Download pdf Hilbert s tenth problem an introduction to logic number theory and computability 1st ed

Page 1


Visit to download the full and correct content document: https://ebookmeta.com/product/hilbert-s-tenth-problem-an-introduction-to-logic-numbe r-theory-and-computability-1st-edition-m-ram-murty/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

An Introduction to Probabilistic Number Theory 1st Edition Emmanuel Kowalski

https://ebookmeta.com/product/an-introduction-to-probabilisticnumber-theory-1st-edition-emmanuel-kowalski/

An Introduction to Traditional Logic 3rd Edition Scott M Sullivan

https://ebookmeta.com/product/an-introduction-to-traditionallogic-3rd-edition-scott-m-sullivan/

An introduction to the theory of number 5th Edition Ivan Niven Herbert S Zuckerman Hugh L Montgomery

https://ebookmeta.com/product/an-introduction-to-the-theory-ofnumber-5th-edition-ivan-niven-herbert-s-zuckerman-hugh-lmontgomery/

The Logic Of Capital: An Introduction To Marxist Economic Theory 1st Edition Deepankar Basu

https://ebookmeta.com/product/the-logic-of-capital-anintroduction-to-marxist-economic-theory-1st-edition-deepankarbasu/

Introduction to Logic 15th Edition Irving M. Copi

https://ebookmeta.com/product/introduction-to-logic-15th-editionirving-m-copi/

Guide to Discrete Mathematics: An Accessible Introduction to the History, Theory, Logic and Applications 2nd Edition Gerard O'Regan

https://ebookmeta.com/product/guide-to-discrete-mathematics-anaccessible-introduction-to-the-history-theory-logic-andapplications-2nd-edition-gerard-oregan/

Pure Mathematics for Beginners A Rigorous Introduction to Logic Set Theory Abstract Algebra Number Theory Real Analysis Topology Complex Analysis and Linear Algebra 1st Edition Steve Warner

https://ebookmeta.com/product/pure-mathematics-for-beginners-arigorous-introduction-to-logic-set-theory-abstract-algebranumber-theory-real-analysis-topology-complex-analysis-and-linearalgebra-1st-edition-steve-warner/

An Introduction to Formal Logic 2nd Edition Peter Smith

https://ebookmeta.com/product/an-introduction-to-formallogic-2nd-edition-peter-smith/

Introduction to Number Theory 2nd Edition Marty Erickson Anthony Vazzana David Garth

https://ebookmeta.com/product/introduction-to-number-theory-2ndedition-marty-erickson-anthony-vazzana-david-garth/

Hilbert’s Tenth Problem

An Introduction to Logic, Number Theory, and Computability

Hilbert’s Tenth Problem

An Introduction to Logic, Number Theory, and Computability

Volume 88

Hilbert’s Tenth Problem

An Introduction to Logic, Number Theory, and Computability

EditorialBoard

SatyanL.Devadoss RosaOrellana

JohnStillwell(Chair) SergeTabachnikov

2010 MathematicsSubjectClassification.Primary11U05,12L05.

Foradditionalinformationandupdatesonthisbook,visit www.ams.org/bookpages/stml-88

LibraryofCongressCataloging-in-PublicationData

Names:Murty,MarutiRam,author. | Fodden,Brandon,1979–author.

Title:Hilbert’stenthproblem:anintroductiontologic,numbertheory,and computability/M.RamMurty,BrandonFodden.

Description:Providence,RhodeIsland:AmericanMathematicalSociety,[2019] | Series:Studentmathematicallibrary;volume88 | Includesbibliographical referencesandindex.

Identifiers:LCCN2018061472 | ISBN9781470443993(alk.paper)

Subjects:LCSH:Hilbert’stenthproblem. | Numbertheory–Problems,exercises, etc. | Mathematicalrecreations–Problems,exercises,etc. | Hilbert,David, 1862–1943. | AMS:Numbertheory–Connectionswithlogic–Decidability. msc | Fieldtheoryandpolynomials–Connectionswithlogic–Decidability. msc

Classification:LCCQA242.M89452019 | DDC512.7/4–dc23 LCrecordavailableathttps://lccn.loc.gov/2018061472

Copyingandreprinting. Individualreadersofthispublication,andnonprofit librariesactingforthem,arepermittedtomakefairuseofthematerial,suchasto copyselectpagesforuseinteachingorresearch.Permissionisgrantedtoquotebrief passagesfromthispublicationinreviews,providedthecustomaryacknowledgmentof thesourceisgiven.

Republication,systematiccopying,ormultiplereproductionofanymaterialinthis publicationispermittedonlyunderlicensefromtheAmericanMathematicalSociety. RequestsforpermissiontoreuseportionsofAMSpublicationcontentarehandled bytheCopyrightClearanceCenter.Formoreinformation,pleasevisit www.ams.org/ publications/pubpermissions

Sendrequestsfortranslationrightsandlicensedreprintsto reprint-permission @ams.org.

c 2019bytheAmericanMathematicalSociety.Allrightsreserved. TheAmericanMathematicalSocietyretainsallrights exceptthosegrantedtotheUnitedStatesGovernment. PrintedintheUnitedStatesofAmerica.

