(ebook) nutrition during pregnancy and lactation: implications for maternal and infant health by lea

Page 1


https://ebooknice.com/product/nutrition-during-pregnancy-andlactation-implications-for-maternal-and-infant-health-37289470

ePub, MOBI)

Start reading on any device today!

(Ebook) Biota Grow 2C gather 2C cook by Loucas, Jason; Viles, James ISBN 9781459699816, 9781743365571, 9781925268492, 1459699815, 1743365578, 1925268497

https://ebooknice.com/product/biota-grow-2c-gather-2c-cook-6661374

ebooknice.com

(Ebook) Maternal-Fetal Nutrition During Pregnancy and Lactation by Michael E. Symonds MD, Margaret M. Ramsay MA MD MRCP MRCOG ISBN 9780511675560, 9780521887090, 0511675569, 0521887097

https://ebooknice.com/product/maternal-fetal-nutrition-during-pregnancy-andlactation-1840402

ebooknice.com

(Ebook) SAT II Success MATH 1C and 2C 2002 (Peterson's SAT II Success) by Peterson's ISBN 9780768906677, 0768906679

https://ebooknice.com/product/sat-ii-success-math-1c-and-2c-2002-peterson-s-satii-success-1722018

ebooknice.com

(Ebook) Matematik 5000+ Kurs 2c Lärobok by Lena Alfredsson, Hans Heikne, Sanna Bodemyr ISBN 9789127456600, 9127456609

https://ebooknice.com/product/matematik-5000-kurs-2c-larobok-23848312

ebooknice.com

Leanne M. Redman
Edited by

Nutrition During Pregnancy and Lactation

Nutrition During Pregnancy and Lactation

Implications for Maternal and Infant Health

SpecialIssueEditor

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade

Muna J. Tahir, Jacob L. Haapala, Laurie P. Foster, Katy M. Duncan, April M. Teague, Elyse O. Kharbanda, Patricia M. McGovern, Kara M. Whitaker, Kathleen M. Rasmussen, David A. Fields, Lisa J. Harnack, David R. Jacobs Jr. and Ellen W. Demerath

Association of Full Breastfeeding Duration with Postpartum Weight Retention in a Cohort of Predominantly Breastfeeding Women

Reprintedfrom: Nutrients 2019, 11,938,doi:10.3390/nu11040938

VeroniqueDemers-Mathieu,RobertK.Huston,AndiM.Markell,ElizabethA.McCulley, RachelL.Martin,MelindaSpoonerandDavidC.Dallas DifferencesinMaternalImmunoglobulinswithinMother’sOwnBreastMilkandDonorBreast MilkandacrossDigestioninPretermInfants

Reprintedfrom: Nutrients 2019, 11,920,doi:10.3390/nu11040920

Jean-MichelHasco¨et,MartineChauvin,ChristinePierret,S´ebastienSkweres, Louis-DominiqueVanEgroo,CaroleRoug´eandPatriciaFranck ImpactofMaternalNutritionandPerinatalFactorsonBreastMilkCompositionafter PrematureDelivery

Reprintedfrom: Nutrients , 11,366,doi:10.3390/nu11020366

Muna J. Tahir, Jacob L. Haapala, Laurie P. Foster, Katy M. Duncan, April M. Teague, Elyse O. Kharbanda, Patricia M. McGovern, Kara M. Whitaker, Kathleen M. Rasmussen, David A. Fields, David R. Jacobs Jr., Lisa J. Harnack and Ellen W. Demerath

Higher Maternal Diet Quality during Pregnancy and Lactation Is Associated with Lower Infant Weight-For-Length, Body Fat Percent, and Fat Mass in Early Postnatal Life

Reprintedfrom: Nutrients 2019, 11,632,doi:10.3390/nu11030632 ...................

