S‹MLER Üçgen Prizma Üçgen dik prizman›n aç›k fleklini çizelim.

A

B

Üst Taban A 3 4

3

A

C 4

Yanal Yüzey 4 B

3

4

A

B

h=7

3 ›

C

A

Prizman›n Taban› A 4 3

5

h=7

Eflkenar üçgen prizman›n aç›n›m›n› çizelim.

A

5 A›

B›

4 C

A

4 120° = s(A0C) 4 O 4 B a=4cm C

4

O 4

B

4

h=6 h=7

4 B

C›

O

C

4

s(A›O›C›) = 120°

[BC] // [B›C›]

C h=6cm

O› IOO›I = 6 cm

A›

Alt Taban

K E M A L T Ü R K E Eflkenar üçgen prizman›n tabanlar›n›n a¤›rl›k L › ‹ merkezinden geçen. IOO I = 6 cm’lik do¤ru parças›na eksen ad› verilir. fiayet prizma bu eksen etraf›nda 120° döndürülürse, prizman›n döndürüldü¤ü Prizman›n taban›ndaki üçgen dik üçgen olduanlafl›lamayaca¤›ndan “Eflkenar üçgen dik prizma ¤undan prizmaya dik üçgen dik prizma denir. 120° lik dönme simetrisine sahiptir.” denir. Prizman›n tabanlar›n› oluflturan IABI = 3 cm, IACI = 4 cm, IBCI = 5 cm’lik do¤ru parçalar›na GEOMETR‹K C‹S‹MLER‹N YÜZEY ALANLARI taban ayr›tlar›, yan yüzlerin ara kesiti olan IAA›I = IBB ›I = ICC›I = 7 cm do¤ru parçalar›na Dik Prizmalar›n Yüzey Alanlar›n›n Hesapyanal ayr›tlar› denir. lanmas› (Surface Areas of Prisms) Ayr›tlar›n kesiflti¤i A, B, C, A›, B›, C› noktalar›na Küpün Alan›: da köfle denir. [AA›] // [BB ›] // [CC › ] Alt ve üst tabanlar› paralel olup efl üçgenlerdir. D› C› Yan yüzleri tabanlara dik ise prizmaya dik prizma; A› B› yan yüzleri tabana dik de¤ilse e¤ik prizma diye isimlendirilir. Yükseklik h = 7 cm olup tabanlar aras›ndaki C uzakl›kt›r veya tabanlardan birinin bir noktas›ndan A B di¤er tabana indirilen dikmenin uzunlu¤udur. a= 5 cm Üçgen dik prizman›n 5 yüzü vard›r. KEMAL Türkeli • 8. sınıf SBS MATEMATiK

95


Geometrik Cisimler

KEMAL Türkeli

Örnek TEST 47:

Bir dikdörtgenler prizmas›n›n boyutlar› aras›nda ba¤›nt›s› varken tüm ayr›tlar›n›n

Çözüm 49 : IABI = a 3 = 3 3 a = 3 cm oldu¤u anlafl›l›r. 2 ? = A = 6a = 6.32 = 54 cm2 dir.

a b c = = 2 3 6 uzunluklar› toplam› 44 cm olarak veriliyor. Bu dik prizman›n bütün alan› kaç cm2 dir? A) 72 cm2 B) 36 cm2 C) 60 cm2 D) 90 cm2 Çözüm 47 :

Do¤ru cevap A’d›r. Özel Geometrik Cisimlerden Prizman›n Hacminin Hesab›

a b c = = 2 3 6

Dik Prizmalar›n Hacminin Hesab›; Kenarlar› 1 cm olan 8 küpten bir kenar› 2 cm olan bir küp olufltural›m. Küpün hacmi 8 cm3 tür.

3a = 2b = c = 6k ise a = 2k, b = 3k, c = 6k alal›m. 44 = 4(a + b + c) oldu¤undan 11 = 2k + 3k +6k 11k = 11 k=1 a = 2 cm, b = 3 cm, c = 6 cm oldu¤u anlafl›l›r. A = 2(ab + ac + bc) = 2(2.3 + 2.6 +3.6) = 2.36 A = 72 cm2 hesaplan›r. Do¤ru cevap A’d›r.

1 cm 1 cm 1 cm2 1 cm

1 cm

S Taban›n›n bir kenar› 6 cm B S Küpün taban›, yüzey alan› 1 cm2 olan 4 kareden ve ayr›tlar›n›n uzunluklar› toplam› 76 cm olan kare dik prizman›n bütün alan› oluflmaktad›r. Taban alan› = 2 x 2 = 4 cm2 kaç cm2 dir? 2 2 A) 168 cm B) 240 cm 2 M C) 198 cm D) 276 cm2 A T E Çözüm 48 : 76 = 8.6 + 4.h M 4h = 76 - 48 = 28 A T h = 7 cm prizman›n yüksekli¤idir. ‹ 2 2 A = 2a + 4a.h = 2.6 + 4.6.7 K = 72 + 168 = 240 cm2 Örnek TEST 48:

8

Do¤ru cevap B’dir. Örnek TEST 49:

B

A fiekildeki küpün [AB] cisim köflegeninin uzunlu¤u 3 3 cm ise bütün alan› kaç cm2 dir? A) 54 cm2 B) 45 cm2 2 C) 36 cm D) 63 cm2

100

Küpün hacmi = Taban alan› x Yükseklik = (2 x 2) x 2 = 4 x 2 = 8 cm3 Genellefltirirsek bu küpe taban› kare fleklinde olan yan ayr›t› tabana dik durumda oldu¤undan “Dik kare prizma”n›n özel bir durumu olarak düflünebiliriz. Küpün Hacmi = a x a x a = a2 x a = a3 tür. a = 3 bir kenar›n›n ayr›t› 3 cm olan bir küp oluflturmak için 3.3.3 = 9.3 = 27 adet küp fleker kullanmam›z gerekir. Küpün hacmi 27 cm3 tür. a = 4 cm olan bir küp yapmak için 4.4.4 = 16.4 = 64 adet küp kullanmam›z gerekecektir. Küpün hacmi 64 cm3 tür. KEMAL Türkeli • 8. sınıf SBS MATEMATiK


4. Ünite

SBS 8 MATEMAT‹K

Genel olarak herhangi bir Dik prizman›n hacmi = Taban alan› x Yükseklik ba¤›nt›s› ile hesaplan›r. 2 2

Kare Dik Prizman›n hacmi h = 3 cm

Bütün yüzleri dikdörtgensel bölgelerden oluflan dik prizmaya dikdörtgenler prizmas› denir. V = a.b.c = taban alan› x yükseklik V = (4.3).2 = 12 (cm2) . 2 (cm) = 24 cm3 tür. a = 2 cm a = 2 cm

K E M A L

Üçgen Prizman›n Hacmi Taban yüzü önde olacak flekilde bir ikizkenar üçgen prizmay› yüzlerinden biri üzerinde çizdim. D

A

T Ü R K E L ‹

5 4 cm B

V = 2.2.3 = 4.3 = 12 cm3 tür. Prizmalar tabanlar›n›n flekline göre isimlendirilir. Dikdörtgenler Prizmas›n›n Hacmi Ayr›t uzunluklar› a = 2 cm, b = 3 cm, c= 4 cm olan dikdörtgenler prizmas›n›n hacmi a.b.c ile hesaplan›r.

E

5 cm

3

6 cm C

3

‹çinde yat›lan bir bez çad›r›n benzeridir. Veya baton bir pastaya benzetebiliriz. Üçgen prizman›n hacmi = Taban alan› x Yükseklik

6.4 x 6 = 12 x 6 2 V = 72 cm3 tür. =

c = 2 cm . .

b = 3 cm

a = 4 cm KEMAL Türkeli • 8. sınıf SBS MATEMATiK

101


Koni, Küre

KEMAL Türkeli

Dik Koni (Dönel Koni, Cone) Huni, dondurma külah› koniye benzer. Koniye benzeyen çad›rlar da vard›r. T

Tepe

TOB dik üçgensel bölgenin TO dik kenar› etraf›nda 360° döndürülmesiyle oluflan cisim oldu¤unu hayal ediniz. Koninin taban yüzeyi bir dairedir. Koninin yanal yüzü bir daire dilimidir.

a=10 cm

h=8 cm

Küre (Sphere)

h2 + r2 = a2 B

O

ITOI = h = 8 cm

Uzayda sabit bir O noktas›ndan r = 10 cm uzakl›ktaki noktalar kümesinin oluflturdu¤u flekle küre ad› verilir. O noktas›na kürenin merkezi, üzerindeki herhangi bir A noktas›n›n O’ya uzakl›¤›na IAOI = r = 10 cm yar›çap ad› verilir. Kürenin merkezi O noktas›ndan geçen herhangi bir düzlemle küre yüzeyinin ortak noktalar›na (ara kesit) büyük çember ad› verilir. Çap = 2r = 2.10 = 20 cm olup kürenin çap uzunlu¤udur.

A

r=6 cm

cisim yüksekli¤i

M

A

B

Koninin aç›l›m› T a = 10 cm

O

r = 10 cm

A

Ekvator’a benzer = Büyük çember

A

α = 216° Daire Dilimi Yanal Alan› oluflturur. B O r = 6 cm Taban Alan›

O Kürenin merkezi IOAI = r = 10 cm = Yar›çap IABI = 2r = 20 cm = Çap Topa benzetirsek topa dokundu¤umuz noktalar›na yüzeyi denir (O,r) = (O,10 cm) kürenin büyük çemberi

T noktas›ndan taban düzlemine inilen dik, taban›n merkezi O’dan geçiyorsa dik koni, geçmiyorsa e¤ik koni diye adland›r›l›r. Tabandaki çemberin çevresi üzerinde al›nan her noktan›n tepe noktas›na uzakl›¤›na ana do¤ru parças› uzunlu¤u denir. a = 10 cm uzunlu¤udur. Tepe noktas›ndan geçen ve çembere dayanan ITAI do¤rusunun hareket ettirilmesiyle uzayda süpürdü¤ü noktalara yanal yüzey denir. Koniler TO ekseni etraf›nda döndürülürse görünüflleri de¤iflmeyece¤inden dönme simetrisine sahiptirler denir. Yüksekli¤i simetri eksenidir. 108

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


8 SBS TEST Sorular›

ÜN‹TE 4

Do¤ru cevaplar›, aç›klamal› çözümleri 199. sayfadad›r.

1. Bir postac› bir apartmandaki 4 farkl› daireye ait 4 farkl› mektubu dairelerin posta kutular›na rastgele birer birer da¤›t›yor. Bu postac›n›n, mektuplar›n dördünü de do¤ru adreslerine da¤›tmas›n›n olas›l›¤› nedir? A) 1 6

B) 1 24

C) 4!

D) 1 12

7 ! x = 1 eflitli¤inin do¤ru olabilmesi için 9 ! y x ile y aras›ndaki ba¤›nt› hangisi olmal›d›r? 2.

A) x = 9y B) x = 8y C) x = 72y D) 9x = 8y

B) 24

C) 12

D) 36

4. A = {2, 9, 6, 7, 8} kümesinin elemanlar›n› birer kez kullanarak 4 basamakl› ve 2 ile tam bölünebilen kaç do¤al say› yaz›labilir? A) 72

B) 24

C) 553

D) 625

5. DEN‹Z kelimesindeki harfleri bir kez kullanarak sonu N ile biten anlaml› ya da anlams›z 4 harften oluflan kaç kelime yazabilirsiniz? (Yazaca¤›n›z 4 harfli kelimelerde her harf yaln›z bir kez kullan›lacakt›r.) A) 64

B) 125

C) 40

D) 24

6. n eleman›n›n r’li (r ≤ n) kombinasyonlar›n›n say›s› C(n,r) ile gösterilir. Buna göre verilen eflitliklerden hangisi do¤rudur? A) 3.C(6,4)= 4.C(6,3) C) C(6,4)= 2.C(6,2)

B) C(6,3)= 2.C(6,4) D) 2.C(6,4)= C(6,3)

7. C kombinasyonu gösterdi¤ine göre C(9,0) say›s› hangisine eflittir? A) 0

A) 15

B) 10

C) 6

D) 9

9. 3’ü k›z ve 2’si erkek 5 ö¤renci bir s›rada oturarak an› olsun diye foto¤raf çektirmek istiyorlar. K›zlar bir tarafta (birarada) erkekler di¤er tarafta birarada olacak flekilde kaç de¤iflik biçimde oturabilirler? A) 12

B) 24

C) 5 !

D) 48

10. A = {1, 2, 3, 4, 5, 6, 7} elemanl› bir kümeden 3 elemanl› alt kümeler oluflturmak istiyoruz. Kümenin elemanlar›ndan birisinin 5 olmas›n› istersek kaç tane üç elemanl› küme oluflturabiliriz?

3. A = {1, 3, 5, 7, 9, 2} kümesinin elemanlar›n› birer kez kullanarak oluflturulacak 4 basamakl› say›lardan kaç› çift say›d›r? A) 60

8. Bir düzlemde herhangi üçü bir do¤ru üzerinde olmayan 6 noktadan kaç do¤ru geçer?

B) 9

C) 8 !

D) 1

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

A) 21

B) 20

C) 15

D) 35

4 x - 1 = 0 denkleminin çözüm küx + 1 2 mesi hangisidir? 11.

A) {-3, 3} C) {-2

B) {1, -1}

2,2

2}

D) {-7

-1 = -5 ise x kaçt›r? 2 1x 3 3 2 5 A) B) C) 5 3 6

7,

7}

12.

13.

A

15 km/saat

D)

6 5

B

x km/saat Bir bisekletli A noktas›ndan B noktas›na 15 km/saat ortalama h›zla gidip x km/saat ortalama h›z› ile geri dönüyor. Gidifl dönüflte ortalama h›z› saatte 12 km ise dönüfl h›z› saatte kaç km’dir? 21 A) 10 B) 9 C) 11 D) 2 2 x+2 = 0 denklemini sa¤layan x + 2 8 x’lerin oluflturdu¤u çözüm kümesinin elemanlar›n›n çarp›m› kaçt›r? (x gerçek say›d›r.) A) -16 B) 12 C) -12 D) -4 14.

109


4. Ünite

SBS 8 MATEMAT‹K

3x + 2y = -1 20 Denklem sistemini sa¤la+ 4y = x 3 yan x ve y say›lar›n›n çarp›m› olan xy = ? kaçt›r? 4 2 A) 1 B) -1 C) D) 9 3 15.

16. 1 (x - 4y) = -1 5 Denklem sisteminin çö1 (x + 2y) = 2 züm kümesi hangi seçenektedir? A) C)

2, 3 4 -2 , 3 2

B) D)

-1 , 3 4 -2 , 3 4

B) 270

C) 375

A) 35

B) 56

5x 15 1 = 3x - 9 3x - 9 3 züm kümesi hangisidir? B) {5}

23.

A

E

D) 42

2a + 3 4a - 5 6 = denkleminin çözüm 6 10 5 kümesinin eleman› a afla¤›dakilerden hangisidir? 19.

13 5

B) -3

C) 3

F

D)

G

B

C

12 cm

ABC bir üçgen [DF] // [EG] // [BC] IADI = IDEI = IEBI, IBCI = 12 cm Verilen flekilde IGEI = x x kaç cm’dir? A) 4

A)

D) { }

D) 95

2 kat›na eflit ise annenin flimdiki y›fl kaçt›r? C) 40

denkleminin çö-

C) {1}

D

(Elif, Onur) yafllar› toplam›n›n 3 kat›na eflitti. Annenin flimdiki yafl›, çocuklar›n›n flimdiki yafllar› toplam›n›n B) 36

D) 120

ÜÇGENLERDE ÖLÇME, GEOMETR‹K C‹S‹MLER‹N HAC‹M VE YÜZEY ALANLARI

18. 4 y›l önce bir annenin yafl›, iki çocu¤unun

A) 20

C) 63

22.

A) {3}

17. Bir okulda SBS’ye giren 645 ö¤renciden, 3 5 erkeklerin ‘i, k›zlar›n ‘s›na eflit ise, bu okulda 5 6 ki k›z ö¤rencilerin say›s› erkek ö¤rencilerden ne kadar azd›r? A) 105

21. Bikem ö¤retmen, yapt›¤› bir yaz›l› s›nav›nda 10 soru sorar. 1. ve 2. soruyu herkesin cevapland›rmas›n› ve toplam 7 soruyu do¤ru çözene 100 puan verece¤ini söyler. Matematik yaz›l›s›nda bu kurala göre 7 soruyu bir ö¤renci kaç farkl› flekilde seçip yan›tlayabilir?

B) 3

C) 2

D) 1 cm

A

24.

11 2

AB//EF//DC 12

20. Bir çocuk park›nda 3 veya 5 çocu¤un oturabilece¤i toplam 20 adet s›ra (bank) vard›r. 74 çocuk bunlarda oturdu¤una göre hangi seçenekteki önerme yanl›flt›r? (S›ralarda bütün yerler doludur.) A) 13 s›ra 3 kifliliktir. B) 39 ö¤renci 3 kiflilik s›ralarda oturmaktad›r. C) 5 kiflilik s›ralar›n say›s› 3 kiflilikten 6 tane daha azd›r. D) 6 s›ra 5 kifliliktir.

110

D

E y

B x

F

4 3

C

IABI = 12 cm, ICDI = 4 cm, IFCI = 3 cm IBFI = x, IEFI = y Verilen bilgiye göre x - y fark› kaç cm’dir? A) 9 cm

B) 3 cm

C) 12 cm

D) 6 cm

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


KEMAL Türkeli

4. Ünite Testi 25.

C

D

27.

C 13

8 cm

F

A 3

A

4 cm

B

6 cm

E

D

4

E

x

B

fiekilde s(ABC) = 90° E ve F noktalar› ABCD dikdörtgeninin kenarlar› üzerindedir. IAEI = 4 cm, IEBI = 6 cm, IBCI = 8 cm ve s(FEC) = 90° oldu¤una göre IFCI = ? kaç cm’dir? A) 11 cm

B) 5

5 cm

C) 5

D) 2

29 cm cm

3 cm

IADI = 3 cm, IBDI = 4 cm IACI = 13 cm ise IBEI = x cm = ? s(ABD) = s(BEC) = 90°’dir B) 7 1 cm 5 D) 6 cm

A) 9,6 cm C) 8 cm

A

26.

28. Bir dikdörtgenin çevre uzunlu¤u 14 cm, köflegen uzunlu¤u 5 cm ise alan› kaç cm2 ’dir? A) 6 cm2 B) 15 cm2 C) 10 cm2 D) 12 cm2

5

D

A

29. 5

E

13

B

B

12 5

O

F

5

C

C

6

s(ABC) = s(ADE) = 90° IADI = IDCI = 5 cm

E

IBCI = 6 cm ise IDEI kac cm’dir? A) 3,75 cm C) 20 cm 3

16 cm 3 D) 25 cm 4 B)

D

fiekilde [AB] // [CD] ve IADI IBCI IEOI = IEDI ve IFOI = IFCI = 5 cm veriliyor. Hangi seçenekteki bilgi yanl›flt›r? A) IEOI = IEDI = 12 cm’dir. B) ICDI = 26 cm

Başarının sırrı işini tatile çevirmektir. Mark Twin KEMAL Türkeli • 8. sınıf SBS MATEMATiK

C) IEFI = 12 cm D) IOBI = 5 cm 111


4. Ünite

SBS 8 MATEMAT‹K

30. Hangi seçenekteki ifade yanl›flt›r?

33. A

A) Üç aç›s› karfl›l›kl› eflit olan iki üçgen benzerdir. B) ‹ki aç›s› ile bunlardan birinin karfl›s›ndaki kenarlar› orant›l› olan iki üçgen benzerdirler.

12 cm C

B

C) Benzer iki üçgenin çevre uzunluklar› oran› benzerlik oranlar›na eflittir. D) Benzer iki üçgenin alanlar›n›n oran› benzerlik oranlar›na eflittir.

31.