∞ Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurep ermanenceanddurability. VisittheAMShomepageat https://www.ams.org/ 10987654321242322212019

Analgebraofmind,aschemeofsense, Asymbollanguagewithoutdepthorwings, Apowertohandledeftlyoutwardthings Areourscantearningsofintelligence. TheTruthisgreaterandasksdeeperways.

-SriAurobindo,“DiscoveriesofScienceII”in CollectedPoems

Contents

Prefacexi Acknowledgmentsxiii Introduction1

Chapter1.CantorandInfinity5

§1.1.CountableSets5

§1.2.UncountableSets10

§1.3.TheSchr¨oder–BernsteinTheorem14 Exercises18

Chapter2.AxiomaticSetTheory23

§2.1.TheAxioms23

§2.2.OrdinalNumbersandWellOrderings28

§2.3.CardinalNumbersandCardinalArithmetic33 FurtherReading37 Exercises37

Chapter3.ElementaryNumberTheory41

§3.1.Divisibility41

§3.2.TheSumofTwoSquares50

viii Contents

§3.3.TheSumofFourSquares53

§3.4.TheBrahmagupta–PellEquation55 FurtherReading67 Exercises67

Chapter4.ComputabilityandProvability71

§4.1.TuringMachines71

§4.2.RecursiveFunctions82

§4.3.G¨odel’sCompletenessTheorems90

§4.4.G¨odel’sIncompletenessTheorems104

§4.5.Goodstein’sTheorem114 FurtherReading119 Exercises120

Chapter5.Hilbert’sTenthProblem123

§5.1.DiophantineSetsandFunctions123

§5.2.TheBrahmagupta–PellEquationRevisited131

§5.3.TheExponentialFunctionIsDiophantine137

§5.4.MoreDiophantineFunctions144

§5.5.TheBoundedUniversalQuantifier149

§5.6.RecursiveFunctionsRevisited155

§5.7.SolutionofHilbert’sTenthProblem159 FurtherReading164 Exercises165

Chapter6.ApplicationsofHilbert’sTenthProblem167

§6.1.RelatedProblems167

§6.2.APrimeRepresentingPolynomial171

§6.3.Goldbach’sConjectureandtheRiemannHypothesis180

§6.4.TheConsistencyofAxiomatizedTheories194 Exercises198

Chapter7.Hilbert’sTenthProblemoverNumberFields201

§7.1.BackgroundonAlgebraicNumberTheory201

§7.2.IntroductiontoZetaFunctionsand L-functions212

§7.3.ABriefOverviewofEllipticCurvesandTheir Lfunctions215

§7.4.Nonvanishingof L-functionsandHilbert’sProblem218 Exercises220

AppendixA.BackgroundMaterial223 Bibliography229 Index233

Preface

In1980,theseniorauthor(MRM)hadthegrandprivilegeofmeeting SarvadamanChowlaattheInstituteforAdvancedStudyinPrinceton,NewJersey.Chowlahadwrittenasmallbooktitled TheRiemannHypothesisandHilbert’sTenthProblem in1965andsothis wasanopportunitytoaskhimabouttheseeminglystrangetitleand howitcametobe.Wasthereaconnectionbetweenthetwo?Chowla replied,“Idon’tknow.Thesetwoproblemshavealwaysfascinated meandsoIchosethatasthetitle.”Hewentontosaythatthebook waslargelyaninspiredwork,writteninasinglenight,anditrepresentshisselectionofbeautifulpearlsfromnumbertheory.Itwasnot meanttobeatextbookbutmoreofaninvitationforfurtherstudy and“tostimulatethereader”.

Butthefactofthematteristhatthetwoproblems are related aswediscoveredonlymuchlaterintheworkofMartinDavis,Hilary Putnam,JuliaRobinsonandYuriMatiyasevi˘c.Infact,manyofthe famousHilbertproblemsareinterconnected.Thisinterconnectedness canbeusedasthefocusformathematicalinstruction.Anditcan bedonewithveryfewprerequisites.Thisisthe raisond’ˆetre ofthis book.

SomeoftheHilbertproblemssuchastheRiemannhypothesis (theeighthproblem)arestillopen.Theothersthathavebeensolved requiredformidablebackgroundandpreparation.Hilbert’stenth

problemisdifferentinthatabasicintroductiontoelementarynumbertheoryandmathematicallogicsufficestounderstandtheproof, andthiscanbedoneinarelativelyshorttime.Inadditiontothe grandarrangementofmathematicalideas,Hilbert’stenthproblem hasacolourfulcastofcharacters,manyofthemtragicheroes,who pondereddeeplyregardingtheenigmaofthehumanbeingandthe natureofmathematicaltruth.