ShiroKubota,MasayoshiZaitsuandTatsuyaYoshihara GrowthPatternsofNeonatesTreatedwithThermalControlinNeutralEnvironmentand NutritionRegulationtoMeetBasalMetabolism

Reprintedfrom: Nutrients 2019, 11,592,doi:10.3390/nu11030592

Julia L. Finkelstein, Ronnie Guillet, Eva K. Pressman, Amy Fothergill, Heather M. Guetterman, Tera R. Kent and Kimberly O. O’Brien Vitamin B12 Status in Pregnant Adolescents and Their Infants

Reprintedfrom: Nutrients 2019, 11,397,doi:10.3390/nu11020397

UmmuD.ErlianaandAlyceD.Fly

TheFunctionandAlterationofImmunologicalPropertiesinHumanMilkofObeseMothers

Reprintedfrom: Nutrients 2019, 11,1284,doi:10.3390/nu11061284

127

139

153

161

175

186

202

AbouttheSpecialIssueEditor

LeanneM.Redman istheFounderandDirectoroftheReproductiveEndocrinologyandWomen’s HealthLaboratory.SheisthePrincipalInvestigatorofmultipleresearchstudiescurrentlyenrolling subjectsatPenningtonBiomedical.Herresearchstudiesarecomprisedbothofclinicaland translationalscienceresearchandinvolveinvestigationsintowomen’shealth,weightmanagement, lifestyleintervention,endocrinology,andenergymetabolism.Sheisaninternationallyrenowned expertinhumanmetabolicphenotypingandbringsmorethan15yearsofclinicalresearch experienceinphenotypinghumansubjects,includingpregnantwomen,inanefforttounderstand themechanismsofobesity(weightgainandweightloss)aswellastodevelopandtestinventionsfor effectivetreatmentandprevention.Herresearchinvolvesthecontrolledmanipulationofdietand/or physicalactivityortheadministrationofpharmaceuticalagentstoalterbodyenergystoresand thereforebodyweight.Inthesestudies,sheusesanarrayofsophisticatedmethodologies(doubly labeledwater,whole-roomindirectcalorimetry,DXA,andwholebodyMRI)toderiveestimates ofenergyintakeandenergyexpendituretounderstandtheroleofthesefactorsonbody-weight regulation.

nutrients

Article DysregulationofNeuronalGenesbyFetal-Neonatal IronDeficiencyAnemiaIsAssociatedwithAltered DNAMethylationintheRatHippocampus

Yu-ChinLien 1 ,DavidECondon 1 ,MichaelKGeorgieff 2 ,RebeccaASimmons 1,3, *and PhuVTran 2, *

1 CenterforResearchonReproductionandWomen’sHealth,PerelmanSchoolofMedicine,TheUniversityof Pennsylvania,Philadelphia,PA19104,USA;ylien@pennmedicine.upenn.edu(Y.-C.L.); dec986@gmail.com(D.E.C.)

2 DepartmentofPediatrics,UniversityofMinnesotaSchoolofMedicine,Minneapolis,MN55455,USA; georg001@umn.edu

3 Children’sHospitalofPhiladelphia,Philadelphia,PA19104,USA

* Correspondence:rsimmons@pennmedicine.upenn.edu(R.A.S.);tranx271@umn.edu(P.V.T.); Tel.: +1-215-662-3269(R.A.S.);Tel.: +1-612-626-7964(P.V.T.)

Received:17April2019;Accepted:22May2019;Published:27May2019

Abstract: Early-lifeirondeficiencyresultsinlong-termabnormalitiesincognitivefunctionand affectivebehaviorinadulthood.Inpreclinicalmodels,theseeffectshavebeenassociatedwith long-termdysregulationofkeyneuronalgenes.Whilelimitedevidencesuggestshistonemethylation asanepigeneticmechanismunderlyinggenedysregulation,theroleofDNAmethylationremains unknown.TodeterminewhetherDNAmethylationisapotentialmechanismbywhichearly-lifeiron deficiencyinducesgenedysregulation,weperformedwholegenomebisulfitesequencingtoidentify lociwithalteredDNAmethylationinthepostnatalday(P)15iron-deficient(ID)rathippocampus,a timepointatwhichthehighestlevelofhippocampalirondeficiencyisconcurrentwithpeakiron demandforaxonalanddendriticgrowth.Weidentified229differentiallymethylatedlociandthey weremappedwithin108genes.Amongthem,63and45genesshowedsignificantlyincreasedand decreasedDNAmethylationintheP15IDhippocampus,respectively.Toestablishacorrelation betweendifferentiallymethylatedlociandgenedysregulation,themethylomedatawerecomparedto ourpublishedP15hippocampaltranscriptome.Bothdatasetsshowedalterationofsimilarfunctional networksregulatingnervoussystemdevelopmentandcell-to-cellsignalingthatarecriticalfor learningandbehavior.Collectively,thepresentfindingssupportaroleforDNAmethylationin neuralgenedysregulationfollowingearly-lifeirondeficiency.

