FORMULARIO DE DERIVADAS.
TRIGONOMΓTRICAS 9) π¦ = π ππ(π’) π¦ο’ = π’ο’πππ (π’) 1) π¦ = π
BΓSICAS π¦ο’ = 0; π = ππππ π‘πππ‘π
10) π¦ = πππ (π’)
π¦ο’ = βπ’ο’π ππ(π’)
2) π¦ = π₯
π¦ο’ = 1
11)π¦ = π‘ππ(π’)
π¦ο’ = π’ο’π ππ 2 (π’)
3) π¦ = ππ£
π¦ο’ = ππ£ο’
12) π¦ = πππ‘(π’)
π¦ο’ = βπ’ο’ππ π 2 (π’)
4) π¦ = π₯ π
π¦ο’ = ππ₯ πβ1
13)π¦ = π ππ(π’)
π¦ο’ = π’ο’π ππ(π’ )π‘ππ(π’)
4π) π¦ = ππ₯ π
π¦ο’ = πππ₯ πβ1 . π£ο’
14) π¦ = ππ π(π’)
π¦ο’ = βπ’ο’ππ π(π’) πππ‘(π’)
5) π¦ = π’ + π£ β π€
π¦ο’ = π’ο’ + π£ο’ β π€ο’
6) π¦ = π’. π£
π¦ο’ = π’π£ο’ + π£π’ο’
TRIGONOMΓTRICAS INVERSAS π’ο’ 15)π¦ = πππ π ππ(π’) π¦ο’ = β1 β π’2 π’ο’ 16) π¦ = πππ πππ (π’) π¦ο’ = β β1 β π’2 π’ο’ 17)π¦ = πππ π‘ππ(π’) π¦ο’ = 1 + π’2 π’ο’ 18) π¦ = πππ πππ‘(π’) π¦ο’ = β 1 + π’2 π’ο’ 19)π¦ = πππ π ππ(π’) π¦ο’ = π’βπ’2 β 1 π’ο’ 20)π¦ = πππ ππ π(π’) π¦ο’ = β π’βπ’2 β 1 EXPONENCIALES π’ 23)π¦ = π π¦ο’ = π’ο’π π’
7) π¦ =
π’ π£
8) π¦ = βπ’
π¦ο’ =
π¦ο’ =
π£π’ο’ β π’π£ο’ π£2 π’ο’ 2βπ’
LOGARΓTMICAS π’ο’ 21)π¦ = ππ(π’) π¦ο’ = π’ π’ο’ 22)π¦ = ππππ (π’) π¦ο’ = π’ππ(π) PROPIEDADES DE LOS EXPONENTES 1 π0 = 1 = πβπ π1 = π ππ 1 ππ ππ = ππ+π ππ = βπ π π π π π = (ππ) π ππ ππ π π ππ π > π; π = ππβπ =( ) π ππ π π π π ππ π (π ) = π ππ π = π; π = π0 = 1 ππ π 1 ππ π < π; π = πβπ π π
24) π¦ = ππ’
π¦ο’ = π’ο’ππ’ ππ(π)
PROPIEDADES DE LOS RADICALES π
π
βππ = ππ = π π
π
βππ = π π π
ππ
π
π π βπ = β βπ = β βπ π
π
π
βπ βπ = βππ π π π βπ β =π π βπ