Hilbert’stenthproblemanditssolutionrepresentinmicrocosm theriddleofhumanlifeitselfanditsmeaning.Thism´elangeofphilosophicalandmathematicalconundrumsarethemysteriesthatconfrontus.Inmanyways,thisbookisnotmeanttobeatextbook, butratheraninvitationtoexplorefurther.AsChowlawouldsay,we hope“tostimulatethereader”.

KingstonandOttawa,Ontario

July2018

Acknowledgments

Thisbookisbasedonanupper-levelundergraduatecoursegivenat Queen’sUniversityinOntariointhewintersemesterof2007bythe seniorauthor(MRM).Theclassconsistedofprimarilyundergraduates,severalgraduatestudents,andafewpost-doctoralfellows. Therewerealsostudentsfromthephilosophydepartment.Giventhe diversebackgroundsofthestudents,themathematicalprerequisites werekepttoabareminimumrequiringonlyfamiliaritywithbasiccalculusandlinearalgebra.Thecoursecoveredthecontentsofthefirst fivechaptersbyfirstintroducingstudentstologicalnotation,then elementarynumbertheory,andgraduallytonotionsofcomputability anddecidabilityand,finally,theproofofHilbert’stenthproblem. Thelasttwochapterswereaddedlaterandwereculledfromgraduateseminarsconductedsincethetimethecoursewasfirstgiven. Theyrequiremoreadvancedbackground,especiallythelastchapter. Ifthestudentiswillingtotakesomeofthebackgroundmaterialin thosechaptersonfaith,theywillacquireapanoramicviewofsome recentdiscoveriesandnewdirections.Wefeelthatthisassemblageof subjectmattercanmakeanexcellentintroductiontothisfascinating topicandcantakethestudenttothefrontiersofcurrentresearch. WethankKumarMurty,HectorPasten,andtherefereesfortheir commentsonanearlierversionofthisbook.WearegratefultoIna MetteandtheAmericanMathematicalSocietyfortakinginterestin publishingthisbook,andtoMarciaAlmeidaattheAMSformuch helpwithpreparingthemanuscript.

xiii

Introduction

In1900,atthesecondInternationalCongressofMathematicians (ICM),takingplaceinParis,DavidHilbert(1862–1943)presented alistoftwenty-threeproblemsthathefeltwerefundamentallyimportant,andwouldinfluencethedirectionofmathematicsinthe20th century.1 Inhisownwords(intranslation):2

Thesupplyofproblemsinmathematicsisinexhaustible,andassoonasoneproblemissolved numerousotherscomeforthinitsplace.Permit meinthefollowing,tentativelyasitwere,tomentionparticulardefiniteproblems,drawnfromvariousbranchesofmathematics,fromthediscussion ofwhichanadvancementofsciencemaybeexpected.

Inhistenthproblem,Hilbertaskedforanalgorithmthat,when givenanarbitraryDiophantineequation,willdeterminewhetherthe equationhasintegersolutionsornot.Thesolutiontothisproblem, thatthereisnosuchalgorithm,isoneoftheremarkableachievements of20th-centurymathematics.Whensuchdramaticadvancesina

1 TheaddresswasgiveninGerman,andhepresentedtenoftheproblems.Ina paperwritteninFrenchappearingintheproceedingsofthecongress,heincludedthe fulllistoftwenty-threeproblems.

2 Hilbert’saddresswastranslatedandpublishedinthe BulletinoftheAmerican MathematicalSociety ;see[Hil02].

DavidHilbert (PhotocourtesytheArchivesoftheMathematischesForschungsinstitutOberwolfach)

disciplinearemade,itisrarethatonecanexplainthesolutionin simpletermstothenonexpert.Fortunately,thisisnotthecasewith Hilbert’stenthproblem.Allthatisneededtounderstandhowthe solutionhasbeenputtogetherisanelementaryknowledgeofthe rudimentsoflogicandelementarynumbertheory,bothtopicsbeing atalevelaccessibletoanundergraduatestudentofmathematics.It isthepurposeofthismonographtoexplainthisworkinassimplea languageaspossible.Infact,wefeelitisasplendidwaytointroduce thestudenttobothlogicandnumbertheorythroughsuchamotivated introductionwithHilbert’stenthproblemasthefocus.