A›

A C›

b

c

h = 10 cm

B

a

C

20 katl› bir apartman›n girifl merdivenlerinin yan›na eflya tafl›nmas› veya acil durumda sakinlerinin hastaneye kolayca tafl›nabilmesi için üçgen dik prizma fleklinde bir rampa yap›lm›flt›r. Tabanlar›ndan birinin çevresi 30 dm ve bir taban alan› 30 dm2 dir. Üçgen prizman›n yüksekli¤i 10 dm’dir. Hangi seçenekteki bilgiye eriflemeyiz?

D

E

F

fiekildeki prizman›n taban› bir diküçgen olup dik kenarlar›ndan birinin uzunlu¤u 12 cm’dir. IACI = 12 cm, IEFI = 15 cm Üçgen prizman›n yüksekli¤i ICFI = h = 5 cm’dir. Seçeneklerdeki hangi ifade yanl›flt›r? A) Üçgen dik prizman›n hacmi 270 cm3’tür B) Yüzey alan› 1,8 dm2’dir. C) Yanal yüzünün alan› bir taban›ndan 126 cm2 büyüktür. D) Ayr›tlar›n›n uzunluklar› toplam› 87 cm’dir.

34.

A 20

15

A) Yanal yüzünün alan› 3m2 ’dir. B) Üçgen prizman›n hacmi 300 000 cm3’tür

15 cm

B

C 9

H

C) Üçgen prizman›n yüzey alan› 36 000 cm2’dir. D) Üçgen prizman›n ay›rt say›s› köfle say›s›ndan iki fazlad›r. Taban

32. Hangi seçenekteki ifade yanl›flt›r? A) Dik koniler, eksen etraf›nda döndürülürlerse dönme simetrisine sahiptirler. B) Bir koninin bir köflesi ve bir taban› vard›r. C) Bir koninin merkezinden geçen herhangi bir düzlemle küre yüzeyinin ara kesitine büyük çember ad› verilir. Oluflan dairenin çap› r uzunlu¤undad›r. (Kürenin yar›çap› r uzunlu¤undad›r.) D) Kürenin temel elemanlar› merkezi, yar›çap›n›n

Melisa, üçgen prizma fleklinde karton bir kutu yapmak için kartona yandaki aç›n›m›n› çiziyor. Hangi seçenekteki ifade bu üçgen prizma için do¤ru olmayacakt›r? Yükseklik = 15 cm A) Melisa prizmay› oluflturmak için en az 1250 cm2 karton kullanm›flt›r. B) Prizman›n hacmi 2,25 dm3’tür. C) Bir taban›n alan› 150 cm2’dir. D) Tüm ayr›tlar›n›n uzunluklar› toplam› = 165 cm’dir.

uzunlu¤u ve topa benzeyen yüzeyidir.

112

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


KEMAL Türkeli

4. Ünite Testi T

35. x

B

13 C

D

H

3. Doğrusal denklem sistemlerini çözebildiğimi bir örnekle gösterebilirim. Yok etme yöntemi 2x - 3y = 3 2x - 3y = 3 x - y = 4 -3x + 3y = -12 -x = - 9 x=9 x - y = 4 9 - y = 4 y = 5 Ç = {(x,y)} = {(9,5)} yerine koyma: y = x - 4 2x - 3(x - 4) = 3 2x - 3x + 12 = 3 x = 9 bulurum. 3 ile 4’ün EKOK’ı, 12’ye eşitleyebilirim. 8x - 12y = 12 = 3x - 3y 5x = 9y x = 9k, y = 5k seçersem 9k - 5k = 4 4k = 4 k = 1 bulurum. x = 9k = 9.1 = 9 y = 5.1 = 5 bulurum.

}

6 A

fiekildeki eflkenar üçgen piramitte yükseklik ITHI = 13 cm, IABI = IACI = IBCI = 6 cm biliniyorsa ITAI = ITBI = ITCI = x = ? yanal ayr›t›n› bulunuz. (Piramidin tepe noktas›n› tabandaki üçgenin a¤›rl›k merkezine birlefltiren TH do¤ru parças› taban düzlemine diktir.) A) 4,5 cm

B)

C) 5 cm

D) 6 cm

19 cm

4. Ünitede bunları öğrendiniz mi? 1. Permütasyon sayısı ile kombinasyon sayısı arasındaki ilişkiyi P(n,r) = r! . C(n,r) bağıntısı ile açıklayabilirim. A = {1,6,8,9} kümesinin rakamlarını birer kez kullanarak iki basamaklı n! 4! 4.3.2! P(n,r) = P(4,2) = = = (n-r)! (4-2)! 2! P(4,2) = 12 farklı sayı yazabiliriz. s(A) = 4 elemanlı bir kümenin 2 elemanlı alt n! kümelerinin sayısının C(n,r) = C(4,2) = (n-r)! r! 4! 4.3.2! C(4,2)= = (4-2)! 2! 1.2.2! 4.3 = 6 olduğunu hesaplayabilirim. 1.2 12 = 2!.6 olduğunu söyleyebilirim. Yani 4 kişiden iki kişilik alt kümeler oluştururken biri başkan diğeri de yardımcısı olacak dersem alt küme sayısı r! = 2! katına çıkar. 2. Bir bilinmeyenli rasyonel denklemleri çözüp yorumlayabilirim. 2x - 6 2 (x - 3) x+ =5 x+ =5 x-3 x-3 C(4,2) =

x+2=5

ğum bu sayı rasyonel denklemin paydasını (x-3) sıfır yaptığından denklemin çözüm kümesinin boş küme olduğunu söyleyebilirim.

2 + 1 = 1 bir bilinmeyenli ras3x - 5 3x + 5 4 yonel denkleminin çözüm kümesini bulabilirim. 4[2(3x + 5) + 3x - 5] = (3x - 5) (3x +5) 4[6x + 10 + 3x - 5] = 9x2 -25 9x2 = 9(4x + 5) x2 - 4x - 5 = 0 (x + 1) (x - 5) = 0 çarpanlardan herbirinin sıfır (yutan eleman) olması için x+1=0 x = -1, x - 5 = 0 x=5 Ç = {-1, 5} Denklemin köklerini bulmuş oldum. 4.

5. Üçgen eşlik şartlarının (koşullarının) Kenar - Açı - Kenar (KAK) Açı - Kenar - Açı (AKA) Kenar - Kenar - Kenar (KKK) Kenar - Açı - Açı (KAA) şeklinde adlandırıldığını örneklerle açıklayabilirim. (AA) örnek; birer dar açıları eş olan dik üçgenler benzerdir. Benzer iki üçgenin çevreleri oranı benzerlik oranına eşittir. Benzer iki üçgenin alanlarının oranı, benzerlik oranının karesine eşittir.

x = 3 bulurum. Fakat buldu-

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

113


D‹K PiRAM‹D‹N YÜZEY ALANINI HACM‹N‹ HESAPLAMA

ÜN‹TE 5

Piramidin yüzey alan› = taban alan› + yan yüzlerin alanlar› T

Kare piramidin taban alan› = Ta = a2 Ta = 62 = 36 cm2 Ya = Yan yüzleri birbirine eflit 4 tane ikizkenar üçgendir. Ya= 4

D C 3

dir.

A = Ya + Ta = 2aha + a2 A = 2.6.4 + 62 = 48 + 36 A = 84 cm2 kare dik piramidin alan›d›r.

E a=6

3 3

A

2

Veya Ya =

4

H

a

Ç.ha Ç = 4a = 4.6 = 24 cm 2 24.4 gene Ya = = 48 cm2 hesaplan›r. 2

5

7

( a.h2 ) = 4( 6.42 ) = 4.12 = 48 cm

Örnek TEST 1:

T

B

a=6

ITEI = ha = 4 cm = yanal yüz yüksekli¤i D

D

3 5 4

3 A

4 5

4

4

4

3 3

B

C

a = 6 cm a=6 D

12

3

T

D

C

3 C

18 = b

H Aç›k flekli (kartona çiziniz)

A

a = 32

B

ITHI = h = 12 cm Taban› dikdörtgen fleklinde olan dik piramidin yüksekli¤i 12 cm (ITHI = 12 cm) taban›n›n ayr›tlar› IABI = 32cm, IBCI = 18 cm ise seçeneklerden hangisinde piramitle ilgili verilen bilgi yanl›flt›r? A) Piramidin yanal yüzünün alan› 840 cm2 dir. B) Piramidin taban alan› 576 cm2 dir. C) Piramidin hacmi 2304 cm3 tür. D) Piramidin 5 yüzünün alan› (toplam alan›) 1316 cm2 dir.

114

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


5. Ünite B

SBS 8 MATEMAT‹K E

5

5

ABCD karesine piramidin taban›, T noktas›na da piramidin tepesi denir. Piramidin tepe noktas› T den taban düzlemine indirilen ITHI = 2 7 cm dikmesine (T noktas›n›n tabana uzakl›¤›d›r.) Piramidin cisim yüksekli¤i denir.

C

T

13 10 cm

194 = 13,9 cm

10 cm 8 cm

B

T

6 cm E 6 cm

C

A = Ta + Ya = 100 + 260 = 360 cm2 A do¤ru T .h 102.12 V= a = = 400 cm3 dik kare 3 3 piramidin hacmidir. Dik kare piramidin 8 ayr›t› vard›r. D do¤ru

AAB, TBC, TCD, TDA üçgensel bölgelerinin alan12.8 lar› = 6.8 = 48 cm2 olup piramidin yanal yüzey2 leri ad›n› al›rlar. ITAI = ITBI = ITCI = ITDI = 10 cm do¤ru parçalaDo¤ru cevap B’dir. r›na piramidin yanal ayr›tlar› denir. K IABI = IBCI = ICDI = IDAI = 12 cm do¤ru parçaDik Piramidin Hacmi (Volumes of Pyramids) E lar›na piramidin taban ayr›tlar› denir. M A Yanal yüzleri oluflturan üçgenlerin yükseklikPiramite örnek olarak M›s›r’daki Keops Piramitini L lerine (ITEI = 8 cm gibi) piramidin yanal yüz yüksek(145 metre yüksekli¤i, M.Ö.2550) verebilirim. T likleri denir. Ü Taban› üçgen fleklinde ise üçgen piramit, R T tepe Taban› kare fleklinde ise kare piramit, K E Taban› dikdörtgen fleklinde ise dörtgen piramit, L Taban› beflgen fleklinde ise beflgen piramit, ‹ TH’in H noktas› karenin köflegenlerinin kesim 10 noktas› (Taban merkezinden geçiyorsa, a¤›rl›k merkezi ise) dik piramit, geçmiyorsa e¤ik piramit diye isim8 lendirilir. Kartondan flekildeki kare piramidi yapal›m. 2 7 D

C

B

6 H

E

6

A

12

B

ITHI = Yükseklik = 2 7 cm ITEI = Yanal yüz yüksekli¤i = 8 cm TBC Piramidin yanal yüzlerinden biri ikizkenar üçgendir. IBCI = 12 cm = Piramidin taban ayr›t› Taban› ABCD karesi Alan› = 122 = 144 cm2 dir. KEMAL Türkeli • 8. sınıf SBS MATEMATiK

10

12

6

B

10 A

6

10 74° 8

T 74°

74°

E 10

6 C

10 12

12

12 D

H 12

B 12

A

125


Hacim Testleri

KEMAL Türkeli

4 .3.53 = 500 cm3 tür. 3 Silindirin hacmi = πr2.h = (3.42).6 Kürenin hacmi =

= 48.6 = 288 cm3 ? = Küre - Silindir = 500 - 288 = 212 cm3 Küre ile silindir aras›ndaki bofllu¤un hacmidir. Do¤ru cevap A’d›r.

Dik koninin hacmi 128 cm3 oldu¤u bilindi¤ine göre, küre ile koni aras›ndaki bölgenin hacmi kaç cm3 tür? (π = 3 al›n›z) A) 500 cm3 C) 300 cm3

B) 372 cm3 D) 628 cm3

Çözüm 43:

T

Örnek TEST 42:

Silindir fleklindeki kab›n içinde su varken yar›çap› 6 cm olan bir küre batacak flekilde içine b›rak›l›yor. Kab›n su seviyesi 4 cm yüksekli¤ine göre silindirin yar›çap› kaçt›r? (π = 3) A) 6 cm C) 3 2 cm

B) 6 2 cm D) 9 cm

r O

A

Çözüm 42:

4 cm

Seviyedeki art›fl Su

6 cm O

r

Yükselen su seviyesinin hacmi kürenin hacmine eflit oldu¤undan 4 π63 = π.r2.4 3 r2 = 72 = 36.2 = (6 2)2 r = 6 2 cm hesaplan›r. Do¤ru cevap B’dir.

r

8-r

H

4 cm

B

πr2h = 128

42.h = 128 h = 8 cm 3 koni yüksekli¤idir. OBH dik üçgeninde Pisagor ba¤›nt›s›n› uygulayal›m. r2 = 42 + (8 - r)2 r2 = 16 + 64 - 16r + r2 16r = 80 r = 5 cm Kürenin hacmi ise 4 V1 = . π.r3 = 4.53 = 500 cm3 3 ? = Küre hacmi - Koni hacmi = 500 - 128 ? = 372 cm3 küre ile koni aras›ndaki bölgenin hacmidir. Do¤ru cevap B’dir.

‹z Düflümü ve Çok Yüzlüler Perspektif Çizimi: (Perspective Drawing)

Örnek TEST 43:

T

O

A

H

B

fiekilde, taban yar›çap› 4 cm olan dairesel dik koninin tepe noktas› T olup taban›n›n çemberi O merkezli kürenin yüzeyinde bulunmaktad›r. 136

Gerçek dünyadaki 3 boyutlu cisimleri 2 boyutlu bir ka¤›da çizerken gerçe¤ine yak›n bir izlenim yaratmay› amaçlayan bir çizim yöntemidir. Amaç gözlemcide biçim ve orant› bak›m›ndan gerçe¤e yak›n (3 boyutlu) bir etki yaratmaktad›r. Bir tren yoluna bakt›¤›m›zda paralel raylar›n ileride ufuk çizgisinde (tren raylar›n›n bitti¤i yerde) gökyüzüyle birleflen çizgiye ufuk çizgisi denir. Gözümüzden uzaklaflt›kça birlefliyorlarm›fl gibi görünen raylara (çizgilere) kaybolunan do¤rular, tren raylar›n›n birlefliyorlarm›fl gibi göründü¤ü noktaya da kaybolunan nokta ad› verilir.

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


5. Ünite

SBS 8 MATEMAT‹K Bir Nokta Perspektifi yöntemi ile ön yüzü çizim düzlemine paralel olan dik üçgen prizma fleklindeki çad›r›n çizimini yapal›m Çad›ra sa¤dan bakt›¤›m›z› varsay›yoruz. N noktas› kaybolunan noktad›r.

Dünyam›z tepsi (düzlem) gibi olmad›¤›ndan uzaktan bir geminin önce bacas› görülür. Geminin denizde görülmeye baflland›¤› nokta ufuk çizgisidir. Gökyüzü

A

Ufuk çizgisi

Kaybolunan Nokta

N

Tren Raylar›

A›

A C› Bir Nokta Perspektifi:

N

K E M A L

B

C

‹ki Nokta Perspektifi:

T Ü R K E L ‹ E

D C

B

A

Ön yüzü çizme (resim) düzlemine paralel olan prizman›n perspektifini çizelim. Prizmaya sa¤›ndan bakt›¤›m›z› varsayal›m. N noktas› kaybolunan noktad›r. ABCDE beflgeninin befl noktas›n› N ile birlefltiren noktal› do¤ru parçalar›n› çizdik.

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

Prizman›n ön yüzü çizim düzlemine paralel de¤ilse yani prizman›n bir köflesinde kesiflen üç yüzeyinin de görünmesi amaçlan›yorsa iki kaybolunan nokta ile cismin (prizma) perspektifi çizilir.Örnekte ön kapa¤› s›rt› ve bir yan yüzü görülecek flekilde çizim düzlemine bir yan yüzü paralel olmayan bir kitab›n (dikdörtgenler prizmas›) perspektif çizimi yap›lm›flt›r.

137


SBS TEST Sorular›

ÜN‹TE 5

Do¤ru cevaplar›, aç›klamal› çözümleri 205. sayfadad›r.

1. Ayr›tlar› a = 10 cm, b = 5 cm, c = 20 cm olan dikdörtgenler prizmas› fleklindeki içi bofl bir kaba bir musluktan dakikada 25 cm3 su ak›t›yoruz. t = 30 dakikada kab›n bofl k›sm›n›n hacmi kaç cm 3 olacakt›r? 3

3

A) 350 cm

C) 250 cm

B) 300 cm

3

D) 200 cm

6. Bir dik düzgün alt›gen piramidin taban›n›n bir ayr›t›n›n uzunlu¤u 4 cm, yüksekli¤i ise 2 cm olarak biliniyor. Bu dik alt›gen piramitle ilgili hangi seçenekte verilen bilgi yanl›flt›r? A) Hacmi 16

3 cm3 tür.

B) Bütün alan› 48 + 24 3 cm2 dir. C) Yanal yüz yüksekligi 4 cm dir

3

D) Yanal yüzlerin toplam alan› 42 cm2 dir. 2. Yar›çap› 5 cm olan silindir fleklindeki bir kapta h = 15 cm yüksekli¤inde su vard›r. Silindir fleklindeki kapta bulunan suyun tamam› taban›n›n bir kenar›n›n uzunlu¤u a = 5 cm olan kare dik prizmaya boflalt›l›rsa suyun yüksekli¤i kaç cm olur? (π = 3) A) 48 cm C) 39 cm

7. Çap› 6 cm olan küre fleklindeki bir dondurma topu taban çap› 6 cm yüksekli¤i 12 cm olan bir külaha flekildeki gibi konuyor. fiayet dondurman›n hepsi hiç yenmeden erirse hangi seçenekteki durum gerçekleflir. (π = 3)

B) 45 cm D) 33 cm

3

3

3

3

3. Ayr›tlar› 2, 3, 5 ile do¤ru orant›l› olan a b c = = bir dikdörtgenler prizmas›n›n bütün 2 3 5 alan› 248 cm2’dir. Bu dik prizman›n yar›s›n›n hacmi kaç cm3 tür? A) 120 cm3

B) 125 cm3

C) 130 cm3

D) 135 cm3

A) Eriyen dondurma taflacakt›r. Taflan s›v›n›n hacmi 6cm3 tür.

4. Bir dik piramidin hacmi 400 cm3, yüksekli¤i ise h = 12 cm’dir. Bu dik kare piramidin toplam alan› kaç cm2 dir? T A) 230 cm2 B) 360 cm2

h

C) 425 cm2

D

D) 460 cm2

C H

A

E B

5. Yüksekli¤i 8 cm olan bir kare dik piramidin hacmi 384 cm3, bütün alan› 384 cm2 ise bir yanal yüzünün yüksekli¤i kaç cm’dir? A) 14

B) 12

C) 10

h = 12 cm

D) 8

B) Eriyen dondurman›n 3 cm3 lük k›sm› taflacakt›r. C) Eriyen dondurman›n hacmi külaha eflit oldu¤undan taflma gözlenmez. D) Eriyen dondurma taflmaz, külahta 6 cm3 daha boflluk kal›r. 8. [OA] do¤ru parças› O (0,0) ve (12,5) noktalar›n›n birlefltirilmesiyle oluflmufltur. [OA] do¤ru parças› x ekseni etraf›nda " aç›s› sabit olacak flekilde 360° döndürülüyor. (OAH düzlemi döndürülüyor diye düflünün). Oluflan hayali koninin ayn›s› bir marangoza tahtadan yapt›r›l›yor. Hangi seçenekteki bilgi yanl›flt›r? (π = 3) y ekseni A (12,5)

O

x ekseni

" = 23 H

(12,-5)

142

KEMAL TÜRKELİ • 8. sınıf SBS MATEMATİK


5. Ünite

SBS 8 MATEMAT‹K

A) Dik koninin hacmi 900 cm3 tür. B) Dik koninin bütün alan› 270 cm2 dir. C) Dik koninin yanal alan› 195 cm2 dir. D) Dik koninin taban›n›n çevresi 30 cm’dir.