Keywords: hippocampus;DNAmethylation;DNAsequencing;iron;neurobiology;transcriptome; micronutrientdeficiency;neuroplasticity

1.Introduction

Fetalandneonatal(early-life)irondeficiencywithorwithoutanemiaaffectsmorethan30% ofpregnantwomenandpreschoolagechildrenworldwide,andresultsinlong-termcognitiveand behavioralabnormalities[1–8].Wehavepreviouslyinvestigatedtheeffectsofearly-lifeirondeficiency usingaratmodel,wherebypupsweremadeiron-deficient(ID)fromgestationalday2through postnatalday(P)7byprovidingpregnantandnursingdamswithanIDdiet,afterwhichthey wererescuedwithaniron-sufficient(IS)diet.Thismodelofmaternal-fetalirondeficiencyresults ina50%reductioninbrainironconcentrationbyP7[9],theageatwhichratbraindevelopment approximatesthatofafull-termhumannewborn[10,11].Thedeficitinbrainironcontentissimilarto

Nutrients 2019, 11,1191;doi:10.3390/nu11051191www.mdpi.com/journal/nutrients 1

2.3.WholeGenomeBisulfiteSequencingandLibraryPreparation

GenomicDNAfromISandIDhippocampiwasisolatedusinganAllPrepDNA/RNAMiniKit (Qiagen).WGBSwasperformedusingapreviouslypublishedprotocol[33].Briefly,1 μgofgenomic DNAwasfragmentedinto~300bpfragmentsusingaM220CovarisUltrasonicator(Covaris,Woburn, MA,USA).SequencinglibrariesweregeneratedusingaNEBNextgenomicsequencingkit(New EnglandBiolabs,Ipswich,MA,USA)andligatedwithIlluminamethylatedpairedendadaptors. Librarieswerebisulfite-convertedusinganImprintDNAmodificationkit(MilliporeSigma,St.Louis, MO,USA),andthesizeof300–600bpwasselectedusingthePippinPrepDNAsizeselectionsystem (SageScience,Beverly,MA,USA).LibrarieswerethenamplifiedusingPfu-TurboCxHotstartDNA polymerase(AgilentTechnologies,SantaClara,CA,USA).Paired-endlibrariesweresequencedto100 bponanIlluminahiSeq2000.ThreebiologicalreplicatesforeachgroupwereperformedinWGBS. WGBSdataareavailableontheGeneExpressionOmnibusunderGSE98064.

2.4.IdentificationofDMRsUsingtheDefiantProgram

DMRswereidentifiedbyourin-housedevelopedDefiant(DMRs:Easy,Fast,Identificationand ANnoTation)programbasedonfivecriteria,asdescribedpreviously[30].Briefly,adapterswere trimmedfromthereadsusingacustomClanguageprogram.Trimmedreadswerealignedagainst theratgenome(rn4).Whenreadsoverlappedatabase,themethylationstatusfromread1wasused. MethylationdataattheCandGinaCpGpairweremergedtoproducetheestimateforthatlocus. DMRsweredefinedwithaminimumcoverageof10inallsixsamples, p-value < 0.05,andaminimum methylationpercentagechangeof10%.SincetheDefiantprogramdidnotuseapre-definedborder toidentifyDMRs,the p-value < 0.05cutoff onlyinfluencedthewidthsandquantityofDMRs.The Benjamini–Hochbergapproachwasappliedformultipletestingtoobtainfalsediscoveryrate(FDR, q-values).GeneswereassignedtotheDMRsbasedonapromotercutoff of15kbtothetranscription startsite,withthedirectionoftranscriptiontakenintoaccount.