ThatHilbert’stenthproblemhasanegativesolution,inthatthe algorithmthatHilbertsoughtdoesnotexist,mighthavesurprised Hilbert.Still,heexpectedthatsuchthingsmayoccur.Inhis1900 address,hecommented:

Occasionallyithappensthatweseekthesolution underinsufficienthypothesesorinanincorrect sense,andforthisreasondonotsucceed.The problemthenarises:toshowtheimpossibilityof

thesolutionunderthegivenhypotheses,orinthe sensecontemplated.Suchproofsofimpossibility wereeffectedbytheancients,forinstancewhen theyshowedthattheratioofthehypotenuseto thesideofanisoscelesrighttriangleisirrational. Inlatermathematics,thequestionastotheimpossibilityofcertainsolutionsplaysapre-eminent part,andweperceiveinthiswaythatoldanddifficultproblems,suchastheproofoftheaxiomof parallels,thesquaringofthecircle,orthesolution ofequationsofthefifthdegreebyradicals,have finallyfoundfullysatisfactoryandrigoroussolutions,althoughinanothersensethanthatoriginallyintended.Itisprobablythisimportantfact alongwithotherphilosophicalreasonsthatgives risetotheconviction(whicheverymathematician shares,butwhichnoonehasasyetsupportedby aproof)thateverydefinitemathematicalproblem mustnecessarilybesusceptibleofanexactsettlement,eitherintheformofanactualanswertothe questionaskedorbytheproofoftheimpossibility ofitssolutionandtherewiththenecessaryfailure ofallattempts.

Inthisbook,wetouchonseveralofHilbert’sproblems.Hisfirst problem,thecontinuumhypothesis,isdiscussedinSections2.3and 4.3.Inhissecondproblem,Hilbertaskedforaproofoftheconsistencyoftheaxiomsofarithmetic.WediscussKurtG¨odel’smomentousresultonthisprobleminSection4.4.Webrieflymention Hilbert’sseventhproblem,onthetranscendenceof ab when a =0, 1 isalgebraicand b isirrationalandalgebraic,inSection1.2.Hilbert’s eighthproblemincludestheRiemannhypothesis,Goldbach’sconjecture,andthetwinprimeconjecture,whicharediscussedinSection 6.3.

Thescopeofthisbookisbroad.Aself-containedrigoroustreatmentofallthetopicscoveredbythisbookwouldmorethantriple itslength.Ourhopeistointroducethereadertonumeroustopicsin

logic,numbertheory,andcomputability.Theinterestedreadercan thenundertakefurtherstudyintheseareas.Tothatend,alistof referencesforfurtherreadingispresentedattheendofmostchapters.

Thefirstfourchaptersdeveloptherudimentarynotionsofset theory,elementarynumbertheory,andlogicneededforacomplete self-containedproofofHilbert’stenthprobleminChapter5.Some applicationsofthesolutiontoHilbert’stenthproblemarecoveredin Chapter6.Thismaterialisaccessibletotheundergraduatestudent andcanbecoveredinasemestercourse.3 Thefinalchapteraims tointroducetheaspiringstudenttocurrentresearchonthistopic, namelyHilbert’stenthproblemovernumberfields.Thischapterrequiresmoremathematicalmaturityandisintendedfortheadvanced student.Undoubtedly,thereismoreresearchtobedoneanditis ourhopethatthereaderisthustakentothefrontieroftheexisting knowledgeonthistopicsothatheorshemaysurveywhatisknown andwhatisunknown.

IfoneisjustlookingtounderstandthesolutiontoHilbert’stenth problem,whichisgiveninChapter5,thenSections3.4and4.2are necessary,providedoneiscomfortableusinganinformaldefinition ofanalgorithm.AmorecarefuldiscussionofalgorithmsandcomputabilityisgiveninSection4.1.InChapter6,someapplications ofthesolutiontoHilbert’stenthproblemaregiven.Theseusethe materialdevelopedinChapter2andSections4.3and4.4.However, wefeelthatbyreadingthroughtheentirebook,onewillgetabetter senseoftheinterplaybetweenthetopicscoveredbythisbookandan understandingofsomeofthemostimportantproblemsinlogicand numbertheoryofthepast150years.

3 Anappendixcontainingpreliminarymaterialisincluded.

Chapter1

CantorandInfinity

1.1.CountableSets

Therearesomephilosophersthatdenytheexistenceofinfinity.These arethe“finitists”.Theyarguethatsincewehaveneverseenan infinitecollectionofthings,infinitydoesnotexist.Whenpresented withnotionsofmathematicsthatleadonetotheideaofinfinity,they arguethatitmaybethattheuniverseisworkingmodulo p forsome largeprime p!

GeorgCantor(1845–1918)canbesaidtobethefounderofset theoryand,moregenerally,themathematicaltheoryofinfinitenumbers.HewasborninSt.Petersburgintoamerchantfamilythat settledinGermanyin1856.HestudiedinZ¨urichandthenBerlin whereheobtainedhisdegreein1867.In1869hebecamealecturer attheUniversityofHalleinGermanyandservedthereasaprofessor from1879to1913.Heputforththe continuumhypothesis (which willbedescribedattheendofthischapter)andattemptedtosolve it.Perhapsunderthestrainoftheseeffortsaswellasinitialoppositiontohisnewideasconcerninginfinity,hesufferedfromdepression whichmayhaveeventuallycontributedtohisdeath.Thecelebrated physicist,StephenHawking[Haw]wrote,“GeorgCantorscaledthe

1.CantorandInfinity

peaksofinfinityandthenplungedintothedeepestabyssesofthe mind:mentaldepression.”1

Cantor’sdoctoralthesiswasinnumbertheory.Later,heintroducedtheconceptsof ordinalnumbers and cardinalnumbers,which wediscussinChapter2.Usingthistheory,heprovedanumberof resultsthatcomparethesizesofinfinitesets,manyofwhicharegiven here.