12. Taban yar›çap› 6 cm, yüksekli¤i 8 cm olan dik koninin içine taban›na ve yan yüzlerine te¤et olacak flekilde bir küre yerlefltiriliyor. Koni ile küre aras›nda kalan bofllu¤un hacmi kaç cm3 tür. (π = 3) T

3

A) 150 cm 9. Taban yar›çap› r ve yüksekli¤i 8 cm olan bir dik koninin hacminin, yar›çap› r olan bir kürenin hacmine eflit olmas› için r kaç cm olmal›d›r? A) 1 cm

B) 2 cm

C) 3 cm

D) 4 cm

4 10. Alanlar› oran› olan iki kürenin hacimleri 9 oran› afla¤›dakilerden hangisidir? 8 2 13 2 2 A) B) C) D) 27 3 9 3 3 11. Taban yar›çap› r = 3, yüksekli¤i h = 2r = 6 cm olan silindirin tabanlar›na yar›çaplar› r = 3 cm yükseklikleri h = r = 3 cm olan iki dik koni flekildeki gibi yerlefltiriliyor. Silindir ile iki koni aras›ndaki bofllu¤un hacmi için hangi seçenekteki önerme do¤rudur? A) 1 cm

B) 2 cm

C) 3 cm

D) 4 cm

O

r = 3 cm A

B) 160 cm3 C) 170 cm3

O O

D) 180 cm3

6

13. Bir dikdörtgenler prizmas›n›n ayr›tlar› 3, 4, a b c 12 ile orant›l›d›r. = = Bu dikdörtgenler 3 4 12 prizmas›n›n cisim köflegeni 26 cm ise bütün alan› kaç cm2 dir? A) 384 cm2

B) 576 cm2

C) 768 cm2

D) 816 cm2

14. Bir dikdörtgenler prizmas›n›n a, b, c boyutlar› 1 1 1 31 aras›nda + + = ba¤›nt›s› vard›r. a b c 30 Bu prizman›n hacmi 30 cm3 ise bütün alan› kaç cm2 dir? A) 31 cm2

B) 62 cm2

C) 93 cm2

D) 60 cm2

15. Dik dikdörtgen piramidin yüksekli¤i ITHI = 12 cm’dir. IABI = a = 18 cm, IBCI = b = 10 cm ise hangi seçenekteki önerme yanl›flt›r? T

12 C

D 5 F

H 5

A) Yar›çap› r = 3 cm olan küre hacmine eflittir. B) Yar›çap› r = 3 cm olan kürenin yar› hacmine eflittir. C) Yar›çap› r = 6 cm olan küre hacmine eflittir. D) Yar›çap› r = 6 cm olan kürenin yar› hacmine eflittir.

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

A

9

E

9

B

A) Dik piramidin toplam alan› 554 cm2 dir. B) Dik piramidin yanal alan› 384 cm2 dir. C) ITEI = 13 cm’dir. D) ITFI = 15 cm’dir. 143


KEMAL Türkeli

5. Ünite SBS Testi 16. Dik düzgün alt›gen piramidin taban›n›n bir ayr›t› 6 cm, piramidin yüksekli¤i de 3 cm dir. Hangi seçenekteki bilgi yanl›flt›r? A) Taban alan› 54 3 ⋲ 93,5 cm2 dir.

20.

B) Yanal yüzünün yüksekli¤i 6 cm’dir. C) Toplam alan› = 54 3 + 96 ⋲ 189,5 cm2 dir. D) Hacmi 54

B

5

O

D 2

6 cm3 tür. A

17. Ana do¤rusunun uzunlu¤u a = 12 cm olan bir dik koninin aç›l›m› flekilde verilmifltir. Hangi seçenekteki bilgi yanl›flt›r? (π = 3) 12

C

3

s (BAC) = s (ACD) = 90°, IABI = 5 cm IACI = 3 cm, ICDI = 2 cm fiekil O merkezli 3 cm yar›çapl› çeyrek bir daire ile bir dikdörtgenden oluflturulmufltur. Kapal› bölgeyi AB kenar› etraf›nda 360° döndürdü¤ümüzde oluflan cisim ile ilgili hangi seçenekteki önerme yanl›flt›r? (π = 3)

r

A) Yar›m kürenin alan› 54 cm2 dir. B) Silindirin yanal alan› 36 cm2 dir

A) Dik koninin taban yar›çap› 5 cm’dir. B) Yanal alan› 180 cm2 dir. C) Dik koninin yüksekli¤i 119 = 10,9 cm’dir. D) Koninin bütün alan› 245 cm2 dir. 18. Taban yar›çap› 5 cm olan bir dik koninin yanal 2 alan›n›n si, 26π cm2 dir. Bu koni ile ilgili hangi 5 seçenekteki önerme yanl›flt›r? (π = 3)

C) Cismin hacmi 108 cm3 tür. D) Cismin toplam alan› 81 cm2 dir. 21. fiekilde r = IOAI = 3 cm olan geometrik cisimde dik koninin taban› ile kürenin en büyük dairesi ayn›d›r. Hangi seçenekteki bilgi yanl›flt›r? IOTI = 4 cm’dir. (π = 3) T

2

A) Yanal alan› 195 cm dir. B) Konini yüksekli¤i 12 cm dir. C) Bütün alan› 260 cm2 dir. D) Hacmi 300 cm3 tür. 19. Bir küre içine flekildeki gibi yerlefltirilen silindirin taban yar›çap› 3 cm ve yanal alan› 48π cm2 dir. Bu kürenin alan› kaç cm2 dir.

A) 225 cm2 B) 300

cm2

C) 432 cm2 D) 450 cm2

h

H

144

r 3

O

3 cm

A

A) Tabanlar› çak›fl›k dik koni ile yar›m küreden oluflturulan cismin toplam alan› 99 cm2 dir. B) Cismin hacmi 90 cm3 tür.

O h

B

A

C) Cismin iki farkl› yüzü vard›r. D) Dik koninin yanal yüzeyini oluflturan sektör yay›n›n uzunlu¤u, koninin taban›ndaki çemberin çevre uzunlu¤unun 2 kat›na eflittir.

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


5. Ünite

SBS 8 MATEMAT‹K A) fiekildeki piramidin hacmi 16 cm3 tür. B) fiekildeki piramidin toplam alan›

22. Yüksekli¤i 12 cm, taban yar›çap› 5 cm olan ITOI ekseni boyunca kesilerek oluflturulan üçte bir koni ile ilgili hangi seçenekteki ifade yanl›flt›r?

22+6 17 ⋲ 46,7 cm2 dir C) fiekildeki piramidin yanal alan›

T

10+6 17 ⋲ 34,7 cm2 dir D) fiekildeki piramidin ayr›tlar›n›n uzunluklar› A

12

r = 5 cm

toplam› 8 + 4

0

120°

A

O

5

120°

C

B

C

B

s(AOB) = 120° ITOI = 12 cm IOAI = IOBI = r = 5 cm s(ACB) = 120° olup daire kesmesi üçte bir koninin taban›d›r. (π = 3 al›n›z)

26 cm’dir.

25. Yüksekli¤i 10 cm olan bir silindir alt ve üst tabanlar›na dik taban merkezinden geçen bir düzlemle kesildi¤inde silindirin ara kesiti kare oluyor. Oluflan yar›m silindirlerden birinin toplam alan› kaç cm2 dir? (π = 3)

A) Üçte bir koninin yüzey alan› 90 cm2 dir. B) Üçtebir koninin hacmi 100 cm3 tür. C) Dik koninin ana do¤rusunun uzunlu¤u ayn› zamanda koninin yüksekli¤i olup 12 cm’dir. D) Kesik dik dairesel koninin yanal alan›n› oluflturan daire diliminin yay uzunlu¤u 10 cm’dir. 23. Bir kürenin içine taban alan› 48 cm2 yüksekli¤i 6 cm olan bir silindir yerlefltiriliyor. Silindirin taban dairesinin çevresi küre yüzeyi üzerinde oldu¤una göre kürenin alan› kaç cm2 dir? (π = 3 al›n›z) A) 144

B) 300

C) 96

O

A) 325

T

C) 225

D) 475

26. Afla¤›dakilerden hangisi platonik (Platonic) bir cisim de¤ildir? A) Tetrahedron (4 yüzlü) B) Kare piramit C) Hexahedron (Küp veya 6 yüzlü) D) Octa hedron (8 yüzlü)

D) 216

24. Taban› dikdörtgen fleklinde olan piramidin taban ayr›tlar›n›n uzunluklar› IABI=6 cm, IBCI=2 cm dir. Piramidin yüksekli¤i ITHI = 4 cm ise dik piramitle ilgili hangi ifade yanl›flt›r? (π = 3 al›n›z)

B) 250

27. Afla¤›daki ifadelerden hangisi yanl›flt›r? A) Piramit bir düzlemle kesildi¤inde gene bir çok yüzlü elde edilir. B) Çok yüzlülerin yüzleri bölge fleklindedir. C) Herhangi iki noktas›n› birlefltiren do¤ru parças›n›n tamam› çok yüzlünün yüzeyinde veya içinde kal›yorsa D›flbükey (convex) dir. D) Çok yüzlüler ayr›t (kenar) say›lar›na göre isimlendirilir.

D

C H

A

6 cm

2 cm B

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

Erişmek istedikleri bir hedefi olmayanlar, çalışmaktan zevk almazlar. Emile Raux 145


KEMAL Türkeli

5. Ünite SBS Testi 28. Afla¤›daki ifadelerden hangisi yanl›flt›r?

30. Ön yüzü ile alt taban› görünecek biçimde kutuya (dikdörtgenler prizmas›) sa¤ alttan bak›lmaktad›r. Kutuyu uçan bir uça¤a benzetebilirsiniz. ABCD ön yüzü çizimin yap›ld›¤› ka¤›t düzlemine paraleldir. Afla¤›daki ifadelerden (aç›k önermelerden) hangisi yanl›flt›r? fiekilde sa¤ alttan bak›ld›¤›ndaki görünüme göre perspektif çizimi yap›lm›flt›r.

A) Ayn› düzlemdeki iki do¤ru birbirine paralel, çak›fl›k veya kesifliyor durumunda olabilir. B) Ayn› düzlemdeki bir do¤ru ile bir çember iki veya bir noktada (Te¤et = Tangert) kesiflebilir. C) ‹ki düzlemin kesiflimi bir düzlemdir. D) Silindir, Koni veya Küre bir düzlem ile kesildi¤inde ara kesiti bir dairesel bölge olabilir.

D

C

SBS 8 M

29. A köflesinden geçen ayr›t (kenar) uzunluklar› 10, 8, ve 6 cm olan flekildeki prizman›n içi silindir (çap› 4 cm) fleklinde oyulmufltur. Hangi seçenekteki önerme yanl›flt›r? (π = 3)

A

B

F

E

D

C

SBS 8 M A

B

6 cm

G

6

E

8

4 cm 10

F

A Z

Y

X

A) Bu cisim tam ortas›ndan silindirin tabanlar›na paralel kesildi¤inde oluflan ara kesitin alan› 48cm2 dir.

A) Kutunun ön yüzü, resmin (çizginin) düzlemine paralel olan perspektif çizimin tipine “Bir Nokta Perspektifi” denir.

B) Bu cisim tam ortas›ndan silindirin tabanlar›na paralel kesildi¤inde oluflan cisimlerden birinin hacmi 192 cm3 tür.

B) fiekildeki perspektif çizim tipine “‹ki Nokta Perspektifi” ad› verilir.

C) Cisim tam ortas›ndan silindir tabanlar›na dik olacak flekilde kesildi¤inde oluflacak ara kesitin alan› 48 cm2 dir. D) Cisim tam ortas›ndan silindirin tabanlar›na dik olacak flekilde kesildi¤inde oluflan iki cisimden birinin toplam alan› 212 cm2 dir.

C) Kutu sa¤dan gözlendi¤inde kaybolunan nokta (X) ufuk çizgisinin (YX do¤rusu) üzerindedir. D) BE ve CG ›fl›nlar› gözümüzden uzaklaflt›kça birlefliyorlarm›fl (X) gibi görünürler bunlara “kaybolunan do¤rular” denir.

Benim kuşağımın yaptığı en büyük keşiflerden biri, insanın düşüncelerini değiştirerek yaşamını da değiştirebileceği gerçeğini bulmasıdır. 146

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


5. Ünite

SBS 8 MATEMAT‹K

31.

A) Koni taban›n›n çevresi 4π cm’dir. B) Koninin yüksekli¤i ITOI = h = 2 C) Dik dairesel koninin hacmi 8 cm3 tür.

15 cm’dir.

15 = 8

15 .π 3

D) Çeyrek dairenin yar›çap› (koninin ana do¤rusunun uzunlu¤u) 6 cm’dir.

7 küp flekildeki gibi yerlefltirilmifltir. Seçeneklerden hangisi oluflturulan yap›n›n herhangi bir yönden görünümünün çizimi olamaz? A)

B)

C)

D)

32. Hangi seçenekteki önerme (ifade) yanl›flt›r? A) Koni iki yüzlü bir geometrik cisimdir. B) Silindir üç yüzlü bir geometrik cisimdir. C) Küre bir yüzlü bir geometrik cisimdir. D) Kare piramit dört yüzlüdür. 33. Bir dik koninin taban›n›n alan› 4π cm2 ve yanal yüzeyinin aç›n›m› flekildeki gibi merkez aç›s› 90° olan bir çeyrek dairedir. a

T

T

A

5. Ünitede bunlar› ö¤rendiniz mi? 1. Herhangi iki noktas›n› birlefltiren do¤ru parças›n›n tüm noktalar› (tamam›) çok yüzlünün yüzeyinde veya içinde kal›yorsa d›flbükey çokyüzlüdür denir. Koflula uymayanlara içbükey denir. 2. Küp gibi bütün yüzleri ve ayr›t uzunluklar› efl olan çok yüzlülere düzgün çok yüzlü ad› verilir. Karton k⤛d›n› keserek düzgün dört yüzlü oluflturabilirim. 3. Yüz say›lar›na göre çok yüzlüler isimlendirilir. Dörtyüzlü; dört yüzü olan bir üçgen piramittir. 4. Cisme önden bakarak yap›lan perspektif çiziminde; ön yüz ile taban yüzlerinden biri d›fl›nda di¤er yüzler görülmez. Bir perspektifte kaybolunan nokta say›s› 2 ise buna 2 nokta perspektifi ismi verilir. Perspektif çiziminde cisme sa¤dan bak›l›yorsa kaybolunan nokta sa¤dad›r. E¤er soldan cisme bak›l›yorsa kaybolunan nokta soldad›r. 5. Yar›çap› r = 3 cm olan kürenin hacmini 4 V= πr 3 = 4 π.33 = 36π ⋲ 108 cm3 he3 3 saplayabilirim. 6. Taban›n›n yar›çap› r = 3 cm, yüksekli¤i h = 4 cm olan dik koninin hacmini 2 2 V = πr .h = π3 .4 = 12π ⋲ 36 cm3 hesapla3 3 yabilirim.

90°

B A

a

h r

A

O r

B

Dik dairesel koni ile ilgili hangi seçenekte verilen bilgi yanl›flt›r? ( π = 3 al›n›z.) KEMAL Türkeli • 8. sınıf SBS MATEMATiK

147


6. Ünite

SBS 8 MATEMAT‹K E

D

O

F

A(-12,5)

C x

O

H -12

pozitif yön

O(0,0)

5 x do¤runun denklemidir. x’in katsay›s› 12 5 olan m = < 0 say›s›na do¤runun e¤imi denir. 12 5 5-0 = oldu¤una dikkat ediniz. 12 -12 - 0

B

A

5 5

5

60°

y

12 ileri

y=-

TAD düzlemi düzgün alt›gen piramidin simetri düzlemlerinden biridir. TBE, TCF düzlemleri de pira360 midin simetri düzlemleridir. = 60° oldu¤undan 6 piramidi TO ekseni etraf›nda 60° veya tam katlar› (60 k) döndürecek olursak, piramidin döndürme öncesi durumunda kald›¤›n› görürüz.

x eksenine paralel do¤runun (yatay yol) e¤imi s›f›rd›r. (y = 5 do¤rusu örnektir.) Örnek TEST 1:

Do¤runun E¤imi (The Slope of a Line) y 5

12 m

y=

5 x 12

A(12,5)

A(20,4)

K E M A L

IAHI = 4

5m

T O x Ü H IOHI = 20 R H x pozitif yön K O 12 m 12 Bafllang›ç noktas›ndan geçen OA do¤rusunun E L e¤imi kaçt›r? E¤imli bir yol, yatayda her 12 m gidildi¤inde 5 m ‹ yükseliyorsa, dikey mesafenin yatay mesafeye oran›na A) % 16 B) 0,24 do¤runun e¤imi ad› verilir. 20 C) D) % 20 4 IAHI 5 E¤im (OA do¤rusu) = = ⋲ 0,42 ⋲ %42 IOHI 12 y IAHI Bafllang›ç noktas›ndan geçen do¤runun denklemi Çözüm 1 : [OA ›fl›n›n›n e¤imi = = x IOHI 5 y= x x’in katsay›s› do¤runun e¤imidir. 12 4 4.5 20 = = = e¤im = 0,20 = % 20 dir. 20 20.5 100 Do¤ru cevap D’dir. Kuzey ülkelerinde çat›lar›n dik (e¤imi fazla) yap›lmas›n›n nedeni biriken kar›n afla¤›ya kayarak düflmesi içindir. Çat›da kar›n yüzeye sürtünmesini azaltmak için çat› çinko ile de kaplan›r. Aksi takdirde kar›n a¤›rl›¤›ndan çat› çökebilir. AOH aç›s›na OA do¤rusunun e¤im aç›s› da denir. Do¤runun x ekseninin pozitif yönü ile yapt›¤› aç› dar aç› ise e¤imin iflareti pozitif, genifl aç› ise e¤im negatif bir gerçek say› olur. KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK

y = mx + n do¤rusunun e¤imi m’dir. y

A 3

B -4

α

O

A(0,3), B(-4, 0) noktas›ndan geçen do¤runun e¤imi x

153


Do¤runun E¤imi m=

IAOI IBOI

=

y = mx + n = 3=

3 4

3

KEMAL Türkeli

olup

4 3

Örnek TEST 2:

x+n

4

.0 + n

y

A(0,3) den geçti¤inden

n = 3 bulunur. 3

Verilen do¤runun denklemi: 3 3 y= x+3 x’in katsay›s› = m = do¤ru4 4 nun e¤imidir. 3 y= x+3 3x - 4y + 12 = 0 fleklinde 4 yaz›labilir. ax + by + c = 0

a = 3, b = -4, c = 12 dir.

y

A B

-3

-4

4

x

O

A(0,4) ve B(-3,0) noktas›ndan geçen do¤runun IAOI 4 e¤imi = = , denklemi ise IBOI 3 4 y= x + 4’tür. 3 3 4 < oldu¤undan e¤imin artt›¤›n› anlar›z. 4 3

y=

3 3

B) m =

θ

}

(

154

)

x -4

3

3 x -4 4 4 y=x -4 3

4 4 C) m = 3 D) m = -

4

y=

4

y=

3

4 3

x -4

Çözüm 2 : y

C(6,4) H

3

Sonuçta do¤runun x ekseninin pozitif yönü ile yapt›¤› aç›s› da büyümüfltür. α = 37°, θ = 53° olup α < θ 37° < 53° olur. Do¤runun e¤imini etkileyen α aç›s› 0° ≤ α < 180° dir. Genel olarak bir do¤runun denklemi ax + by + c = 0 (a ≠ 0, b ≠ 0, c ≠ 0) fleklinde biliniyorsa sözkonusu do¤runun e¤imi a m=‘dir. b Orjinden geçmeyen 3x - 4y + 12 = 0 a = 3, b = -4, c = 12 ax + by + c = 0 do¤rusunun e¤imi 3 a 3 3 m==== tür. 4 b -4 4

B

A(3,0) ve B(0,-4) noktalar›ndan geçen do¤runun e¤imi ve denklemi hangi seçenekte do¤ru verilmifltir? A) m =

4

x

A

O

Oα -4

A

x

6

B

α = (CAH) = (OAB) (ters aç›lar eflittir) tan α =

IOBI IOAI

m = tan α = y=

4 3

= 4 3

α aç›s›n›n karfl›s›ndaki dik kenar›n uzunlu¤u α aç›s›n›n komflu dik kenar›n›n uzunlu¤u

= e¤im,

x -4 = mx + n

y=

4 3

x -4 do¤run un

denklemidir. B(0,-4) noktas›n›n koordinatlar› do¤ru denklemini sa¤lamal›d›r. Do¤ru cevap A’d›r. KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK


6. Ünite

SBS 8 MATEMAT‹K

Do¤rusal denklem sistemlerinin grafiklerini çizerek sistemi çözme:(The graphing

Çözüm 3 : y

method for solving a system of linear equations in two variables)

D C

3x - 2y = 5 ve 2x + 3y = 12 denklemlerinin grafikleri paralel veya çak›fl›k de¤illerse bir noktada do¤rular kesifleceklerdir. Do¤rular›n kesiflme noktas›n›n koordinat düzlemindeki adresi K(x,y) = (3,2) y çözüm kümesinin eleman›d›r. denklem sisteminin y(x=0)

4

A

2

D

O -2,5

5 3 3

C

A

3x - 2y = 5

K(3,2) B

5

-3

O

x

H

C(-3,5), D(0,8) x(y=0)

AOBC yamuksal bölgesinin alan› AHC dik üçgeni

6

ile HOBC dikdörtgeninin alanlar› toplam›na eflittir.