2.5.Bioinformatics

Theknowledge-basedIngenuityPathwayAnalysis® (IPA,Qiagen,Germantown,MD,USA)was employedtoidentifynetworks,canonicalpathways,molecularandcellularfunctions,andbehavioral andneurologicaldysfunctionsusingaP15DNAmethylationdatasetfromWGBS.Themicroarray datasetfromapriorstudy[34]wasalsoanalyzedbyIPA.IPAmapsgenenetworksusinganalgorithm basedonmolecularfunction,cellularfunction,andfunctionalgroup.Fisher’sexacttestwasusedto calculatethesignificanceoftheassociationbetweengenesinthedatasetsandtheanalyzedpathways orfunctions.

3.Results

3.1.Early-LifeIronDeficiencyInducedDifferentialDNAMethylationintheRatHippocampus

WeperformedwholegenomecytosinemethylationbisulfitesequencingonP15ID(n = 3)and IS(n = 3)rathippocampi.Todeterminewhetherirondeficiencyaltersthegenome-widepatternof DNAmethylationinthedevelopinghippocampus,DNAmethylationat1000randomlyselectedloci werecomparedbetweenIDandISsamplestogeneratearepresentativeheatmap.Thisunsupervised clusteringapproachshowedconsistentpatternsofmethylationacrossallsamples,withoutanoverall shifttowardhypo-orhypermethylationintheIDgroup(Figure 1a).Todeterminewhetheriron deficiencyinduceschangesinDNAmethylationatalocus-specificlevel,a ≥ 10%methylationchange with p-value < 0.05wasusedasaninclusioncriterion[30].Weidentified229DMRs(Figure 1bandTable S1),including58%intergenic,26%intronic,and11%exonicregions(Figure 1c).Approximately4%of DMRswerelocatedinpromoterregions.TheseDMRsmappedtowithin15kbofthetranscription startsiteof108geneswith63hypermethylatedand45hypomethylatedlociinIDcomparedtoIS hippocampi(Table 1).

Figure1. DNAmethylomeofthepostnatalday(P)15rathippocampus.(a)Anunsupervisedclustering heatmapof1000randomlyselectedlocishowinganabsenceofbiasinglobalmethylationbetween iron-sufficient(IS)andiron-deficient(ID)hippocampi.Eachrowintheheatmapcorrespondstodata fromasinglelocus.Thebranchingdendrogramatthetopcorrespondstotherelationshipsamong samples.Hyper-andhypomethylationareshownonacontinuumfromredtogreen,respectively. (b)Heatmapofdifferentiallymethylatedregions(DMRs)showingsignificantdifferencesincytosine methylationbetweenIS(labeledC1-3)andID(labeledID1-3)hippocampi.Eachrowintheheatmap correspondstodatapointfromasinglelocus,whereascolumnscorrespondtoindividualsamples.The branchingdendrogramcorrespondstotherelationshipsamongsamples,asdeterminedbyclustering usingthe229identifiedDMRs.Hyper-andhypomethylationareshownonacontinuumfromredto green,respectively.(c)PiechartrepresentingthelocationandproportionofDMRs.Thegenebody includedexonsandintrons.Thepromoterwaslimitedto15kbupstreamfromthetranscriptionalstart site.The5 -untranslatedregionbeganatthetranscriptionstartsiteandendedbeforetheinitiation sequence.Theintergenicregioniscomprisedoftheregionsnotincludedintheabovedefinedregions.

Table1. CpGmethylationwithinthe15kbpromoterregionofgenesintheP15iron-deficient rathippocampus.

Nutrients 2019, 11,1191

Table3. OverlappingcanonicalpathwaysoftheP15DNAmethylomeandP15microarraydatasets.

MethylomeAnalysisMicroarrayAnalysis

IngenuityCanonical Pathways p-value Differentially MethylatedGenes p-valueDifferentiallyExpressedGenes