Aset S issaidtobe countablyinfinite ifitcanbeputinoneto-onecorrespondencewiththenaturalnumbers(thatis,ifthere isabijectionbetween N = {0, 1, 2,...} and S ).A countable set iseitherfiniteorcountablyinfinite.Ifasetisnotcountable,it iscalled uncountable.Sincethefunctionthatsends n to2n isa

1 Hawkingeditedthebook GodCreatedtheIntegers inwhichhepennedshort essaysonabouttwodozenmathematicalgiants,withCantorbeingoneofthem.Unfortunately,theseessayswerenotcopyeditedproperlyandthereisaseriouserroron page1132.RespondingtoaquestionofDedekindastowhetheraninfinitesetcan bedefinedwithoutreferringtothenaturalnumbers,HawkingtriestogiveCantor’s reply.Thus,thefirstsentenceofthelastparagraphonpage1132shouldbe:“Cantor answeredhisfirstquestionbydefiningasetasbeinginfiniteifitcouldbeputintoa onetoonecorrespondencewithapropersubsetofitself.”

GeorgCantor (Photosource:Wikipedia)

bijectionbetween N andthesetofevennaturalnumbers,theset ofevennaturalnumbersiscountablyinfinite.Thesetofintegers, denotedby Z,isalsocountablyinfinitesincewemaydefineamap f : N → Z bysetting f (0)=0, f (1)=1, f (2)= 1, f (3)=2, f (4)= 2, f (5)=3, f (6)= 3,andsoon.

Moregenerally,weset

(n)=( 1)

, where x isthefloorfunction,whichreturnsthegreatestintegerless thanorequalto x.Thisfunctioniseasilyverifiedtobeinjectiveand surjective.

Whatabout Q,thesetofrationalnumbers?Coulditbethat Q iscountablyinfinite?Sinceanypositiverationalnumbercanbe writtenas a/b forsomenaturalnumbers a and b,weareledtoconsidertheproblemofdeterminingiftheset N × N oforderedpairsof naturalnumbersiscountablyinfinite.Thatis,isthereaone-to-one correspondencebetween N × N and N?Cantordiscoveredanexplicit function,givenby P (x,y )= (x + y )(x + y +1) 2 + x,

thatsetsupaone-to-onecorrespondencebetween N × N and N.This functioniscalledCantor’spairingfunction.Atableforthefirstfew valuesof P (x,y )isgivenbelow.

1.CantorandInfinity

Cantorfoundthepairingfunctionviaadiagonalmethodofenumeration.Thatis,hebeganhislistofpairsas (0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0),....

Letusnotethatwecangroupthepairs(a,b)accordingtothesum a + b.Thereareonlyfinitelymanysuchpairsinanygroup.Correspondingtothesum k ,weseethatthereare k +1suchpairs.Now givenanorderedpair(x,y ),thegroupitliesinisdeterminedby k = x + y .Beforewereachthisgroup,thenumberoforderedpairs weencounteris

1+2+ + k = k (k +1) 2 .

Havingreachedthegroupwithsum k ,toreach(x,y )wehaveto proceedthrough (0,k ), (1,k 1),..., (x,y ), whichencompass x +1additionalpairs.Thusthepair(x,y )isinthe k (k +1) 2 + x +1= (x + y )(x + y +1) 2 + x +1

positioninthelisting.Sincewewantthefirstlistedpairtobemapped to0,thesecondtobemappedto1,andsoon,subtracting1yields thepairingfunction P (x,y ).2

Usingtheabovefunctions f and P ,itfollowsthat Z × Z isalso countablyinfinite,foronemayshowthat h : Z × Z → N given by h(x,y )= P (f 1 (x),f 1 (y ))isbijective.Byasimilarargument, A × B isalsocountablyinfiniteforcountablyinfinite A and B .By iteration,itfollowsthat Zn ,thesetofallordered n-tuplesofelements of Z,iscountablyinfiniteforanypositivenaturalnumber n,asis Nn .