2x + 3y = 12

5.5

+ 3.5 =

25

2 2 yamu¤unun alan›d›r. 3x - 2y = 5 do¤rusunun eksenleri kesti¤i noktalar: x = 0 (y ekseni) için 3.0 - 2y = 5 5 1 5 y== -2 = -2 = -2,5 C(0,-2,5) dir. 2 2 10

K E M A L

+15 =

55 2

= 27,5 cm2 = AOBC

Veya A=

a+c . IAOI + IBCI . h= IOBI 2 2

8+3 . 55 T = 5= = 27,5 cm2 bulunur. Ü 2 2 R K IOAI = IDOI = 8 cm oldu¤undan AOD üçgeninin E ikizkenar dik üçgen oldu¤una dikkat ediniz. L Do¤ru cevap C’dir. ‹

y = 0 (x ekseni) için 3x - 2.0 = 5 2 5 5 x= =1 D( , 0) dir. 3 3 3

C

y=5

A(-8,0), B(0,5)

?=

x 0 y -2,5

B

45°

-8 cm 5

8 cm

45° 3 45° 5 cm

3 45°

y-x = 8

5/3 0 D

2x + 3y = 12 do¤rusunun eksenleri kesti¤i noktalar; x = 0 (y ekseni) için, 2.0 + 3y = 12

y=4

A(0,4)

y = 0 (x ekseni) için, 2x + 3.0 = 12

x=6

B(6,0)

Örnek TEST 3:

x ekseni, y ekseni, y = 5 do¤rusu ve y - x = 8 do¤rular›n›n s›n›rlad›¤› yamuksal bölgenin alan› kaç cm2 dir? (Not: x ve y eksenlerinde 1 birim uzunluk 1 cm olarak kabul edecektir.) A) 12,5 cm2 B) 4,5 cm2 2 C) 27,5 cm D) 32 cm2

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK

Bir baba o¤lundan 27 yafl büyüktür. Baban›n yafl› o¤lunun yafl›n›n dört kat›na eflit oldu¤una göre, baba ile o¤lunun yafllar› toplam›n› bulunuz. Bu problemi çözerken o¤ulun yafl›n› x ile baban›n yafl›n› y ile göstererek iki bilinmeyenli iki denklemi yazal›m. Baba o¤lundan 27 yafl büyük oldu¤undan; y= x + 27 Baban›n yafl› o¤lunun yafl›n›n dört kat›na eflit oldu¤undan; y = 4x

155


6. Ünite

SBS 8 MATEMAT‹K Örnek TEST 6:

Afla¤›da her seçenekte ayr› bir eflitsizlik ve say› do¤rusunda çözüm kümesine ait noktalar›n (gerçek say›lar) oluflturdu¤u alt küme (Ç ⊂ R) verilmifltir. Hangi eflitsizli¤in çözüm kümesi yanl›flt›r? A) 2x - 3 ≤ 5

Efi‹TS‹ZL‹KLER (Inequalities) Terazide denge durumu denklemin çözümüne benzetilebilir. Örne¤in 2x + 1 = 5 denklemi x = 2 için sa¤lanabilir. = 2 kg, = 1 kg kabul edersek

0

1

2

3

x

4

O B) Yatay pozisyonda terazi (= var)

2 - 3x < 8 -3

= 3 kg’l›k a¤›rl›k koyarsak, Sol taraf 2x + 1 = 2.3 + 1 = 7 kg olaca¤›ndan ve 7> 5 oldu¤undan O noktas›na göre 7 kg’›n döndürme etkisi 5 kg’›n döndürme etkisinden büyük olaca¤›ndan terazinin sol kefesi afla¤›ya hareket edip duracakt›r.

-2

C)

-3 -2 -1 0 D)

[AB ›fl›n› 5 ≤ 2x + 1 eflitsizli¤inin çözüm kümesidir. 1

2 A

5 ≤ 2x+1 B

2≤x

1

2

3

2

x

3

x

4

2x ≤ 8

2 - 3x < 8

x≤

-

6 3

8

2 x ≤ 4 do¤ru çizilmifl.

2 - 8 < 3x

4 - 13 ≥ 3x

<x

-6 < 3x

-2 < x do¤ru çizilmifl.

-9 ≥ 3x

-5 -4 -3 -2 -1 0 D;

3x ≠ 14 -2

1

3x ≠ 12

2

x

x ≠ 4 do¤ru çizilmifl. Do¤ru cevap C’dir.

Örnek TEST 7:

Seçeneklerde bir eflitsizlik ve çözümü verilmifltir. Hangi eflitsizli¤in çözümü yanl›fl yaz›lm›flt›r? x A) < -5 B) -3x + 2 > 8 2 10 ≤ x x < -2 C) 2x - 5 ≥ -9 -2 ≤ x

KEMAL TÜRKEL‹ • 8. s›n›f SBS MATEMAT‹K

1

-9 ≥x 3 x ≤ -3 bulunur. Eflitsizli¤i sa¤layan (do¤rulayan) reel say›lar kümesi yanl›fl çizilmifltir.

x

5 ≤ 2x + 1 eflitsizli¤ini gerçekliyen say›lar› bulmaya eflitsizli¤i çözmek; bulunan say›lar›n oluflturaca¤› kümeye de eflitsizli¤in çözüm kümesi denir. Çözüm kümesi: 2 ≤ x, say› do¤rusunda da çözüm kümesinin elemanlar› koyu çizgi ile gösterilir. ([AB ›fl›n›n›n noktalar›n›n eflleflti¤i gerçek say›lar çözüm kümesinin bir eleman›d›r.)

x

1

3x + 2 ≠ 14

K E M Çözüm 6 : A L A; 2x ≤ 3 + 5 T Ü 5 ≤ 2x + 1 ifadesine eflitsizlik ad› verilir. R 5 - 1 ≤ 2x K B; E 4 ≤ 2x L 2≤x Verilen ifade (aç›k önerme) x’in ‹ 2’ye eflit veya 2’den büyük gerçek (Gerçel, Reel) C; say›lar› için do¤ru olur.

0

4 - 3x ≥ 13

0

0

-1

D)

4x 3 -2< +x 5 10 -23 < x 157


Eflitsizliklerin Çözümü Çözüm 7:

-

x

≤-5

2

KEMAL Türkeli

(-2).(-

1 ) . x ≥ (-2).(-5) 2

Çözüm 8:

Bir eflitsizli¤in her iki taraf› negatif bir say› ile çarp›l›rsa eflitsizlik yön de¤ifltirir. A;

10 ≤ x 0

1

B;

do¤ru x

10

-3x > 8 - 2

-3

-3x > 6

-3

x<

6

Do¤ru cevap D’dir.

-3

Bir eflitsizli¤in her iki taraf› negatif bir say› ile bölünürse eflitsizlik yön de¤ifltirir. x < -2

do¤ru 0 +1

x

-2 -1 C;

2x ≥ 5 - 9

2x

2x ≥ - 4 0

2

-4 2

x ≥ -2

-2 -11

3 5x 4x < 10 5 5 1 2

-12 -11

<x

-11,5

0

-

23 10

<

x 5

-

23 2

+1

B

x

< y eflitsizli¤inde x negatif ise y’nin 6 iflareti pozitif olacakt›r. Çünkü 0 < -3.x olacakt›r. fiayet y negatif de¤erler al›rsa x’in iflareti pozitif olacakt›r. Çünkü, 5 5 1 - y < 3x y<x 6 18 3 1 0< .y pozitif olaca¤›ndan x de pozitif 3 olacakt›r.

Elif, Fulya ve Osman farkl› yafllarda üç kardefltirler. Elif 7 yafl›nda olup en küçük kardefltir. Osman ise Fulya’dan büyük olup 14 yafl›ndad›r. Fulya’n›n yafl›n›n eflitsizlik kullanarak do¤ru ifadesi hangisidir? A) 7 ≤ x ≤ 14 B) 7 ≤ x < 14 C) x ≤ 7 < 14 D) 7 < x < 14 158

2 -2

5

Örnek TEST 8:

x+2≤y

<x

Do¤ru cevap D’dir. - 3x +

x + 2 ≤ y eflitsizli¤ini do¤ru yapan (x, y) s›ral› ikililerinin koordinat düzleminde oluflturduklar› bölgeyi bulal›m.

x

- 11,5 < x -1

‹ki Bilinmeyenli Do¤rusal Eflitsizliklerin Çözüm Kümesini Koordinat Düzleminde Gösterme; (The Graph of a Linear Inequality in Two Variables)

y

+1

-2 -1 D;

Fulya’n›n yafl›n› x ile gösterirsek en küçük kardefl Elif’ten büyük olacakt›r. 7 < x (ikiz olamayacaklar›ndan 7 ≤ x yazamay›z.) Fulya Osman’dan küçük oldu¤undan x < 14 olmal›d›r. Fulya Osman’la ayn› yaflta olamayaca¤›ndan x ≤ 14 olamaz. ‹kisini birlefltirirsek 7 < x < 14 do¤ru eflitsizlik olacakt›r.

A 0

x

y = x + 2 do¤rusu, koordinat düzlemini bir ovaya benzetirsek sanki bir demiryolu gibi ovay› 2 yar› düzleme ay›r›r. x + 2 = y do¤rusu üzerindeki noktalar çözüm kümesinin bir alt kümesidir. Eflitsizli¤i do¤rulayan (sa¤layan) (x,y) s›ral› ikililerinin yar›m düzlemlerden do¤runun hangi taraf›ndaki oldu¤unu bulmak için bafllang›ç noktas›n›n eflitsizli¤i do¤rulay›p do¤rulamad›¤›n› kontrol edelim. x +2≤y 0+2≤0 2≤0 s›f›r 2 ’den büyük olmad›¤›ndan O noktas›n› içeren yar›m düzlem çözüm kümesine ait de¤ildir. Renkli boyal› bölgedeki tüm noktalar ve do¤ru üzerindeki tüm noktalar çözüm kümesine aittirler. Yar› düzlemi bulmak için di¤er bir yol x = 0 yazarsak 0 + 2 ≤ y 2 ≤ y y ekseninin ordinat› 2’den büyük olan noktalar› ([AB ›fl›n›) çözüm bölgesine aittir. Boyal› yar› düzlem eflitsizli¤i sa¤layan (x,y) s›ral› ikililerin adreslerini göstermektedir. KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK


KEMAL Türkeli

6. Ünite Trigonometrik Oranlar

sin237 + cos237=

(Trigonometric ratios)

Bir dik üçgendeki herhangi bir dar aç›n›n trigonometrik oranlar›n› tan›mlayarak, aç›lar ile kenarlar aras›ndaki etkileflim bilgimizi gelifltirelim. B

hipotenüs

5

3

37°

A

C

4

b = 4 cm lu¤udur. sin A =

karfl› dik kenar›n uzunlu¤u 3 = <1 5 hipotenüsün uzunlu¤u

cos A =

4 5

komflu dik kenar›n uzunlu¤u hipotenüsün uzunlu¤u

<1

Bir dik üçgende dik aç› dar aç›lar›n her birinden büyük oldu¤undan ve bir üçgende büyük aç› karfl›s›nda uzun kenar bulunaca¤›na dikkat ederseniz sinA ve cosA daima basit kesir olup birden küçüktür. ‹leriki s›n›flarda sin 90° = 1, cos 0° = 1 oldu¤unu ö¤reneceksiniz. karfl› dik kenar›n uzunlu¤u 3 tan A = = 4 komflu dik kenar›n uzunlu¤u cot A =

b 4 komflu dik kenar›n uzunlu¤u = = karfl› dik kenar›n uzunlu¤u a 3

37° + 53° = 90° oldu¤undan (Tümler aç›lar)

( 45

2

=

9+16 25 = =1 25 25

Dik Üçgenlerin ‹ç Aç›lar›n›n Trigonometrik Oranlar›n›n Hesab›na Örnekler; A 67°

13 5

23°

B

C

12 5 , 13 5 tan B = , 12

sinüs

sin B =

tanjant

5 = cos A 13 12 cos B = = sin A 13 5 tan B = = cot A 12 sin B =

12 13 12 cot B = 5 cos B =

A + B = 90°

kosinüs kotanjant Tümler aç›

sin 67°= cos 23° tan 23°= cot 67°

Bir ikizkenar üçgende aç›lar›n trigonometrik oranlar› IABI = IACI = 5 cm ‹kizkenar üçgenin IAHI yüksekli¤ini çizelim. A 37° 37°

b c 5

4

5

b a

Dikkat ederseniz bir dik üçgende dar aç›dan birinin sinüsü tümlerinin kosinüsüne; birinin tanjant› tümlerinin kotanjant›na eflittir. sin 45° = cos 45°, tan 45° = cot 45°, sin 40° = cos 50°, sin 60° = cos 30°, tan 60° = cot 30°, sinx = cos(90 - x) tanx = cot(90° - x) 160

+

olmas›na dikkat ederiz. sin237 + cos237 = 1 sin2x + cos2x = 1

3 sin 37° = = cos 53°, 5 4 cos 37° = = sin 53° = 5 3 tan 37° = = cot 53°, 4 4 cot 37° = = tan 53° = 3

2

a = 3 cm A aç›s›n›n karfl›s›ndaki dik kenar›n uzunlu¤udur.

A aç›s›n›n yan dikkenar›n›n uzun-

=

( 35

B

53°

3

sin B =

4 , 5

cot B =

3 4

H

cos B =

C

3

3 , 5

tan B =

4 3

KEMAL TÜRKELİ • 8. sınıf SBS MATEMATİK


6. Ünite

SBS 8 MATEMAT‹K

Bir ikizkenar dik üçgende trigonometrik oranlar; A

Bir kenar› 2 cm olan bir eflkenar üçgenin yar›s›n› çizelim. A

45° 45°

2

30° ve 60°’lik Aç›lar›n Trigonometrik Oranlar›

2 30°

2

B

45°

H

2

2

2 2 2 , cos 45° = , tan 45° = =1, 2 2 2 2 = 1 (ABH üçgeninde) 2

sin 45° = cot 45° =

Klinometre (Clinometer) yaklafl›k 1,3 kg a¤›rl›¤›nda yerin manyetik e¤imini veya bir yüzeyin, bir yolun yatay bir düzleme göre e¤imini ölçmeye yaraK yan, pusula tipi bir ölçme cihaz›d›r. E M A L Bir dar aç›n›n Tanjant›n›, sinüsü ve kosinüsü T cinsinden ifade etme; Ü B R K E L c=5 a=3 ‹

A

b=4

2 cm

C

C

h=

2 cm

3

60°

B

1 cm

C

D

1 cm

Pisagor ba¤›nt›s›n› ABC dik üçgenine uygularsak; IABI2 = IBCI2 + ICAI2 22 =

12 + h2

cos 60° =

h2 = 4 - 1 = 3 = ( h = 3 cm’dir.

3)2

IBCI 1 = = sin 30° 2 IABI 60° + 30° = 90° (Tümler aç›)

sin 60° =

IACI = IABI

tan 60° =

IACI 3 = = 1 IBCI

cot 60° =

IBCI 1 = = tan 30° = 3 ⋲ 0,577 IACI 3 3

3 = cos 30° = 0,866 2 3 = cot 30° = 1,732

45° Aç›n›n Trigonometrik Oranlar› A

sin A cos A

=

tan A =

3 5 4 5

=

3 = tan A 4 2cm

sin A

2 cm

cos A

tan A.cot A =

3 . 4 = 1 oldu¤undan 4 3

tan x . cot x = 1

B

sin 45° = tan 45° =

KEMAL TÜRKELİ • 8. sı nı f SBS MATEMATİK

45°

2

C

IACI 2 = = cos 45° 2 IBAI IACI IBCI

=

2 = 1 = cot 45° 2 161


Trigonometrik Oranlar

KEMAL Türkeli

Örnek TEST 18:

0 < s(x°) < 90° (Dar aç›) ve 5 sin x = ise seçenekler13 deki ifadelerden hangisi yanl›flt›r? 13 A) sin x + cos x = 12 12 B) cos x = 13 5 C) tan x = 12 12 D) cot x = 5

2 3 = 3 den IAHI IAHI = 2 cm bulunabilir. Veya tan 60° =

A(ABC) =

IBCI . IAHI 4 = 2

3.2 = 4 3 cm2dir. 2 Do¤ru cevap C’dir.

A

Çözüm 18:

Örnek TEST 20: x = 10.sin 60° + 10.sin 30° - 10. cos 60° ifadesinde hangisine eflittir? A) 5( 3 + 1) B) 4 3 C) 5 D) 5 3

13 5

x

B

‹kizkenar üçgende AH yüksekli¤inin ayn› zamanda aç›ortay ve kenar ortay oldu¤una dikkat edelim. IBHI = IHCI = 2 3 30°, 60°, 90° dik üçgeninde kenarlar aras›ndaki iliflkiden IAHI = 2 cm’dir.

C

a = 12

Çözüm 20:

132 = a2 + 52

a2 = 169 - 25 = 144 = 122 a = 12’dir. 12 5 12 cos x = , tan x = , cot x = 13 12 5 ? = sin x + cos x =

sin 30° = cos 60° oldu¤undan

x = ? = 10.sin 60° + 10.cos 60° - 10.cos 60°

5 12 17 + = 13 13 13 Do¤ru cevap A’d›r.

Örnek TEST 19:

3 =5 2

= 10 sin 60° = 10.

3

30°

A

2

3

sin60° =

3 2

120°

C

B 4

60°

3

1

Do¤ru cevap D’dir.

fiekildeki ikizkenar üçgenin s(A) = 120° ve 3 cm ise ABC’nin alan› kaç cm2 dir?

IBCI = 4

cm2

A) 4 C) 4

3 cm

2

Çözüm 19:

164

B) 2

3

D) 8

3 cm2

60° 60°

C) sin 40° = cos 50°

4

2

30°

30°

2

Afla¤›daki seçeneklerden birinde verilen yanl›flt›r. Yanl›fl ifade hangisidir? 3-1 A) sin 60° - cos 60° = 2 B) cos 69° = 1,36

A

4 B

Örnek TEST 21:

cm2

3

H

2

C

D) tan 30° =

sin 30° sin 60°

3 KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK


SBS TEST Sorular›

ÜN‹TE 6

Do¤ru cevaplar›, aç›klamal› çözümleri 213. sayfadad›r.