SinceCantor’spairingfunction P (x,y )isbijective, F = P 1 is abijectivemapfrom N to N × N.Totheorderedpair(a,b)wemay associatethepositiverationalnumber(a +1)/(b +1),andthususe F tolistthepositiverationalnumbers,agreeingtoskipanypreviously

2 Inthiscontext,wementionaresultofRudolfFueter(1880–1950)andGeorge P´olya(1887–1985).Itisanopenquestiontodetermineallbijectivepolynomialmaps between N × N and N.FueterandP´olyashowedthatifwerestrictourattentionto quadraticpolynomials,thenessentiallyCantor’spairingfunction(uptopermutation) istheonlyone.Theirproofusesthetranscendenceof π ,asprovedbyFerdinandvon Lindemann(1852–1939),aswellasnontrivialanalyticnumbertheoryregardingerror termsinlatticepointenumerations.

listednumbers.Thislistingyieldsabijectionbetween N andthe positiverationalnumbers.Inparticular,since

F (0)=(0, 0),F (1)=(0, 1),F (2)=(1, 0),F (3)=(0, 2),

F (4)=(1, 1),F (5)=(2, 0),..., ourbijection g between N andthepositiverationalnumbersbegins as

g (0)=1/1=1,g (1)=1/2,g (2)=2/1=2,

g (3)=1/3,g (4)=3/1=3,... (2/2=1wasskippedsinceitwaspreviouslylisted).

Nowthatwehaveabijection g from N tothepositiverational numbers,wecandefineabijection q : N → Q asfollows.Wedefine q (0)=0, q (2n +1)= g (n),and q (2n +2)= g (n).Thus Q isa countablyinfiniteset.

Tosummarize,wehaveshownthefollowingtheorem.

Theorem1.1. Thefollowingsetsarecountablyinfinite: N, Z,and Q.

Notethatanyinfinitesubsetofacountablyinfinitesetisalso countablyinfinite.Theelementsofacountablyinfinitesetmaybe listedas a1 ,a2 ,a3 ,.... Thentheelementsofaninfinitesubsetmay belistedas an1 ,an2 ,an3 ,... for n1 ,n2 ,n3 ,...,aninfinitesubsequence of1, 2, 3,.... Thus,forexample,anyinfinitesetofrationalnumbers iscountablyinfinite.

If A and B arecountablyinfinite,then A ∪ B isalsocountably infinite.Thisisseenasfollows.Forsimplicity,weassumethesets aredisjoint.Let f : N → A and g : N → B bebijectivemaps.Define h : N → A ∪ B by h(2n)= f (n)and h(2n +1)= g (n).Itiseasyto showthat h isabijectivemap.

Therearenumbersthatarenotrationalnumbers.Theseare called irrationalnumbers.Forinstance, √2isirrational.Tosee this,supposewehavearationalnumber a/b,withthepropertythat (a/b)2 =2.Wemaysupposethat a/b isinlowestterms;thatis,there isnocommonfactorbetween a and b except1.Thenweget

a 2 =2b2 ,

1.CantorandInfinity

showingusthattheleft-handsideiseven.Thus a iseven,andwecan write a =2c forsomeinteger c.Wenowget4c2 =2b2 ,andcancelling thecommonfactorof2onbothsidesoftheequationyields 2c 2 = b2

Thisimpliesthattheright-handsideiseven,sothat b iseven.Thus wehaveboth a and b areeven,acontradiction.

√2isanexampleofan algebraicnumber.Anumber α issaidto be algebraic if α satisfiesanequationoftheform

n + an 1 αn 1 + + a1 α + a0 =0, with ai rationalnumbers.Thatis,thealgebraicnumbersarerootsof polynomialswithrationalcoefficients.Since √2isarootof x2 2, itisanalgebraicnumber.Onemayshowthatthesetofalgebraic numbersisacountablyinfiniteset,asisdoneintheexercisesatthe endofthechapter.

1.2.UncountableSets

Fromhismusingsoncountablesets,Cantorwentontoaskif R, thesetofrealnumbers,iscountable.Hisfirstproofthatthereals areuncountable,publishedin1874,usednestedintervals.Hismore famousproof,involvingthe diagonalargument,waspublishedin1891 andisgivenbelow.

Everyrealnumber x intheinterval(0, 1)= {x ∈ R :0 <x< 1} canbewrittenasaninfinitedecimal:

x =0.x1 x2 x3 .

Notethatadecimalexpansionendinginaninfinitesequenceof0’s 0.x1 x2 x3 ··· xm 1 xm 000 ··· with xm =0(calleda terminatingexpansion )alsohastheexpansion0.x1 x2 x3 xm 1 ym 999 ,where ym = xm 1.Ifweagreenevertoallowaninfinitesequenceof9’s asthe tail oftheexpansion,thenthedecimalexpansionisunique. Wecanestablishtheseassertionsasfollows.Takearealnumber 0 <x< 1.Then0 < 10x< 10,sowemaywrite

10x = x1 + y1 ,

where0 ≤ x1 ≤ 9,0 ≤ y1 < 1,and x1 isaninteger.Then

< 1

.

Iteratethisprocedurewith y1 .Thus 10y1 = x2 + y2 ,

where0 ≤ x2 ≤ 9,0 ≤ y2 < 1,and x2 isaninteger.Thus

Proceedinginthismanner,weget

where0 ≤ yn < 1.Weseeimmediatelythatthedecimalexpansion convergesto x.Toestablishuniqueness,letussupposethat

with0 ≤ xn ,yn ≤ 9.Let m bethesmallestnumberforwhich xm = ym .Withoutlossofgenerality,supposethat xm >ym .Then wehave

Thus

Hence0 <xm ym ≤ 1,whichimplies xm = ym +1.Thuswemust have yn =9,xn =0for n>m. Thusuniquenesscanfailonlyifone ofourdecimalexpansionseventuallyendsinaninfinitesequenceof 9’s.

WemaynowproveCantor’stheoremontheuncountabilityof R.

Theorem1.2. Theset R ofrealnumbersisuncountable.

Proof. Supposethattherealinterval(0, 1)werecountable.Wemay thenlistthem:

Nowconsiderthenumber

Inthisway,weavoidgettinga9or0asadigit,therebyavoiding repeating9’sandensuring r =0.Then r isin(0, 1)butcannot appearinourlistingabovesinceitdiffersfromeach rn inthe nth digit.Thisisacontradiction,andhencetherealinterval(0, 1)is uncountable.

Ifaset A isuncountableand A ⊆ B ,then B isalsouncountable.Toseethis,suppose B werecountable.Since A isinfinite, B tooisinfinite,andhencecountablyinfinite.Since A isaninfinite subsetofthecountablyinfiniteset B ,itmustbecountablyinfinite,a contradiction.Thus,since(0, 1)isanuncountablesubsetofthereal numbers,thesetofallrealnumbersisuncountable.

Supposethesetofirrationalnumberswerecountable.Since Q is countablyinfinite,wewouldthenhave R astheunionoftwocountable setsandhencecountable,acontradiction.Thusthereareuncountablymanyirrationalnumbers.

Arealnumberthatisnotalgebraiciscalleda transcendental number.Recallthatthesetofalgebraicnumbersiscountablyinfinite. Supposethesetoftranscendentalnumberswerecountable.Wewould thenhave R astheunionoftwocountablesetsandhencecountable, acontradiction.Thusthereareuncountablymanytranscendental numbers.

Inthissense,“most”realnumbersareirrational,andinfact transcendental.Cantorshowedtheuncountabilityofthetranscendentalnumbersin1874.Beforethis,theonlynumbersknowntobe transcendentalwerenumbersspecificallyconstructedtobeso(called Liouvillenumbers,namedafterJosephLiouville(1809–1882)),and e, whichwasshownbyCharlesHermite(1822–1901)tobetranscendentaljustoneyearearlier.ThusCantorprovedthatmostrealnumbers aretranscendentalatatimewhenonlyafewexampleswereknown! Thetranscendenceof π wasshownin1882byLindemann.InhisaddresstotheICMin1900,Hilbertgavehislistoftwenty-threeimportantunsolvedproblemsinmathematics.Inhisseventhproblem,he askedif a and b arealgebraicnumberswith a =0, 1and b irrational, doesitfollowthat ab istranscendental?Theanswerisyes,aswas provedindependentlyin1934byAlexanderGelfond(1906–1968)and TheodorSchneider(1911–1988).Therearestillmanyopenquestions regardingtranscendentalnumbers.Forexample,wedonotknowif thenumbers π + e or πe aretranscendental,althoughbothareexpectedtobe.Itcanbeprovedthatatleastoneofthemmustbe transcendental.ThisisanexerciseinChapter7.

Insteadofmerelyclassifyingsetsasfinite,countablyinfinite,and uncountable,wemayrefinethisbysayingthattwosets A and B have the samecardinality,written |A| = |B |,ifthereisabijectivemap betweenthem.Onemayshowthatthisisanequivalencerelation. Wesaythat A has cardinalitylessthanorequaltothatof B ,written |A|≤|B |,ifthereisaninjectivemapfrom A to B .Ifthereis aninjectivemapfrom A to B butnobijectivemapbetweenthe setsispossible,wesay A has smallercardinality than B andwrite |A| < |B |.WithTheorem1.1weshowedthatthat |N| = |Z| = |Q|. Sincetheinclusionmapfrom N to R isinjective,Theorem1.2shows that |N| < |R|.

Givenaset A,considerits powerset P (A)definedasthesetof allsubsetsof A.Itisclearthatthefunction f : A → P (A)defined by f (a)= {a} isinjective,andhence |A|≤|P (A)|.Cantorproved thefollowingtheorem.

Theorem1.3. Let A beaset.Thereisnobijectivemapbetween A and P (A),andhence |A| < |P (A)|.