1. 2x + 5y = 0 do¤rusunun e¤imi kaçt›r? 2 A) B) 2 5 5 2 C) D) 2 5 2. 3x - 6y + 9 = 0 do¤rusunun e¤imi hangisidir? 3 1 A) B) 2 3 1 C) D) 2 2 3. Koordinat sisteminin bafllang›ç noktas› olan 0 (0,0)’dan ve (-2,4)’den geçen do¤runun e¤imi hangisidir? A) 2

D)

y=2

} K(0,2)

B)

y=x+2

}

x+y=3 K(2,0) 2x - 3y = 6 y

x+y=3

3 y=2

2

K

2 x

-2

x

K

2x - 3y = 6

C) x = 3 y=2

} K(3,2)

D)

y=x x = -3

} K(-3, -3) y

y x=3

y=x x=-3

B) -2

1 C) 2

A) y = x + 2 y=2

y=2

1 2

K(3,2)

x x

K

4. 6. x ekseni, x = -6, x = -3 ve y = -x do¤rular›n›n s›n›rlad›klar› yamuksal bölgenin alan› kaç cm2 dir? Uyar›: x ve y eksenlerinde 1 birim uzunluk = 1 cm olarak al›nacakt›r.

y B

6

3 2

A(-4,2) -4

C(4,3)

-2

0

D(6,2) 4

6

B) 9 cm2

C) 18 cm2

D) 13,5 cm2

x

A (-4,2) B (-2,6) C (4,3) D (6,2) Bafllang›ç noktas›ndan geçen do¤rulardan birinin denklemi yanl›fl yaz›lm›flt›r. Yanl›fl olan do¤runun denklemi hangi seçenektedir? x A) y = B) y = - 3x 2 C) y = 4 x D) y = x 3 3 5. Seçeneklerde do¤rular›n denklemleri verilerek do¤rular›n grafi¤i çizilmifl ve kesifltikleri noktan›n koordinat› gösterilmifltir. Seçeneklerin birinde kesiflme noktas› yanl›fl bulunmufltur. Kesiflme noktas› hangisinde yanl›fl bulunmufltur? 166

A) 12,5 cm2

7. x ekseni, y - x = 4 ve x + y = 4 do¤rular›n›n s›n›rlad›klar› üçgensel bölgenin alan› kaç cm2 dir? Uyar›: x ve y eksenlerinde 1 birim uzunluk = 1 cm olarak al›nacakt›r. A) 16

B) 32

C) 24

D) 27

8. x ekseni, 7x + y = 7 ve 7x + 5y = 35 do¤rular›n›n s›n›rlad›¤› kapal› bölgenin alan› kaç cm2 dir? Uyar›: x ve y eksenlerinde 1 birim uzunluk = 1 cm olarak al›nacakt›r. A) 10,5

B) 14

C) 17,5

D) 27

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK


6. Ünite

SBS 8 MATEMAT‹K

9. Bir baba o¤lundan 30 yafl büyüktür. Alt› y›l sonra, baban›n yafl›n›n o¤lunun yafl›na oran› 3 olacakt›r. Baba ile o¤lunun flimdiki yafllar›n› veren denklemler ve grafiksel çözümü hangi seçenekte do¤ru verilmifltir? (O¤ulun flimdiki yafl› x, baban›n flimdiki yafl› y ile gösterilmifltir.) A)

B)

y - x = 30 y + 3x = 12

12. Seçeneklerin herbirinde verilen eflitsizli¤in çözüm kümesi olan noktalar taral› bölge olarak verilmifltir. Seçeneklerin hangisinde çözüm kümesi yanl›fl taranm›flt›r? A) 1 ≤ x ve -2 ≤ y

B) -x ≤ y ve 1 < y

y

y

y - x = 30 3y + x = 12

x=1 y

y

K(10,40)

36 30

K(6,36)

-4

x

4

x -30

y=1

x

y = -2

30

-30

1

C) y - x = 30 y - 3x = 12

D)

10

x

C) x ≤ -2 ve y < 3

3

y

y=3

y=x

y=2

x = -2

y 30

x ≤ y ve y ≤ 2

y

y - x = 30 y - 3x = 18

y

D)

x

-2

K(8,38)

x

K(9,39)

30

12 x -30

-4

-30

9

-6

x

10. 2x - 1 < 5 ve 3 - 5x ≤ 13 eflitsizliklerini birlikte sa¤layan reel (gerçek) say›lar›n alt kümesi say› do¤rusunda hangi seçenekte do¤ru gösterilmifltir? A)

B)

C)

D)

-2

0

2

x

4

3 -1

}

13. x - y ≤ 3 eflitsizliklerini sa¤layan (x, y) -1 < y s›ral› ikililerinin oluflturdu¤u bölge hangi seçenekte do¤ru verilmifltir? A) 0 y = -1

x

0

B)

y

y 3

x x

-2

5

0

3

y = -1

-3

-2 -1

0

1

3

-2

C)

D) y y

11. Seçeneklerde bir eflitsizlik ve çözümü verilmifltir. Seçeneklerden hangisinde eflitsizli¤in çözümü yanl›flt›r? A) -3x ≥ 9 x ≤ -3

B) -4x ≥ 4 x ≤ -1

C) 2x + 5 ≥ 1 -3 ≤ x

D) x - 9 ≤ -16 x ≤ -7

KEMAL TÜRKEL‹ • 8. s›n›f SBS MATEMAT‹K

-1 -3

x 3 y = -1

y = -1

3

x

-3

167


KEMAL Türkeli

6. Ünite Testi 14.

17. tan2 x + 1 ifadesi afla¤›dakilerden hangisine eflittir?

y 3 -2 A

C x=1

5

1 B

3 x

Taral› bölge hangi seçenekteki eflitsizleri birlikte sa¤layan noktalar kümesini gösterir? A) 2y ≤ 3x + 6,

B) 2y ≥ 3x + 6,

x ≤ 1 ve 0 ≤ y

B)

D) 3y ≤ 2x + 6,

x ≤ 1 ve 0 ≤ y

18. A

x ≤ 1 ve y ≤ 0 A

15.

1 sin2x 1 D) cos2x

A) sin2x C) cos2x

x ≤ 1 ve 0 ≤ y

C) 2y ≥ 3x + 8,

4

30°

3

D

3 30°

B

D

C

s(ABC) = 90°, s(ACB) = 30°, C

B s (A) = 90°, IBDI = ICDI iken tan(ADB) = tan(CBD) = ? hangisidir? 5 A) 12 2 C) 3

B) D)

6

12 5

ise

13 5

3 2

3 3

A) IACI = 6

B) IBDI = 3 cm’dir. C) A(ADC) = 9

3 cm2 3 cm’dir.

19.

3 α

3

A B A B

3 fiekil üst taban› olmayan bir küpün aç›l›m› oldu¤una göre cotα n›n de¤eri kaçt›r? (a= 3 cm al›n›z.) 1 A) B) 3 3 3 10 C) 6 D) 10 168

3 cm ise seçeneklerden

3 cm’dir.

D) Çevre (ADC) = 6 + 6

a = 3 cm

16.

s(BAD) = 30°, IABI = 3 hangisi yanl›flt›r?

A A A A

A A

B B

‹zometrik ka¤›da çizimi verilen yap› 3 çok küplü ile oluflturulmufltur. fiekildeki yap›n›n kodu hangi seçenekte verilmifltir? A) DL3

B) DZ3

C) DZ2

D) DZ2

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK


6. Ünite

SBS 8 MATEMAT‹K

20. Bir düzgün beflgen prizmay› ekseni etraf›nda en az kaç derece çevirirsek ilk konumu de¤iflmez kal›r? A) 72°

B) 60°

C) 90°

D) 180°

A) Yap›n›n kodu DLZ3’tür. B) fiekildeki yap›da kodu 3 olan bir tane çok küplü vard›r. C) fiekildeki 4 adet çok küplüyü birer kez kullanarak kodu farkl› 16 yap› oluflturulabilir.

t›r?

D) Yap›n›n kodunun DL31 olmas› için Z çok küplüsü ç›kar›l›p yerine kodu 1 olan çok küplü konulmal›d›r.

A) Küre, herhangi bir çap›n› eksen kabul edip etraf›nda istenilen belli bir aç› kadar döndürülürse, görünüflü de¤iflmez kal›r.

23. Çok küplülerle ilgili ifadelerden hangisi yanl›flt›r?

21. Hangi seçenekteki ifade (önerme) yanl›fl-

B) Küp, ekseni (karfl›l›kl› iki taban›n merkezinden geçen OO› do¤rusu) etraf›nda 90° veya tam katlar› döndürülürse, ilk konumu de¤iflmemifl olur. C) Dikdörtgenler prizmas› herhangi bir cisim köflegeni etraf›nda 180° veya tam katlar› döndürülürse, ilk görünüflü de¤iflmez kal›r. D) Düzgün sekizgen piramit simetrik düzlemi olmayan bir cisimdir. Piramit ekseni etraf›nda 60° lik dönmelerde de¤iflmemifl gibi görünür.

A) K = {D, L, Z, 3, 2, 1} çok küplüler kümesinin elemanlar›ndan en fazla 4 çok küplü kullanarak bir yap› oluflturulabilir. Alt› çok küplüden 4 tanesini (her biri en çok bir kez kullan›lacak) 15 farkl› flekilde seçebiliriz. B) Ayn› yap›n›n iki farkl› bak›fl aç›s› ile izometrik k⤛da çizimi farkl› olabilir fakat kodu de¤iflmez. C) Kodu ayn› görünüflü farkl› yap›lar oluflturulabilir. D) Bir yap›y› oluflturan çok küplülerin kodunu gösteren harf veya rakamlar›n›n s›ras› önemlidir. DLZ

22. ‹zometrik ka¤›da görünümü çizilen yap› ile ilgili hangi seçenekteki ifade (önerme) yanl›flt›r?

ile LDZ farkl› yap›lar›n kodlar›n› gösterir. 24. ‹zometrik ka¤›da çizimi verilen yap›n›n kodunun DZL2 olmas› için nas›l bir de¤ifliklik yap›lmal›d›r?

C C

B

C

B A

A

B

A

B B

A

B

A

B

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK

C

A

C

C

C C

B

169


KEMAL Türkeli

6. Ünite Testi A) Yap›dan kodu Z olan çok küplüyü ç›kararak yerine kodu L olan çok küpülüyü koyarak.

26. Çok küplülerden oluflturulan yap›n›n kodu hangi seçenekte do¤ru verilmifltir?

B) Yap›ya kodu L olan bir çok küplüyü ekleyerek. C) Yap›dan kodu D olan çok küplüyü ç›kararak kodu L ve 1 olan çok küplüleri ekleyerek. D) Yap›ya kodlar› 1 ve 3 olan çok küplüleri ekleyerek. 25. Çok küplülerle oluflturulan flekildeki yap› ile ilgili hangi önerme do¤rudur?

A) DLZ2

B) D1Z2

C) Z1DL

D) DL13

27. Çok küplülerle oluflturulan yap› ile ilgili hangi seçenek do¤rudur?

A) Çok küplülerle oluflturulan yap›n›n görünümünün çizimi flekildeki gibidir. Çok küplülerle oluflturulan yap›n›n›n kodu D2L1’dir.

A) Yap›n›n kodu: D3Z2’dir. B) Yap›n›n kodu: D31L’dir. C) Yap›n›n kodu: D1Z3 olup oluflturulan yap›n›n izometrik ka¤›da çizimi flöyledir.

L

D

1 2

B) Yap›n›n kodunun D2LZ olabilmesi için 1 çok küplüsünü yap›dan ç›kar›p Z çok küplüsünü koymam›z gerekir. C) D3L1 çok küplüsünü elde etmek için Z çok küplüsünü ç›kar›p 3 çok küplüsünü eklememiz gerekir. D) D12L çok küplüsünü oluflturmak için L çok küplüsünü ç›kar›p, kodu 2 olan çok küplüyü eklemek gerekir. 170

D) Yap›n›n kodu: D322’dir.

Güçlükler (SBS s›nav›) baflar›n›n de¤erini art›ran süslerdir. Moliere KEMAL TÜRKEL‹ • 8. s›n›f SBS MATEMAT‹K


6. Ünite

SBS 8 MATEMAT‹K

28. Afla¤›daki ifadelerden yanl›fl olan› hangisidir?

1) sin 30 =

A) Küp ekseni etraf›nda 90° lik dönmelerde görünümü de¤iflmez kal›r. B) Dairesel silindir, eksenine dik olan herhangi bir düzleme göre simetriktir. C) Dikdörtgenler prizmas› herhangi bir cisim köflegeni etraf›nda 180° lik döndürmelerde de¤iflmez kal›r. D) Dik dairesel koninin simetri ekseninden geçen bütün düzlemlerle ara kesitleri birbirine efl ikizkenar üçgensel bölgelerdir. 29. Afla¤›daki ifadelerden hangisi yanl›flt›r? A) tan 37°.cos 63° = 1 B)

sin 37 =1 cos 53

Y

D

3)

2)

sin x tan x = cos x Y 4. ç›k›fl

D 3. ç›k›fl

2

2

sin 45 + cos 45 = 2 Y 2. ç›k›fl

D 1. ç›k›fl

A) 1. ç›k›fla ulaflt› ise 1 puan al›r. B) 2. ç›k›fla ulaflt› ise 0 puan al›r. C) 3. ç›k›fla ulaflt› ise 1 puan al›r. D) 4. ç›k›fla ulaflt› ise 0 puan al›r. 32. Afla¤›daki seçeneklerden hangi ifade yanl›flt›r?

C) sin2 37 + sin2 53° = 1 D)

1 dir. 2

cos 53 4 = tan 37 5

A) Bir dik üçgende dar aç›lardan birinin kosinüsü di¤erinin sinüsüne eflittir.

30. Afla¤›daki ABC eflkenar üçgeninin bir kenar› 2(x+1) uzunlu¤unda olup alan› 49 3 cm2 ise çevresi kaç cm’dir? (x’in birimi cm’dir.)

C) Bir dik üçgende bir dar aç›n›n kosinüsüne ait oran 4 ise sinüsü, tanjant›, kotanjant› hesaplanabilir. 5 D) 0° ile 90° aras›ndaki aç›lar›n tanjantlar› 0 ile 3 aras›nda de¤erlerdir.

A

B

B) Bir dik üçgende bir dar aç›n›n kotenjant› ile tanjant›n›n çarp›m› 1’dir.

C 2(x+1) cm

A) 42 cm

B) 36 cm

C) 21 cm

D) 48 cm

31. Tan›lay›c› dallanm›fl a¤aç çizelgesinde birbiriyle ba¤lant›l› do¤ru/yanl›fl cümleler verilmifltir. Yol ayr›m›nda bulunan önermenin do¤ru ya da yanl›fl oldu¤una karar vererek 4 ç›k›fltan birine var›n›z. Verece¤iniz okudu¤um önerme do¤ru veya yanl›flt›r kararlar›n›z sizi di¤er bir önermeye götürecektir. Yol boyunca ç›k›fla kadar alaca¤›n›z do¤ru kararlar›n›z›n toplam say›s› ç›k›flta alaca¤›n›z puan› oluflturacakt›r. Hangi seçenekteki önerme yanl›flt›r?

KEMAL TÜRKEL‹ • 8. s›n›f SBS MATEMAT‹K

6. ünitede bunlar› ö¤rendiniz mi? 1. Bir dik üçgende iki dar aç›dan birinin sinüsü tümlerinin kosinisüne eflittir. sinx = cos (90° - x) sin 37° = cos 53° = 3 = 0,6 5 2. Bir dik üçgende bir dar aç›n›n sinüsüne ait oran verilirse (sin x = 3 ) ayn› aç›n›n kosi5 nüsü olan cos x = 4 ; tanjant› tan x = 3 ve ko5 4 4 tanjant›n› cot x = hesaplayabilirim. 3 3. Bir dik üçgende bir dar aç›n›n ölçüsü art›l›rsa kosinüsünün de¤eri küçülür. 3 < 4 örne¤ini vecos 53° < cos 37° 5 5 rebilirim. sinx 4. tan x = , sin2 x + cos2 x = 1 cosx 171


8. S›n›f SBS Adaylar› ‹çin

ÜN‹TE 7

Matematik 1. Deneme Test Sorular› Do¤ru cevaplar› ve aç›klamal› çözümleri 219. sayfadad›r.

3A-7 eflitli¤ini do¤rulayan pozitif A ve A B tam say›lar› için A + B toplam›n›n en büyük de¤eri kaçt›r? 1. B =

A) -3 C) 9

B) 14 D) 11

(

) (

)

1 1 1 2 1 2. + iflleminin sonucu 7 3 7 3 4 hangi seçenektedir? 3 5 A) 4 B) 4 4 C) 5 D) 1,20

(

) (

)

1 -2 1 3 : 1+ iflleminin sonucu hangi 3 2 seçenektedir? 3 32 A) B) 2 243 2 3 C) D) 3 2 3. 1 -

4. Afla¤›dakilerden hangisi 729 do¤al say›s›n›n üslü say› olarak yaz›l›fllar›ndan biri de¤ildir? A) 36 1 -2 C) 27

( )

B) 93 D) (3-3)2

5. 0,0000579 = 5,79.10x eflitli¤inin do¤ru olabilmesi için x yerine hangi seçenekteki tam say› yaz›lmal›d›r? A) -6

B) -5

C) 5

D) -4

50 + 2 98 iflleminin sonucu han0,08 gi seçenektedir? 6. ? = A) -5 2 C) 5 172

-3

B) 5 1 D) 5

7. 3.59.27 iflleminin sonucunda bulunacak say› kaç basamakl›d›r? A) 7

B) 9

C) 8

D) 10

8. Eflit büyüklükte kartonlara 4 ile 15 aras›ndaki tüm do¤al say›lar (4 ve 15 dahil) birer kez yaz›l›p bir torbaya konuluyor. Bir çark 4 efl bölgeye boyan›p her bölgeye E, O, ‹, K harfleri yaz›l›yor.

K

E

O

Torbadan rastgele bir say› çekilirken ayn› anda çark da çevriliyor. (Çark›n okunun iki bölgeyi ay›ran s›n›rda durmayaca¤› varsay›l›yor.) Hangi seçenekteki teorik olas›l›k yanl›fl bulunmufltur? A) Torbadan çekilen say›n›n 3 ile bölünebilen bir 1 say› çark›n ise sesli bir harf olma olas›l›¤› dür. 4 B) 2 veya 3 ile bölünebilen bir say› ve çark›n ses1 siz harf bölgesinde durma olas›l›¤› d›r. 6 C) Torbadan asal bir say› ve çark›n E harfi bölge1 sinde durma olas›l›¤› dir. 12 D) Torbadan rastgele çekilen birinci say›n›n 2 ve 3 ile bölünen ikincinin asal say› olma (çekilen say› 2 tekrar torbaya at›lmamak flart› ile) olas›l›¤› dir. 11

Nerede olursan›z olun, elinizdekilerle yapabilece¤inizi yap›n. Theodore KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK


SBS 1. Matematik Denemesi Test Sorular› 9. Kareli ka¤›t üzerinde verilen ve eksenleri çizilmemifl olan flekildeki koordinat düzleminde, d do¤rusunun denklemi y = 2’dir. A noktas›n›n koordinatlar› (adresi) (-3, -4) s›ral› ikilisi oldu¤una göre K(x, y) noktas›n›n koordinatlar› seçeneklerden hangisindedir?

y=2

SBS 8 MATEMAT‹K 14. Bir kargo flirketi 14 kg ve 19 kg kütlesi olan kolilerden 13 tanesinin toplam kütlesinin 207 kg oldu¤unu ölçüyor. Kütlesi 14 kg olan koliler kaç tanedir? A) 5

B) 8

C) 7

D) 6

15. Taban›n bir kenar› 12 cm,

d

yüksekli¤i ITHI = 8 cm olan düzgün kare piramitle ilgili hangi seçenekteki ifade yanl›flt›r? T K(x, y) A(-3, -4)

8 A) (3, -2)

B) (2, -4)

C) (2, -3)

D) (0, 3)

K E 10. Aritmetik ortalamas› 11 olan yedi say›ya M A hangi say›y› eklersek oluflan 8 say›n›n aritmetik A L ortalamas› 14’e eflit olur? A) 35

B) 21

C) 25

D) 18

(

)(

)(

) (

1 1 1 1 . 1+ . 1+ ... 1+ 2 3 4 99 iflleminin sonucu hangi seçenektedir? 11. ? = 1+

A) 33

B) 40

C) 50

D) 66

)

T Ü R K E L ‹

x 6 6 < <eflitsizli¤ini sa¤layan (aç›k 8 y 5 önermeyi do¤ru yapan) x ve y tam say›lar›n›n toplam› en fazla kaçt›r? 12.

A) -17

B) -16

C) -18

D) -15

C

D E

H B

a = 12 cm

A) Piramidin yanal alan› 240 cm2’dir. B) Piramidin toplam alan› 384 cm2’dir. C) Piramidin hacmi 384 cm3’tür. D) Piramidin bütün ayr›tlar›n›n uzunluklar› toplam› 48 + 16 34 cm’dir.

16. E ve F noktalar› ABCD dikdörtgeninin üzerindedir. IECI = 3 cm, IABI = 11 cm, A(ABCD) = 66 cm2, s(AEF) = 90° iken IBFI = ? cm’dir. E

D

C

F 13. y = mx + 10 ve y = -x + n do¤rular› (3,4) noktas›nda kesifltiklerine göre 2n - 3m = ? hangi seçenektedir?

? A

B

11 cm

A) 20

B) -25

A) 4 cm

B) 2 cm

C) 7

D) 17

C) 1 cm

D)

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK

2 cm 173


SBS 1. Matematik Denemesi Test Sorular›

KEMAL Türkeli

17. Seçeneklerin birinde yaz›lan denklemin belirtti¤i do¤runun e¤imi yanl›fl yaz›lm›flt›r. Hangisinin e¤imi do¤ru yaz›lmam›flt›r?

20. Afla¤›daki tan›lay›c› dallanm›fl a¤aç çizelgesinde 3 önerme verilmifltir. fiemadaki cümlelerin belirtti¤i ifade do¤ru iken D’yi seçmiflseniz 1 puan kazan›rs›n›z. fiayet önerme yanl›fl ise Y’yi daire içine alacak olursan›z yine 1 puan kazanacaks›n›z. Verece¤iniz do¤ru (D) veya yanl›fl (Y) kararlar›n›z sizi 4 farkl› ç›k›fltan birine ulaflt›racakt›r. Ç›k›fllardan birine varan bir ö¤rencinin kazand›¤› puan yanl›fl yaz›lm›flt›r. Hangi ç›k›fla karfl› gelen puan yanl›fl hesaplanm›flt›r?

A)

6.x -

2.y - 2 = 0

B) y = - 2x + 3

E¤imi =

3

1,73

E¤imi = -2’dir.

C) y - 8 = 0 E¤imi = 0’d›r. (Do¤ru x eksenine paraleldir.) D) -6x + 5 = 12y

E¤imi = -2

1) 5 kat›n›n 3 eksi¤i 7’den küçük say›lar ifadesini 5x - 3 ≤ 7 eflitsizli¤i belirtir.

18. fiekildeki ABCD yamu¤unda IABI = 12 cm, ICDI = 4 cm, s(A) = 30° ve s(B) = 60° ise yamukla ilgili hangi seçenekteki bilgi yanl›flt›r? 4 D C

30°

A

60° 12

A) IADI = 4

B

3 cm

B) ICBI = 4 cm C) Yamu¤un alan› 32

3

2.tan60°+4.cos60°+6.sin30+

3

26,9 cm’dir.

2.sin45 + 3.

sin41° cos49°

iflleminin sonucu olan gerçek say› hangi seçenektedir? 3

B) 10 + 3 D) 6 +

D 1. Ç›k›fl

Y

Y 3) x = -7 say›s› x - 1 < 3 ve 2 x +1<-1 3 eflitsizliklerini birlikte sa¤layan say›lar kümesinin bir eleman›d›r. D

2. Ç›k›fl

3. Ç›k›fl

Y 4. Ç›k›fl

A) 1. Ç›k›fl: 1 Puan

A) 9 + 2 C) 2

2) 3x - 2 < 7 do¤rusal eflitsizli¤inin çözüm kümesini x < 3 koflulunu do¤rulayan gerçek say›lar oluflturur.

55,4 cm2 dir.

D) Yamu¤un çevresi 20 + 4

19.

D

12,5 2

3+5 3+

B) 2. Ç›k›fl: 0 Puan C) 3. Ç›k›fl: 2 Puan

2+8

D) 4. Ç›k›fl: 0 Puan

2

20 dakikada kaç net yapt›n›z? Y D=? formülünden net say›n›z› hesaplay›n›z. 219. sayfada verilen do¤ru cevaplar ile 3 aç›klamal› çözümlerini okuyunuz. Test s›navlar›nda do¤ru cevaplar›n›z›n say›s› olabildi¤ince çok olmal›d›r. Test s›navlar› zamana karfl› yar›flt›r. Yapamad›¤›n›z sorular›n konusunu tekrar çal›fl›n›z. Her konu ile ilgili en az 10 soruluk bir konu testi çözerek konuyu pekifltiriniz. 15 üzerinden Matematik Testinin a¤›rl›¤› 4’tür. Yaklafl›k bir Matematik neti 5,2 puan getirece¤inden netinizi artt›rmaya önem veriniz. SBS’de herkesin yapabilece¤i sorular› ço¤unluktan önce yap›p kalan sürede daha fazla net ç›karmaya çal›fl›n›z. Okuma h›z›n›z› artt›rmak için www.infinityteknoloji.com.tr’nin H›zl› Okuma DVD’sini çal›fl›n›z. Önemli formülleri özet ç›kararak çal›fl›n›z. Matematik test sorular›n›n pratik çözüm yollar› olup olmad›¤›n› düflününüz. 174

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK


8. S›n›f SBS Adaylar› ‹çin

Matematik 2. Deneme Test Sorular› Do¤ru cevaplar› ve aç›klamal› çözümleri 224. sayfadad›r.

1.

( 811 )

x

= 9-4 eflitli¤inin do¤ru olmas› için x

kaç olmal›d›r? A) -2 C) 2 2.

B) -3 D) 0 0,09.(

1,44 +

0,36 : hangi seçenektedir?

0,64)

0,09

A) 0,6

iflleminin sonucu

5. Bir torbada üzerinde tek veya çift say›lar yazan eflit büyüklükte kartlar bulunmaktad›r. Çift say›lar›n 3 say›s›, torbadaki tüm say›lar›n say›s›n›n ‘üdür. 4 Torbaya geri at›lmamak üzere art arda çekilen iki sa2 y›n›n da tek say› olma teorik olas›l›¤› ‘dir. Bu bil35 giye göre torbada kaç tane çift say› yaz›l› karton ka¤›t vard›r? A) 9 B) 27 C) 18 D) 36

B) 0,3

6. Afla¤›daki say›lardan hangisi bilimsel gösterim tan›m›na uymamaktad›r? D) 0,015 K A) Dünya’n›n Günefl’e olan uzakl›¤› 1,49x108 E 3. Melis toplam 144 TL’ye, 9 eflit taksitle bir ayak- M km’dir. A B) Atomun kütlesi yaklafl›k 1,66x10-27 kg’d›r. kab› ile bir pantolonu sat›n alabilece¤ini ö¤reniyor. L C) Dünya’n›n kütlesi 5,97x1024 kg’d›r. E¤er ayn› fiyatl› pantolondan 2 tane al›p ayakkab›y› T D) Elektronun kütlesi 0,911x10-30 kg’d›r. almazsa 9 ay boyunca her ay 2 TL daha fazla ayl›k Ü taksitler ödemesi gerekece¤ini hesapl›yor. Verilen R K 7. Tan›lay›c› dallanm›fl a¤aç flemas›nda size önerbilgiye göre Melis’in 9 ay taksitle sat›n almay› düflün- E meler verilmifltir. Önermenin Do¤ru veya Yanl›fl olduL dü¤ü ayakkab›n›n fiyat› kaç TL’dir? ‹ ¤una verece¤iniz do¤ru kararlar size 1 puan kazand›A) 63 B) 81 racakt›r. Yanl›fl kararlar›n›zdan 0 puan alacaks›n›z. Sonuçta 4 ç›k›fltan birine varma olas›l›¤›n›z vard›r. C) 56 D) 90 Ç›k›fllardan birinde ö¤rencinin sözkonusu ç›k›fl için alaca¤› toplam puan yanl›fl hesaplanm›flt›r. Hangi 4. Çember fleklindeki C ç›k›flta ö¤rencinin alaca¤› toplam puan yanl›fl yaz›lbir koflu pisti A, B ve C nokm›flt›r? talar› ile 3 efl parçaya ayr›l1) Rasyonel say›larla irrasyonel say›lar›n birleflim kümesi Gerçek say›lar A m›flt›r. Bu çember fleklin30 C) 9

kümesidir. Örne¤in 5 + 2

deki koflu pistinde flekildeki gibi A noktas›ndan ayn› anda

ters yönde ve sabit ortalama h›zlarla koflmaya bafllayan iki koflucu 20 dakika sonra C noktas›nda karfl›lafl›yorlar. Karfl›laflt›klar›ndan 5 dakika sonra koflucular›n bulunduklar› noktalar›n çemberde ay›rd›¤› iki yaydan k›sa olan›n (minör çember yay›) uzunlu¤u çember çevresinin tüm uzunlu¤unun kaçta kaç›d›r? 2 1 A) B) 7 5

D

B

1 C) 4

1 D) 8

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK

2) Her rasyonel say›n›n iki tam say›n›n bölümü ile bulunan bir ondal›k gösterimi vard›r. 3 = 0,12 gibi 25

D 1. Ç›k›fl

Y

3 bir gerçek say›d›r.

Y 3) S›f›r ve +1’in yerini seçtikten sonra say› do¤rusunda her noktan›n adresi bir gerçek say› ile efllefltirilebilir. Yani Gerçek say›lar say› do¤rusunu tam olarak doldururlar.

D 2. Ç›k›fl

3. Ç›k›fl

Y 4. Ç›k›fl

175


KEMAL Türkeli

SBS 2. Matematik Denemesi Test Sorular› A) 1. Ç›k›fl : 2 Puan

C) Standart sapma

B) 2. Ç›k›fl : 1 Puan

17 4,12 TL ve veri aç›kl›¤›

olan 14 TL de¤erleri merkezi yay›lma ölçüleridir.

C) 3. Ç›k›fl : 1 Puan

D) Standart sapmay› bulurken veri grubunun

D) 4. Ç›k›fl : 2 Puan

aritmetik ortalamas› (88 : 11 = 8 TL) y› önce hesaplar›z. Her bir verinin aritmetik ortalama ile fark›n›n kareleri

8. Bir sat›c› x TL’ye ald›¤› bir mal› %30 kârla 910 TL’ye, y TL’ye ald›¤› bir mal› %30 zararla 910 TL’ye sat›yor. Hangi seçenekte verilen sonuç yanl›fl bulunmufltur?

toplam› 166’y› buluruz. Bulunan toplam›, veri say›s›n›n bir fazlas›na bölerek standart sapmay› hesaplar›z. 11.

A) x < 910 TL < y

F

B) x = 700 TL’dir.

A x

C) 7x = 13 y

D 98°

D) y - x = 600 TL’dir. Ö¤renci Say›s›

9.

B

106°

18 11 x 4 3

a a 1

2

3

4

E

5

Verilen sütun grafi¤i bir s›n›ftaki ö¤rencilerin Matematik yaz›l› s›nav›ndan ald›klar› notlar› göstermektedir. Örne¤in notu 5 olan ö¤rencilerin say›s› 4’tür. Ö¤rencilerin Matematik s›nav›nda ald›klar› notlar›n ortalamas› 3 oldu¤u hesaplanm›flsa grafikte yaz›lmas› unutulan notlar› 4 olan kaç ö¤renci oldu¤unu bulunuz?

[DA // [CE m(ECB) = m(BCD) = a m(ADC) = 98°,

m(ABC) = 106°

m(FAB) = x fiekil ve verilen bilgiden yararlanarak

A) 9

B) 8

m(FAB) = x kaç derecedir?

C) 10

D) 7

A) 57

B) 65

C) 55

D) 67

10. K›rtasiye veya kitap satan bir kitapç›ya gelen 11 ö¤rencinin sat›n ald›klar› için ödedikleri paralar s›raland›¤›nda 1, 4, 5, 6, 7, 8, 9, 9, 10, 14, 15 TL veri grubu oluflturuyorlar. Hangi seçenekte verilen bilgi yanl›flt›r?

12. A

8

D

A) Veri grubunun çeyrekler aç›kl›¤› 5 TL, tepe 13

de¤eri (mod) 9 TL, ortanca (medyan) 8 TL’dir. B) Aritmetik ortalama 8 TL, ortanca (medyan) 8 TL, tepe de¤eri (mod) 9 TL merkezi e¤ilim ölçüleridir.

176

C

B

3

C

fiekildeki ABCD yamu¤unun alan› kaç cm2dir? IADI = 8 cm, ICDI= 13 cm, IBCI = 3 cm m(ABC) = m(BAD) = 90° dir. A) 66 cm2

B) 55 cm2

C) 77cm2

D) 65 cm2

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK


SBS 2. Matematik Denemesi Test Sorular› 13.

x2 - 3x - 10 ifadesinin sadelefltirilmifl bix2 + mx + k

x+2 oldu¤una göre k ve m tam say›lar olacak x-3 flekilde k-m = ? kaçt›r? çimi

A) 7

B) -23

C) 23

D) -7

SBS 8 MATEMAT‹K 17. Ayn› öykü kitab›ndan Osman ilk gün 11 sayfa, Melis ise 7 sayfa okumufllard›r. Ertesi gün Osman okumad›¤› k›s›mlar› 9 saatte, Melis ise daha önce okumad›¤› k›sm›n› 17 saatte okuyarak bitirmifllerdir. Osman, Melis’ten her saat 4 sayfa fazla okudu¤una göre, Osman’›n 1 saatte ortalama olarak okudu¤u sayfa say›s› kaçt›r? A) 5

T

14.

18. A C H

B) 9 x

y 19

C) 4

D) 8

Bölme iflleminde;

x bölünen, y bölen 19 bölüm, kalan 11’dir. Bölünen ile bölenin toplam› 271 ise x -- 10y de¤eri hangi seçenektedir? 11

B

A) 128

B) 235

C) 193

D) 68

Tüm 4 yüzü birbirine efl eflkenar üçgenlerden oluflan piramide düzgün dörtyüzlü denir. Düzgün K 19. dörtyüzlünün alt› ayr›t› da 12 cm = a eflit uzunlukta E 2 olup piramidin yükseklik aya¤› taban›ndaki eflkenar M ? = 2(tan 60°)2 + 4(cos 30°)2 + 3.sin 57° + 8 . sin 45° -- 5 tan 73° cos 33° cot 45° cot 17° A üçgenin a¤›rl›k merkezidir. L Hangi seçenekteki sonuç yanl›fl yaz›lm›flt›r? ifadesinde aç›lar›n trigonometrik oranlar›n› yazarak A) Bir ayr›t›n›n uzunlu¤u a = 12 cm olan düzgün T veya trigonometrik oranlar aras›ndaki iliflkilerden dörtyüzlünün cisim yüksekli¤i ITHI = 4 6 9,8 cm Ü yararlanarak ifllemler sonucunda bulunacak ? say›sal R dir. K de¤erinin hangi seçenekte yaz›ld›¤›n› buluruz? E B) Düzgün dörtyüzlünün yan yüz yüksekli¤i A) 21 B) 11 C) 8 D) 5 L 6 3 10,4 cm’dir. ‹ C) Düzgün dörtyüzlünün alan› (toplam) 20. 144 3 249,4 cm2 dir. A 3 Çeyrek daire, CBOH dikdörtgeni ve D) Düzgün dörtyüzlünün hacmi 144 3 cm tür. CHD diküçgeninden oluflturulan flekil AD ekseni etraf›nda 360° döndürül15. A = {1, 2, 3, 4, 5, 0} kümesi için hangi önerme O dü¤ünde oluflan cismin ayn›s› tahB yanl›flt›r? 2 tadan bir marangoza yapt›r›l›yor. A) Bu kümeden 4 farkl› say› seçilerek dört elemanl› 4 C H Seçeneklerden hangisindeki ifade 15 alt küme oluflturulabilir. 3 (önerme) yanl›flt›r? B) Bu kümenin elemanlar›n› birer kez kullanarak IBCI = 2 cm, ICHI = 4 cm dört basamakl› 300 farkl› say› yaz›labilir. D IHDI = 3 cm, π = 3 C) Bu kümenin elemanlar›n› birer kez kullanarak

(

üç basamakl› 44 farkl› çift say› oluflturulabilir. D) Bu kümenin elemanlar›n› birden çok kullanarak üç basamakl› farkl› 90 çift çift say› oluflturabiliriz. 16. x2 - 12x + 34 = (x-A)2 - B eflitli¤ini her x için do¤ru yapan A ve B say›lar›n›n fark›n›n mutlak de¤eri hangi seçenekte verilmifltir? ? = IA-BI A) ? = 4 B) ? = 8 C) ? = 12 D) ? = 34 KEMAL TÜRKELİ • 8. sınıf SBS MATEMATİK

)

A) Kat› cismin tüm d›fl yüzeyinin alan› 204 cm2 dir. B) Kat› cismin toplam hacmi 272 cm3 tür. C) Kat› cisim 3 yüzlüdür. D) Kat› cisim (tahtadan yap›lm›fl) AD ekseni boyunca iki eflit parçaya kesilirse parçalardan birinin toplam yüzey alan› 128 cm2 dir. 177


8. S›n›f SBS Adaylar› ‹çin

Matematik 3. Deneme Test Sorular› Do¤ru cevaplar› ve aç›klamal› çözümleri 230. sayfadad›r.

1.

3. 36 ö¤rencilik 8-A s›n›f›na Matematik yaz›l› s›nav› uygulan›yor. 5’lik not sistemine göre göre de¤erlendirilen ö¤rencilerin baflar›s›n› yans›tan bir daire grafi¤i oluflturulmufltur. Hangi seçenekteki önerme yanl›flt›r?

y

A(3,4)

4

2

-2

0 3 -1

B(-2,-3)

x

5 C(5,-1)

2. Seçeneklerin hangisinde ifllem hatas› yap›lm›flt›r? 3n+1.3n-2 A) =1 32n-1 B) (3-1 + 50 )-2.25 = 18 C) 0,7.10-5 + 0,03.10-4 = 10-4 b D) 1 = 9, a, b tam say› ise a + b = 1 dir. a

178

40°

1 5

70°

4

-3

Koordinat düzleminde köfle noktalar›n›n koordinatlar› A(3,4), B(-2,-3) ve C(5,-1) olan ABC üçgeni çiziliyor. Hangi önerme (ifade) yanl›flt›r? A) ABC üçgenini orjin etraf›nda saat yönünde 90° döndürürsek B’nün adresi B›(-3,+2) olur. B) ABC üçgenini orjin etraf›nda saat yönünde 180° döndürdü¤ümüzde A’n›n yeni adresi A››(-3,-4) olur. AA›› do¤ru parças›n›n tam orta noktas› orjin (0,0) noktas›d›r. C) ABC üçgenini orjin etraf›nda saatin tersi yönünde 90° döndürdü¤ümüzde C’nin yeni adresi C›››(1,5) olur. E¤er saat yönünde orjin etraf›nda üçgeni 270° döndürseydik yine C’nin adresi C›››(1,5) ayn› olur. D) ABC üçgeni 5 birim sola (x eksenine paralel), 7 birim afla¤›ya (y eksenine paralel olacak flekilde) ötelenirse A’n›n yeni adresi A›(-2,-1) olur.