Proof. Theproofisagainbycontradiction.Supposetherewerea bijectivemapfrom A to P (A).Toeach a ∈ A,wecanthenassigna uniqueset Ta ∈ P (A).Consider S = {a ∈ A : a/ ∈ Ta }

Clearly, S isasubsetof A.Thusitmustcorrespondtosome Tw with w ∈ A.Butthisleadstoacontradiction:

and

Inthisway,Cantorshowedthatthereisaninfiniteladderof infinitesets:

1.3.TheSchr¨oder–BernsteinTheorem

Insteadofseekingabijectivecorrespondencebetweentwosets A and B ,itissufficienttoestablishinjectivemaps f : A → B and g : B → A.Inotherwords,if |A|≤|B | and |B |≤|A|,then |A| = |B |.This isknownastheSchr¨oder–Bernstein3 theoremafterErnstSchr¨oder (1841–1902)andFelixBernstein(1878–1956).Beforeprovingthisin general,wefirstproveaspecialcase.If B ⊆ A,thentheinclusion mapfrom B to A isaninjection.Thus B ⊆ A implies |B |≤|A|.The followinglemmaistheSchr¨oder–Bernsteintheoreminthespecialcase whereonesetisasubsetoftheother.

Lemma1.4. Let A,B besetssuchthat B ⊆ A,andsupposethatwe haveaninjection f : A → B .Thenthereisabijection g : A → B .

3 Thereissomecontroversyonthenameofthistheorem.Itwasfirststated byCantorwithoutproofin1887.ItseemsRichardDedekindproveditin1887but didn’ttellanyoneaboutit.Itwasdiscoveredinhisnotesin1908.In1895Cantor publishedthefirstproof,buthisproofusestheaxiomofchoice,whichisdiscussed inthenextchapter.Dedekind’sunpublishedproofdidnotusetheaxiomofchoice. In1896Schr¨oderpublishedaproofsketchthatwasshowntobeincorrectafewyears later.In1897,Bernsteinprovedthetheorem—atage19!Afterwards,Bernsteinvisited Dedekind,whoapparentlythenindependentlyprovedthetheoremyetagain.

1.3.TheSchr¨oder–BernsteinTheorem 15

Proof. Toprovethis,wedefinesets D0 ,D1 ,... recursivelyasfollows.

D0 = A\B , D1 = f (D0 ), D2 = f (D1 ),andgenerally Dn+1 = f (Dn ). Nowdefinethemap g : A → B bysetting g (x)= f (x)if x isinsome

Dn and g (x)= x otherwise.If x isnotinany Dn ,theninparticular itisnotin D0 ,andso x isin B sothat g (x)= x ∈ B .Weclaimthat g isabijection.Toseethis,wehavetoshowthat g isinjectiveand surjective.Suppose g (x)= g (y ).Ifboth x and y areinsome Dn , thenweget f (x)= f (y ).Since f isinjective,wededuce x = y .If both x and y arenotinany Dn ,thenwehave x = g (x)= g (y )= y , soagain g isinjective.Nowconsiderthepossibilitythat x isinsome

Dn and y isnot.Then g (x)= g (y )implies f (x)= y .Since x is insome Dn ,itfollowsthat y isin Dn+1 ,acontradiction.Thus g is injective.Toseethat g issurjective,let b ∈ B .If b isnotinany Dn , then g (b)= b.If b isinsome Dn ,with n ≥ 1,then b ∈ f (Dn 1 )and so b isintherangeof g .If b ∈ D0 ,then b/ ∈ B .

Theorem1.5 (Schr¨oder–Bernsteintheorem). If f : A → B and g : B → A areinjective,thenthereisabijectionbetween A and B .

Proof. Thecomposition g ◦ f : A → g (B )isalsoinjectivesince

g (f (x))= g (f (y ))=⇒ f (x)= f (y )=⇒ x = y.

g (B )isasubsetof A andso,bythepreviouslemma,thereisa bijection h : A → g (B ).Since g isinjective, g 1 exists,andwehave amap g 1 : g (B ) → B .Define F : A → B by F (z )= g 1 (h(z )). Weshowthat F isbothinjectiveandsurjective.If F (z1 )= F (z2 ), then g 1 (h(z1 ))= g 1 (h(z2 )),andapplying g tobothsidesgives h(z1 )= h(z2 ).Since h isinjective,wededuce z1 = z2 .Let b ∈ B . Thereisan a ∈ A suchthat h(a)= g (b).Then F (a)= g 1 (h(a))= g 1 (g (b))= b.

Wehaveseenthat |N| < |R| and |N| < |P (N)|.Howdothe cardinalitiesof R and P (N)compare?WewillusetheSchr¨oder–Bernsteintheoremtoprovethattheyareinfactthesame.

Theorem1.6. |R| = |P (N)|

Proof. Considerthefunction f : P (N) → R definedby f (S )= 0.x1 x2 x3 ,where xi =0if i 1 ∈ S and xi =1if i 1 / ∈ S .

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Download pdf Hilbert s tenth problem an introduction to logic number theory and computability 1st ed by jonathanjensen769 - Issuu