( )

50°

3 170°

A) Bu daire grafi¤indeki verileri kullanarak afla¤›daki tabloyu oluflturabiliriz. Notlar

Ö¤renci Say›s›

1 2 3 4 5

4 5 17 7 3

B) Notu 5 olan 3 ö¤renci vard›r. C) S›n›f›n baflar› ortalamas› 3, 2’dir. Ortancan›n (medyan) baflar› notu 3’tür. D) Verilerin histogram› Ö¤renci Say›s› 8-A Matematik s›nav› baflar›s›

17

7 5 4 3 1

2

3

4

5

Notlar

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK


SBS 8 MATEMAT‹K

SBS 3. Matematik Denemesi Test Sorular› 4. Bir grup ö¤renciden Matematikten baflar›l› olanlar›n say›s› 13, Matematik ve Türkçeden baflar›l› olanlar›n say›s› 4, Türkçeden baflar›l› olanlar›n say›s› 11’dir. Bu gruptan karfl›laflaca¤›m›z rastgele bir ö¤rencinin yaln›z Türkçeden baflar›l› (Matematikten baflar›s›z) bir ö¤renci olma olas›l›¤› kaçt›r? (Her iki dersten baflar›s›z ö¤renci yoktur?) A) %45

B) %35

C) %20

D) %55

(

)

3 1 1 : iflleminin so12 3+ 3 3- 3 nucu hangi seçenektedir? 5. ? =

A) -2

B) -4

C) 4

D) -4

3

5x x 1 -1< + do¤rusal eflitsizli¤inde 3 6 4 x’in alabilece¤i en büyük tam say› de¤eri 7. kutucuktad›r. C)

D) 2x - 5 < -7 do¤rusl eflitsizli¤inin çözüm kümesinin tam say› olan baz› elemanlar› 1, 5, 6 ve 9. kutucuklarda yaz›l›d›r.

8. Hangi seçenekteki ifade yanl›flt›r? A) Kenar uzunluklar› 5, 7 ve 13 cm olan üçgen çizilebilir. B) Üçgende iki kenar›n uzunluklar› toplam› üçüncü kenardan uzundur. Bir üçgende herhangi iki kenar uzunlu¤u fark›n›n mutlak de¤eri üçüncü kenardan küçüktür. Sözkonusu ba¤›nt›ya üçgen eflitsizli¤i denir.

6. Bir kargo flirketindeki kolilerin kütleleri 2, 3, 4, 5, 6, 8, 8, 9, 10, 15 kg’d›r. Bu veri grubu ile ilgili olarak hangi seçenekteki ifade yanl›flt›r? K E A) Koli a¤›rl›klar›n›n standart sapmas› M A 124 3,7 kg’d›r. L 3

A c

b

Ib-cI < a < b + c

B C B) Koli a¤›rl›klar›n›n aritmetik ortalamas› 7 kg’d›r. T a Ü C) Verilerin ortancas› (medyan) 7 kg’d›r. C) Bir dik üçgende dik kenarlardan her biri R D) Verilerin tepe de¤eri (mod) 8 kg’d›r. K hipotenüsten k›sad›r. E L D) Ayn› üçgende iki aç› farkl› ise aç›s›, büyük 7. Kutucuklara göre hangi seçenekteki önerme ‹ olan›n karfl›s›ndaki kenar›n›n uzunlu¤u da di¤er küçük (ifade) yanl›flt›r? aç› karfl›s›ndaki kenardan daha uzundur. 1

2

-6 4

3

49 5

1 7

6

-1 8

0

5

-5

9. ACD üçgeninde IADI = 6 cm IBDI = ICDI = 5 cm, IDHI = 4 cm s(DHB) = 90°, DH AC ise IABI.IACI çarp›m› kaçt›r? (IABI, IACI yi cm al›n›z.) D

9

56

-2

x-7 - x < 3 do¤rusal eflitsizli¤inin çözüm 5 kümesinin en küçük eleman› olan tam say› 6. kutucuktad›r.

5

A)

2 sinin yar›s›n›n 3 eksi¤i 5 olan say› 8. 7 kutucuktad›r. B)

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK

5

6

A

B

4

H

A) 17

B) 4

C) 11

D) 16

C

179


KEMAL Türkeli

SBS 3. Matematik Denemesi Test Sorular› 10. Hangi seçenekteki önerme yanl›flt›r? 1 A) Birinci terimi -5 ortak fark› olan aritmetik 2 dizinin bafltan 11. terimi -10’dur. B) ‹lk terimi 256 olan geometrik dizinin ortak 1 1 çarpan› ise n = 10. terimi dir. 2 2 C) 1, 1, 2, 3, 5, 8, x dizisinde x = 13 olmal›d›r. D) fiekildeki tabloda her sat›rdaki a, b ve c say›lar› aras›nda belli bir kuralla aç›klanabilecek bir iliflki vard›r. a b c 12 4 1 15 5 2 24 8 5 x 100 97 Bu kurala göre x = 303 olmal›d›r.

7 + 3 için say›-

B) x - y = x + y eflit olabilmesi için x - y = 1 koflulu sa¤lanmal›d›r. C) x+2

A(x) = 3x2 + kx - 8

fiekildeki dikdörtgensel bölgenin bir kenar uzunlu¤u (x + 2) ise k = -2 ve 2 ≤ x " Z olmal›d›r. D)

ab + 5a - 4b - 20 = a - 4, b+5

b

k l m n

fiekilde birbirine paralel dörder do¤rudan oluflmufl do¤ru demetleri veriliyor. fiekil üzerinde 36 farkl› dörtgen oluflur. D) A = {0, 2, 9, 7} kümesinin rakamlar›n› yaln›z birer kez kullanarak P(4,3) + P(3,2) say›da üç basamakl› say›lar yaz›labilir. 1 x x + + = 3 denkleminin çöx+1 1-x x+1 züm kümesinin eleman› olan x say›sal de¤eri hangi seçenektedir? 2 3 A) B) 3 2 1 C) D) -1 2 4 ‘si 7 kadard›r. Ece paras›n›n 15 TL’sini Melisa’ya verirse paralar› eflit oluyor. Ece’nin bafllang›çtaki paras› kaç TL idi? 15. Melisa’n›n paras› k›z arkadafl› Ece’nin

A) 40 TL

B) 70 TL

C) 49 TL

D) 63 TL

-5

12. Seçeneklerden hangisi 4a2 + 9b2 - 10a + 15b - 12ab ifadesinin çarpanlar›ndan biridir? (a, b gerçek say›d›r.) A) 2a + 3b - 5

B) 2a - 3b - 5

C) 2a + 3b + 5

D) 2a - 3b + 5

16. fiekilde IABI = 12 cm, ICDI = 1 cm E, [AB]’n›n orta noktas›d›r. s(ACB) = s(BED) = 90° Hangi seçenekteki ifade yanl›flt›r? E

A) n kenarl› bir çokgenin köflegen say›s› n (n-3) C(n,2)-n = dir. 2 B) Bikem ö¤retmen Matematik s›nav›nda 7 sorudan 1 ve 2. nin zorunlu oldu¤unu ve 5 soruyu do¤ru cevaplayabilen ö¤rencinin 100 puan alaca¤›n› söylüyor. 100 puan almak isteyen Melisa 5 soruyu 10 farkl› flekilde seçebilir.

A 6

6

13. Hangi seçenekteki önerme yanl›flt›r?

180

k // l // m // n

14.

11. Hangi seçenekteki ifade yanl›flt›r? A) ? = x2 - 6x + 9 ifadesinin x = sal de¤eri ? = 7’dir.

C)

F B

C1 D

A) IBCI = 9 cm’dir. B) IACI = 4 5 = 8,9 cm A(ABC) 16 C) = 9 A(BDE) D) A(ABC) = 16 5 35,8 cm2 dir. KEMAL TÜRKELİ • 8. sınıf SBS MATEMATİK


SBS 8 MATEMAT‹K

SBS 3. Matematik Denemesi Test Sorular› 17. Tüm ayr›tlar›n›n uzunluklar› a = 6 2 cm 8,5 cm olan iki kare piramidin tabanlar›n›n üst üste çak›flt›r›lmas› ile oluflturulan cisme düzgün sekizyüzlü (oktahedron) denir. Hangi seçenekteki ifade yanl›flt›r? (Tüm yüzeyleri bir kenar› a = 6 2 cm olan eflkenar üçgenlerdir.)

19. Dokuz farkl› kutucu¤a dokuz farkl› reel (gerçek) say› yaz›lm›flt›r. Hangi seçenekteki önerme yanl›flt›r? 1

4

a=6 2 a

3 4

3 5

2

6

4 3

0

C 7

8

2

O A

3

3 4

T

D

2

B

9

7

10

A) Koordinat sisteminde çizilen do¤runun e¤imi 3 numaral› kutucukta verilmifltir. y A(-4,3) 3

a T›

K A) Düzgün sekizyüzlünün tüm ayr›tlar›n›n E M uzunluklar› toplam› 72 2 cm 102 cm A B) ABCD karesinde IACI = 12 cm, IOCI = 6 L α E¤im = tanα cm’dir. C T B O C) IOTI = 6 cm = IOT›I -4 Ü x R D) Düzgün sekizyüzlünün hacmi = V K E V = 144 2 cm3 tür. L ‹ 18 fiekildeki dik üçgen prizman›n tabanlar›ndan B) y = 3 do¤rusunun e¤imi 5 numaral› kutubiri ABC ikizkenar üçgenidir. (IABI = IACI = 15 cm) cuktad›r. Tabandaki A noktas›n›n di¤er tabandaki (A›B›C›) B›C› C) ax + by + 9 = 0 denkleminin belirtti¤i do¤runun kenar›n›n E orta noktas›na uzakl›¤› IAEI = 20 cm’dir. e¤imi 5’dir. a yerine 9. kutucuktaki say› yaz›l›rsa b Dik prizman›n tabanlar›ndan birinin alan› kaç cm 2 yerine 4. kutucuktaki say› yaz›lmal›d›r. dir? IAEI = 20cm D) 2 3 x = 3 y + 7 do¤rusunun e¤imi olan 3 IABI = IACI = 15 cm A› say› 7. kutucukta yaz›l›d›r. BC A 15

B›

E

20. sin3x = cos2x eflitli¤inin do¤ru olmas› için x yerine kaç derecelik aç› yaz›lmal›d›r? C›

A) 18° C)

B

A) 96 cm2 C) 144 cm2

C

B) 108 cm2 D) 60 cm2

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK

54°

B) 36° D) 9°

Bir fley biliyorum, o da hiçbir fley bilmedi¤imdir. Sokrates 181


Kitaptaki Tüm SBS Test Sorular›n›n Do¤ru Cevaplar› ile Aç›klamal› Çözümleri

182

KEMAL Türkeli • 8. sınıf SBS MATEMATiK


Sorular 20. sayfadad›r.

1. Ünitedeki SBS Test Sorular›n›n Do¤ru Cevaplar› ile Aç›klamal› Çözümleri 1. C 8. D 15. B 22. B 29. A 36. C

2. B 9. D 16. A 23. C 30. C 37. A

Çözüm 1: 0,0007 = a.10-4 ise

3. D 10. C 17. D 24. A 31. B 38. A

4. A 11. B 18. D 25. A 32. D

7 = 7.10-4 10000

5. A 12. C 19. D 26. C 33. B

6. C 13. D 20. C 27. B 34. C

Çözüm 6: ? = (3-1 + 30)-1.23 =

= a.10-4 a = 7 olmal›d›r. 4 a 2 x 10 = 2.2.2.2.107 = 4.4.107 = 16.107 = 160 000 000 (160 Milyon) 9 basamakl› bir say›d›r.

Do¤ru cevap: C Çözüm 2: 0,3 x 106 + 0,07 x 107 ?= (4 x 102) x (0,05 x 104) =

3.105 + 7.105 10.105 = (4 x 102) x (5 x 102) 4.5.102+2

105+1 106 106-5 10 ?= = = = =5 4 5 20.10 2.10 2 2 Do¤ru cevap: B

7. B 14. A 21. B 28. D 35. A

= ?=

Çözüm 7:

( 13 )

-1

?=

1 = 3

:

( 13 ) ( 13 )

-2 2

=

( 43 )

-1

( 13 + 1)

-1

.23

.23

3 . 3 2 = 3.23-2 = 3.2 = 6 4 Do¤ru cevap: C

( 13 ) ( 13 )

( 13 )

-1 1

-2-2

=

=

( 13 )

-1-1

=

( 13 )

-2

( 13 ) = [ ( 13 ) ] -4

= 34 = 81

-1 4

Do¤ru cevap: B

Çözüm 8: Çözüm 3: ? = (5,1 x 10-11 + 0,9 x 10-11) x 106 = (51 x 10-12 + 9 x 10-12) x 106 ? = (60 x 10-12) x 106 = (6 x 10 x 10-12) x 106 = 6 x 10-11 x 106 = 6 x 10-5 = 0,00005 Do¤ru cevap: D Çözüm 4: 23 + 23 + 23 3.23 23 ?= = = 4 4 4 4 4 2 3 +3 +3 +3 4.3 2 .34-1 23-2 2 = = 33 33 2 ? = 2.3-3 = Do¤ru cevap: A 27 Çözüm 5:

? = 59.29.10 = (5.2)9.10 = 109.10 = 109+1 = 1010 Do¤ru cevap: A

KEMAL Türkeli • 8. sınıf SBS MATEMATiK

310 + 311 310 + 3.310 = 11 12 3 -3 311 - 3.311 (1 + 3)310 4 = = = (1 - 3)311 -2.311-10

?=

2 3

Do¤ru cevap: D Çözüm 9: 2 -1 3 = > 0, 3 2 2 -3 2 - =- 3 3

( ) -3 ( ) [( ) ] = - ( 2 ) 3 -27 2 27 - (- ) = - ( =+ =3 8 8 ) 8 3 ( - 23 ) = + 49 > 0, -1 3

3

-3

>0

2

( 23 )

- -

-2

( 32 )

=- -

2

=-

9 <0 4

Do¤ru cevap: D 183


KEMAL Türkeli 8.s›n›f Ö⁄RETMEN K‹TAP Alfabetik ‹çindekiler Dizini ; (a+b)2 = a2 + 2ab + b2 özdeflli¤inin do¤rulu¤unu geometrik modelle gösterme, uygulanmas›, 64,72 (a-b)2 = a2 - 2ab + b2 özdeflli¤inin do¤rulu¤unu geometrik modelle gösterme, 64, 70,72 30,60,45 derecelik aç›lar›n trigonometrik oranlar›n› hesaplamak,161, 90˚,45˚,45˚ ‹kizkenar Dik üçgeninde dik kenarlardan birinin uzunlu¤u ile hipotenüsün uzunlu¤u aras›ndaki iliflki, 55, 56 -90˚,60˚,30˚ Dik üçgeninde kenar uzunluklar› aras›ndaki iliflkiyi, Pisagor ba¤›nt›s›ndan yararlanarak hesaplamak, 55, 56 a2 - b2 = (a-b).(a+b) özdeflli¤inin do¤rulu¤unu geometrik modelle gösterme, kural›n uygulamas›na örnekler, 63, 69, 70, 71 AA (Aç›-Aç›) lar› eflit olan üçgenler benzerdirler. (Temel benzerlik özelli¤i), 87, 89,92 Aç›ortay do¤rusu üzerindeki her noktadan aç›n›n kenarlar›na çizilen dikmelerin uzunluklar› eflittir, 49 A¤aç çizelgeyi oluflturarak olas› ç›kt›lar›n olas›l›klar›n› hesaplamak, 25 AKA bir kenar›n›n uzunlu¤u ile iki aç›s›n›n ölçüsü bilinen üçgeni nas›l çizeriz?, 47 AKA (Aç›-Kenar-Aç›) elemanlar› karfl›l›kl› efl olan üçgenler efltir.Örnek çözümlü Test, 85 Alt çeyrek, üst çeyrek nas›l bulunur?, 40 Alt uç de¤er, üst uç de¤er nedir?, 40 Alt›n oran 1,617 nas›l bulunur?, 60 Aritmetik Dizi (Arithmetical sequences) nas›ld›r?, Aritmetik dizinin sabit terimi ve ortak fark› nedir?, 61 Aritmetik dizinin n.eleman› ile ilk terimi ve ortak fark› aras›ndaki ba¤›nt› nas›ld›r?, 61,62,72 Aritmetik ortalama nas›l hesaplan›r?, 37,38, 39 Atatürk'ün yazd›¤› Geometri k›lavuzu kitab›, 44 Ba¤›ml› ve ba¤›ms›z olay nedir?, 25, 26 Benzer iki üçgenin alanlar› oran› ,benzerlik oran›n›n karesine eflittir.,örnek çözümlü test, 91,92 Benzer iki üçgenin çevreleri oran› benzerlik oran›na eflittir.,Örnek çözümlü test, 91 Benzer iki üçgenin karfl›l›kl› bütün elemanlar›n›n oran›, benzerlik oran›na eflittir, 91 Benzerlik oranlar› 1 olan üçgenler eflittirler, 88 Bir do¤runun d›fl›ndaki bir noktaya en yak›n noktas› nas›l bulunur?, 51 Bir eflitsizli¤in her iki taraf› negatif bir say› ile çarp›l›r veya bölünürse eflitsizlik yön de¤ifltirir, 158 Bir kenar›n›n uzunlu¤u bilienen eflkenar üçgenin yüksekli¤i nas›l hesaplan›r?, 54 Bir nokta perspektifi, 137 Bir üçgenin bir köflesinden karfl›s›ndaki kenar›na indirilen dikme nas›l çizilir?, 50,51 Birer dar aç›lar› efl olan dik üçgenler, benzer üçgenlerdir.,87, 92. Cebirsel ifadeler(Algebraic expressions), 63,70,73 Cebirsel ifadenin çarpanlar›n› çarpan a¤ac› ile bulma , 75 Çeyrekler aç›kl›¤› nas›l bulunur?, 40 Çok büyük veya çok küçük üslü say›lar›n Bilimsel gösterimi nas›l yap›l›r?, 19 Çok küplüler kümesi={D,L,Z,3,2, 1} çok küplülerle oluflturulan yap›n›n görünümünü izometrik ka¤›da çizmek,148 Deneysel olas›l›k nedir?, 25 Denklem nas›l olur? Denklemi do¤rulayan Gerçek(Reel) say›lar›n bir alt kümesine denklemin çözüm kümesi ad› verilir., 63,109 Denklemin eflitli¤ini do¤rulayan(sa¤layan) her bir say›ya denklemin kökü ad› verilir., 63 Dik aç›l› üçgende yükseklikler üçgenin dik aç›s› olan köflesinde kesiflirler., 49 Dik dairesel Koninin Hacmi(Volume of a Cone) ,128, 129, 130,131 ,132,135,142 KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK

235


SBS 8 MATEMAT‹K Dik dairesel Koninin yüzey alan›n›n hesab›, çözümlü testler,117,118,119,120,124 Dik düzgün alt›gen prizman›n taban alan›, hacmi, 8 yüzü vard›r,18 ayr›t› vard›r,12 köflesi vard›r, 103 Dik koni(dönel Koni, Cone), ana do¤ru parças›n›n uzunlu¤u hangisidir?,Yüksekli¤i simetri eksenidir.108 Dik koninin bir düzlemle arakesitleri, 140 Dik piramidin Hacmi (Volumes of Pyramids) nas›l hesaplan›r? , yanal yüz yüksekli¤inin hesab› çözümlü örnekler,125,126,128 Dik prizmalar›n yüzey alanlar›n›n hesaplanmas›, 95,96, 97,98,112 Dik prizman›n hacmi nas›l bulunur?, 101 Dik üçgen Prizman›n Hacmi, 102, 105, 106 Dik üçgende hipotenüse ait kenarortay›n uzunlu¤u hipotenüsün yar›s›na eflittir., 49 Dikdörtgenler prizmas›n›n Hacmi nas›l bulunur? Formülü?, 101, 104, 106, 142 Dikdörtgenler prizmas›n›n simetri düzlemleri, Dikdörtgenler prizmas›n›n 180 derece veya tam katlar› döndürüldü¤ünde görünüflünün de¤iflmez kald›¤› eksenler, 151 Do¤ru parças›n›n orta dikme do¤rusu nas›l çizilir?, 48 Do¤runun e¤imi (the slope of a line), dar aç›lar›n e¤imi pozitif, genifl aç›lar›n e¤iminin iflareti negatiftir,153,166 Do¤runun ifllemsel tan›m› nas›ld›r?, 44 Do¤rusal denklem sistemlerinin grafiklerini çizerek sistemin çözüm kümesini bulmak,155 Do¤rusal(1.dereceden) Denklem sistemlerinin yerine koyma yöntemi(Substitutions) ile çözümü.,81,82,83,110 Do¤rusal(1.dereceden) Denklem sistemlerinin cebirsel yok etme(Linear-Combination Method) yöntem ile çözümü, 81,82,83,84 Do¤rusal(1.dereceden) Denklem sistemlerinin sabit say›lar›n› En Küçük Ortak Katlar›na eflitleyerek bilinmeyenler aras›ndaki iliflkiyi bularak çözme yöntemi,82 Döndürülen çarklarda bir olay›n gerçekleflme olas›l›¤›n› hesaplamak, 27 Dönel dairesel koni ekseninden geçen herhangibir düzleme göre simetriktir. Koni ekseni etraf›nda herhangi bir aç› kadar döndürüldü¤ünde görünüflü de¤iflmeyec¤inden dönme ekseni simetri eksenidir.,150 Düzgün alt› yüzlü (Cube, Küp,Hexahedron), niye d›flbükeydir?,de¤iflik düzlemlerle ara kesitleri,139,140 Düzgün alt›gen dik prizman›n alan›n›n hesaplanmas›, Taban alan›n›n hesab›, Yanal alan›n›n›n hesaplanmas›, 98, 99 Düzgün alt›gen piramidin simetri düzlemleri, 60˚ veya tam katlar› döndürüldü¤ünde görünüflünün de¤iflmez kalaca¤› ekseni hangisidir?, 153 Düzgün çok yüzlü(Platonik cisimler,Polyhedra) nedir?,138 Düzgün dört yüzlünün alan›, hacmi?, 138 Düzgün dörtyüzlü(Tetrahedron) nedir?,Yan yüz yüksekli¤i(Apotemi) nas›l bulunur? Cisim yüksekli¤i? Niye D›flbükeydir?,138 Egik prizman›n yan yüzleri taban düzlemine dik de¤ildir., 95 Eflitsizlikler(Inequalities), eflitsizli¤i do¤ru yapan say›lar› çözüm kümesi olarak say› do¤rusunda göstermek,157 Eflkenar dörtgen dik prizman›n hacmi,taban alan›n›n hesab›, 102 Eflkenar üçgen prizman›n hacmi, 102 Eflkenar üçgen bir düzgün çokgendir, 48 Eflkenar üçgen dik prizman›n simetri düzlemleri, görünüflünün de¤iflmez kald›¤› döndürülme ekseni ve döndürülme aç›lar› nedir?, 152 Eflkenar üçgen piramidin simetri düzlemleri, Eflkenar üçgen piramidin 120˚ veya tam katlar› döndürüldü¤ünde görünüflünün degiflmez kald›¤› eksen do¤rular› hangileridir.?, 151 Eflkenar üçgende iç aç›ortay, kenarortay , ortadikme, yükseklik do¤rular› ayn› noktada kesiflirler.,49 Eflkenar üçgende kenarortay uzunlu¤unu hesaplamak, 48

236

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK


KEMAL Türkeli Eflkenar üçgende kenarortay, aç›ortay ,yükseklik ve kenar orta dikme do¤rular› ayn› do¤rudur (çak›fl›k), 48,49 Euler ba¤›nt›s› (K+Y-A=2), 138 Fibunacci(Fibonaçi) dizisi, 60,72 Fraktal Geometry(Fractal Geometry), 7 Genel bir do¤ru denkleminde( ax+by+c=0 ) do¤runun e¤imini hesaplamak, 154 Genifl aç›l› bir üçgende yükseklikler üçgenin d›fl bölgesinde bir noktada kesiflirler, 50 Geometri (Geometry), 44 Geometrik cisimlerin simetrileri, Silindir taban merkezinden geçen ve tabana dik düzlemlere göre simeriktir, 149 Geometrik dizi (Geometric sequences) nas›ld›r? Dizinin ortak çarpan› ne demektir?, 61, 62,73 Geometrik dizinin n. eleman› nas›l yaz›l›r?, 61,62,72 Gerçek say›lar kümesinin alt kümeleri olan say› kümeleri, 37 Gerçek say›lar(Real numbers) kümesi nedir?, 37 Hangi kenara hipotenüs uzunlu¤u ad› verilr?, 46 Hipotenüs nedir? Histogram nas›l oluflturulur?, 14 Histogramda veri grubunun geniflli¤ini hesaplamak, 14 Ifl›¤›n h›z›n›n bilimsel gösterimi nas›ld›r?, 19 ‹ki bilinmeyenli do¤rusal eflitsizliklerin(The graph of a linear inequality in two variables) çözüm kümesinin ikililerini koordinat düzleminde göstermek,158, 167 ‹ki nokta perspektifi, 137 ‹ki noktadan eflit uzakl›ktaki noktalar kümesi bunlar›n orta dikme do¤rusu üzerindedir., 48 ‹kinci dereceden üçterimli cebirsel ifadeyi cebir karolar›n› kullanarak bir dikdörtgenin alan›na eflit olacak flekilde kenar uzunluklar› cinsinden nas›l yazar›z?,çözümlü örnekler, 65, 66,72,73 ‹nsan vucudundaki hücrelerin ortalama say›s›n›n bilimsel gösterimi nas›ld›r?, 19 ‹rrasyonel say›lar›n ondal›k aç›l›m› devirli bir say› m›d›r?, 37 ‹statisti¤in tan›m›, 14 KAA (Kenar-Aç›-Aç›) elemanlar› karfl›l›kl› efl olan üçgenler efltir. Örnek çözümlü Test,86 KAK elemanlar› efl olan üçgenler efltir.Örnek çözümlü Test, 84,85 KAK iki kenar›n›n uzunlu¤u ile aralar›ndaki aç›s› bilinen üçgenin çizimi nas›l yap›l›r?, 47,48 KAK(‹ki üçgenin karfl›l›kl› ikifler kenarlar› orant›l› ve bu kenarlar aras›ndaki aç›lar› efl ise ) Benzerlik koflulu, örnek testler,88, 89, 90,91 Kare piramidin simetri düzlemleri ile görünüflünün de¤iflmez kald›¤› döndürülme ekseni ve döndürülme aç›s›?, 152 Kare prizman›n alan›n›n hesaplanmas›, Yanal Alan›, bütün alan›, 96, 97,99 Karekök içindeki say›n›n tam kare çarpan›n› kök d›fl›na ç›karmak, 31, 32 Kareköklü iki say›n›n bölünmesi, 33 Kareköklü iki say›n›n çarp›lmas› , 32 Kareköklü iki say›n›n ç›kar›lmas›, 32 Kareköklü iki say›n›n toplanmas›, 32 Kareköklü say›lar pozitif veya s›f›rd›rlar, 31 Kareköklü say›lar(irrasyonel say›lar) nedir? say› do¤rusunda nas›l yerlefltirilir?, 30 Karesel say›lar(square numbers), 60 Kenar uzunluklar› do¤al say› olan baz› dik üçgenler hangileridir?, 52 Kenarortay do¤rusunun uzunlu¤u ne demektir?, 50 Kenarortaylar›n kesim noktas› olan G a¤›rl›k merkezinin özelli¤i,48

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK

237


SBS 8 MATEMAT‹K KKK benzerlik koflulu; karfl›l›kl› kenarlar› orant›l› olan üçgenler benzer üçgenler olup orant›l› kenarlar karfl›s›ndaki aç›lar› da eflittir.,örnek testler,88, 90, 94 KKK elemanlar› bilinen üçgen nas›l çizilir?, 47 KKK (Kenar-Kenar-Kenar) elemanlar› karfl›l›kl› efl olan üçgenler efltir. Örnek çözümlü test, 86 Klinometre(Clinometer) nedir?, 161 Kombinasyon(Combination) ne anlama gelmektedir? Formülü nas›ld›r? 5 elemanl› bir kümenin 2 elemanl› alt kümelerinin say›s›na 5'in 2'li kombinasyonu ad› verilir.,örnek testler,76,77,78,109 Küp'ün Alan›, Yanal Alan› nas›l bulunur?, örnek çözümlü testler, 96 Küpün cisim köflegen uzunlu¤u ile bir kenar›n›n uzunlu¤u aras›ndaki ba¤›nt›, 60 Küp'ün Hacminin hesab›, 100, 105, 106, 107 Küp'ün simetri düzlemleri, küpün görünüflü ekseni etraf›nda 90 derece veya tam katlar›nda döndürülmesi sonucunda de¤iflmez,150 Küre ekseni etraf›nda döndürülse görünüflü de¤iflmeyece¤inden eksenine simetri ekseni denir, 149 Küre örne¤i olan toplar teknoloji harikalar›d›rlar.Toplar›n teknik özellikleri ,123 Küre(Sphere), büyük çember hangisidir? 108 Kürenin Hacmi (Volume of Sphere), çözümlü örnekler, 132, 133, 134,135,136,142 Kürenin yüzey alan (Surface areas of spheres), 120,121,122,145 Normal da¤›l›m e¤risi ile standart sapma ve aritmetik ortalama aras›ndaki iliflki nas›ld›r?, 37 Olas›l›k çeflitleri, 25 Olay çeflitleri, 25 ondal›k kesirlerin kareköklerini almak, 33 Ondal›k kesirlerin tekrarl› çarp›m›n› hesaplamak, 17 Ortanca de¤er(medyan) nedir? nas›l bulunur? Öklit(Eukliedes) yükseklik ba¤›nt›s›, 58 Öklit'in dik kenar ba¤›nt›s›, 58,59 Örneklem oluflturma, 14 Özdefllik nedir? Denklemle fark› nedir? Bir eflitli¤in Denklem mi Özdefllik mi oldu¤u nas›l anlafl›l›r?, 63,64,73 Öznel olas›l›k, 25 Paralel do¤rular efl uzakl›kl› do¤rulard›r., 49 Paralelkenar dik prizman›n hacmi, 102 Pascal (Pascal) üçgeni,60 Permütaskon ile Kombinasyon aras›ndaki iliflkiyi veren formül, 78,79 Permütasyon (permutations) ne anlama gelir?nas›l hesaplan›r? ,formülü, 77,78,109 Perspektif çizimi (perspective drawing), ufuk çizgisi nedir?,kaybolunan nokta nedir?,136 Piramidin yüzey alan›n›n hesab›,örnek testler,114,115,116,124 Piramit, elemanlar›,düzgün piramit nas›l olur?, Piramitler taban›n› oluflturan çokgenin flekline göre adland›r›l›r. ,107 Pisagor ba¤›nt›s› nedir?,uygulamas›na örnekler ; 49, 51,57,58, 59,73,74, 93,115,117,119,121,124, 127,132,136,161 Pisagor (Pythagoras) ba¤›nt›s›n›n do¤rulu¤unu ispatlayan yollardan baz›lar›, 52, 53 Prizman›n hacminin hesab›, 100, 107 Rasyonel Cebirsel ifadelerle ifllem yapma, yap›labiliyorsa ifadeleri sadelefltirme, çözümlü örnekler,66, 67,68,69,70,73 Rasyonel Denklem (pay› ve paydas› birinci dereceden iki terimliden oluflur) nedir? Çözüm kümesi nas›l bulunur?, 79,80 Rasyonel say›lar Gerçek say›lar do¤rusunda niye yo¤undurlar denir?, 37 Rasyonel say›n›n tekrarl› çarp›m›n› hesaplamak, 17 238

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK


KEMAL Türkeli Say› örüntüleri (patterns), 60 Serbest b›rak›lan tafl›n yere düflme olas›l›¤›, 25 Silindirin alan›n›n hesab›, 99 Standart Sapma nedir? Nas›l hesaplan›r? ,37,38,39 fieklin eksenlere paralel ötelenmesi sonucu noktalar›n›n yeni koordinatlar›n› bulmak, 13 fieklin orijin etraf›nda 90 derecenin katlar› olarak döndürülmesi sonucunda noktalar›n›n yeni koordinatlar›n› hesaplamak,12 fieklin x eksenine göre yans›mas› alt›ndaki görüntüsü ,11 fieklin y eksenine göre yans›ma alt›ndaki görüntüsü, 12 Tabanlar› ayn› üsleri farkl› iki üslü say›y› bölmek, 18 Tabanlar› ayn› üslü say›lar› çarpmak, 17 Tabanlar› eflkenar üçgen yan yüzleri dikdörtgensel bölge olan eflkenar üçgen dik prizman›n toplam alan›n›n hesaplanmas›, 97 Tabanlar› ve yükseklikleri eflit olan prizma ile piramidin hacimleri aras›ndaki ba¤›n› nedir?,126 Tam kare olmayan say›n›n karekökünü tahmin etmek için strateji gelifltirmek, 31 Tam kare(perfect square) saylar hangileridir?, 31 Taslak üçgen (yard›mc› üçgen) çizerek üçgeni çizme stratejimizi nas›l gelifltirebiliriz?,47 Teorik olas›l››k nedir?, 25 Tepe de¤er (mod), 41 Trigonometrik oranlar›n(Trigonometric ratios) tan›m›, sinA=?, cosA=?, tanA=?, cotA=?, çözümlü örnekler,160,161,162,163,164,165 Üç kenar› farkl› uzunkukta iki efl uçgenle bu üçgenleri çeflitli flekillerde bir araya getirerek kaç de¤iflik paralelkenar oluflturabilirsiniz?,87 Üçgen dik prizma,Aç›k flekli, 3 taban ayr›t› vard›r ,6 köflesi vard›r , yanal ayr›tlar› hangileridir?, 5 yüzü vard›r, 95 Üçgen eflitsizli¤i nedir? Üçgenin çizilebilmesi için kenar uzunluklar› aras›nda nas›l bir iliflki olmal›d›r?,44, 45,46,74 Üçgen prizman›n Hacmi nas›l bulunur?, 101,102 Üçgende yükseklik nedir?, 49,74 Üçgenin aç›lar› ile karfl›lar›ndaki kenar uzunluklar› aras›ndaki iliflki nas›ld›r?, 46,74 Üçgenin çizilebilmesi için hangi elemanlar›n›n bilinmesi yeterli olabilir?, 46,47, 48 Üçgenin üç kenar›na içten te¤et olan çemberin merkezi iç aç›ortaylar›n kesiflme noktas›d›r., 49,50,74 Üçgenin üç köflesinden geçen çevrel çemberin merkezi, kenarlar›n›n orta dikme do¤rular›n›n kesiflme noktas›d›r., 50,74 Üçgenler (Triangles), 44 Üçgenlerde Efllik (Üçgenlerin eflitli¤i) ne demektir? ,84 Üçgenlerin Benzerli¤i (üçgenlerde benzerlik) , AAA (üçer aç›s› karfl›l›kl› eflit) olan üçgenler benzerdir. ,87 Üçgensel say›lar (Triangular numbers), 60,72 Üsleri ayn› tabanlar› farkl› iki üslü say›y› bölmek, 18 Üsleri ayn› tabanlar› farkl› iki üslü say›y› çarpmak, 17 Üslü say›lar s(Exponents), 16 Veri gurubunun Aç›kl›¤› (range), 14 Yamu¤un alan›n›n hesab›na say›sal örnek, 54

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK

239


SBS 8 MATEMAT‹K

KAYNAKÇA MEB’in internet sitesinde yay›nlanan 8.s›n›f 2008-2009 ders program›na uygun olarak yazd›¤›m bu kitaptan SBS’ ye girecek 900 bin adaydan herhangi biri çal›flt›¤›nda kitab›m›n yararl› olabilmesi için 8.s›n›flar›n ders kitaplar› olan MEB, Ayd›n veya Erdem yay›nevlerinin kitaplar›n› da inceleyerek ifllenen konu anlat›m düzeyine paralel olan bir anlat›m tarz› kulland›m. Di¤er yandan internetten veya ‹ngilizce kitaplardan global 8.s›n›f Matematik program›n› da inceleyerek kavramlarda bir çeliflki olmamas›na özen gösterdim. Liselerde girifl s›navlar›nda önemsenen test bilgi düzeyini ak›l yürütme becerisini ve ifllem performans›n› da ç›km›fl sorulardan inceledim. - AYGÜN Serpil Çiçek, Nevzat ÜNSAL ve 6 yazarl› ‹lkö¤retim 8 Ders kitab›(224 sayfa), Ö¤renci Çal›flma Kitab›, Ö¤retmen K›lavuz Kitab› MEB Ders kitaplar› 2008, Ankara - AYDIN Nesibe, BEfiER fiemsettin ‹lkö¤retim 8 Matematik Ders kitab›(246 sayfa), Ö¤renci Çal›flma kitab›, Ö¤retmen k›lavuz Kitab› Ayd›n Yay›nc›l›k LTD fiti., 2008, Ankara, www.aydinegitim.com - GÜLBAHAR Melek , AYTAR Havva Matematik 8 Ders kitab› (208 sayfa), Ö¤renci Çal›flma kitab›, Ö¤retmen K›lavuz Kitab› ERDEM Yay›nlar› , ‹stanbul, 2008 - Liselere girifl s›navlar›nda geçmifl y›llarda sorulmufl Test sorular› http://oges.meb.gov.tr/ Arflivi, Gazeteler, www.ozgulyayinlari.com.tr, çeflitli kitaplar, http://www.osym.gov.tr ALS sorular› arflivi, http://okulevde.com - CHAPIN, S.H., Middle Grades Mathematics an interactive Approach, Prentice Hall, New Jersey ,1995 - Mary P. Dolcani, Robert H. Sorgenfrey, Pre-Algebra Houghton Mifflin Company Boston 1985 - Ray C. Jurgensen Geometry McDougal Littell A Houghton Mifflin Company Evanston USA , 1997 - DAVID, M.,L. MARSHA ,Prentice Hall Pre –Algebra ,A Paramount Comminications , 1991 - Glencoe/McGraw-Hill ,Mathematics, Columbus, 2001 - Glencoe/McGraw-Hill , Mathematics, Course 2, 1999 - HAESE, S.,R. Haese, Mathematics for year 8,Haese Harris Publications, Australia,2004 - HAESE, S.,R. Haese, Pulgies,S., Mathematics for year 7, Haese Harris Publications, Australia - Matematik Terimleri Sözlü¤ü ,Türk Dil Kurumu yay›nlar›, Ankara, 2000 - Meb 6-8. s›n›flar ‹lkö¤retim Matematik Dersi Ö¤retim Program› ve K›lavuzu MEB Yay›nlar›, Ankara, 2005 - LICHTENBERG,B.K.,A.P.TROUTMAN, Mathematics A good Beginning , Wadsworth, Belmont, 2003 - TDK, Türkçe Sözlük, Yaz›m K›lavuzu, TDK yay›nlar›, Ankara, 2005, www.tdk.gov.tr - Aufmann, Richard N., Mathematical Excursions, Houghton Mifflin Company, New York, 2004 - John, Busbridge, Durmufl Ali Özçelik, ‹lkö¤retim Matematik Ö¤retimi, YÖK, Ankara, 1997 - www.kemalturkeli.com sitemde de internette ücretsiz sesli görüntülü ders anlatan site adlar› ile yararl› olaca¤›n› düflündü¤üm de¤iflik kitap önerilerimi verdim. Kendini gelifltirmek isteyen ö¤rencilere incelemelerini öneririm. Kaynakça’ya ek kitap listemi de ayn› sitemde verdim. Unutmay›n›z ki Matematik öyle bir heykele benzetilebilir ki Yüzlerce Heykelt›rafl ayn› anda yüzlerce bölgesini sözgelimi ayak parmaklar›n› veya yüzündeki herhangi bir noktay› daha güzel yapmak için uzun süre bilinçli düflünmekte sonunda da heykelin bütünlük esteti¤ini bozmayacak flekilde geliflimine (güzellefltirilmesine) katk› yapmaktad›rlar. Matematik Global akl›n ürünü uluslararas› bir mant›k ve ifllem dilidir. Sevgi ve sayg›lar›mla Kemal Türkeli (MÜ Matematik, ‹TÜ Mezunu Elektronik Yük.Mühendisi 2009 ‹stanbul)

240

KEMAL TÜRKELi • 8. sınıf SBS MATEMATiK


Gsm 0536 511 84 00

8.sinif_SBS_Matematik_Testleri_Cozumlu_Kemal_Turkeli  

8.sinif_SBS_Matematik_Testleri_Cozumlu_Kemal_Turkeli 1TL=240 sayfa Tum testleri cozumludur

Read more
Read more
Similar to
Popular now
Just for you