NitricOxideSignalingin theCardiovascular System

CellularEffectsof Sildenafil(Viagra) 0.004

Cardiac β-Adrenergic Signaling 0.005

cAMP-Mediated Signaling 0.005

AxonalGuidance Signaling 0.006

RelaxinSignaling0.007

ReelinSignalingin Neurons 0.010

G-ProteinCoupled

ProteinKinaseA Signaling 0.013

BreastCancerRegulation byStathmin1 0.017

SynapticLong-Term Potentiation 0.021

GustationPathway0.023

SpermMotility0.023

GNRHSignaling0.032

SignalingbyRhoFamily GTPases 0.034

MolecularMechanisms ofCancer 0.042

MelatoninSignaling0.048

EphrinBSignaling0.049

CACNA1C,PRKAR1B, PDE2A,GUCY2C

CACNA1C,PRKAR1B, PDE2A,GUCY2C

CACNA1C,PRKAR1B, PDE2A,PDE6C 0.036

CAMK2B,MC3R, PRKAR1B,PDE2A, PDE6C 0.000

ARHGEF15,ITSN1, SLIT3,MKNK1, PRKAR1B,EPHB1, SRGAP2 0.003

PRKAR1B,PDE2A, GUCY2C,PDE6C 0.008

ARHGEF15,ARHGEF3, MAP3K11 0.004

CAMK2B,MC3R, PRKAR1B,PDE2A, PDE6C

CAMK2B,Ptpn14, TNNI1,PRKAR1B, PDE2A,PDE6C 0.000

CAMK2B,ARHGEF15, ARHGEF3,PRKAR1B 0.000

ITPR2,PIK3R3,KDR,PTPN11,PRKAA1, GUCY2D,ITPR1,CAMK4,PRKAG1, PDE2A,PDGFC

MYH3,CACNG8,ITPR2,ADCY3,GPR37, GUCY2D,ITPR1,ADCY2,PLCE1, CAMK4,PRKAG1,PDE2A

ADCY3,PKIG,ADCY2,PRKAG1,PDE2A, PPP2R2A,PPP1R11

GABBR1,CHRM3,CAMK4,VIPR1, PDE2A,Htr5b,CHRM2,CNGA2, CAMK2A,GNAI3,ADCY3,HRH3,PKIG, ADCY2,LHCGR,OPRM1,GRM6

CXCL12,PIK3R3,TUBB,EPHA3,ROBO1, PLCE1,DPYSL5,RTN4R,RTN4,GNAI3, FZD4,PDGFC,BAIAP2,SEMA4F,CXCR4, NRAS,CFL1,PTPN11,NTRK2,PRKAG1

PIK3R3,ADCY3,PTPN11,GUCY2D, ADCY2,PRKAG1,PDE2A, NFKBIA,GNAI3

PAFAH1B1,PIK3R3,PTPN11,APP,MAPT, ARHGEF9,APBB1

PIK3R3,GABBR1,CHRM3,CAMK4, VIPR1,PDE2A,Htr5b,NFKBIA,CHRM2, CAMK2A,GNAI3,NRAS,PDPK1, ADCY3,HRH3,PTPN11,ADCY2, PRKAG1,GRM5,LHCGR,OPRM1,GRM6

ITPR2,PLCE1,NFKBIA,CNGA2,GNAI3, PYGB,ADCY3,PTPN11,ITPR1,ADCY2, PTPRF,TGFBR1,PPP1R1B,YWHAB, PPP1R11,DUSP12,PTPRN,CDC25A, PTPN2,PTPRO,H3F3A/H3F3B,CAMK4, PDE2A,PTPN23,CAMK2A,BAD,DUSP5, PTPN12,PRKAG1

ITPR2,PIK3R3,TUBB,CAMK4,PPP2R2A, CAMK2A,GNAI3,STMN1,NRAS, ADCY3,PTPN11,ITPR1,ADCY2, ARHGEF9,PRKAG1,PPP1R11

CAMK2B,CACNA1C, PRKAR1B 0.000 NRAS,ITPR2,GRINA,ITPR1,PLCE1, CAMK4,PRKAG1,GRM5,GRIN1, CAMK2A,GRM6,PPP1R11

PRKAR1B,PDE2A, PDE6C 0.000 CACNG8,ITPR2,ADCY3,CACNB4, CACNA2D1,P2RX5,ITPR1,ADCY2, PRKAG1,PDE2A,P2RY1,CACNA1H

MAP3K11,PRKAR1B, PDE2A 0.002 ITPR2,PAFAH1B1,ITPR1,PLCE1, CAMK4,PRKAG1,PDE2A, CNGA2,CACNA1H

CAMK2B,MAP3K11, PRKAR1B 0.000

CACNG8,ITPR2,CACNB4,CAMK4, CAMK2A,GNAI3,CACNA1H,NRAS, ADCY3,CACNA2D1,GNRHR,ITPR1, ADCY2,PRKAG1

ARHGEF15,ARHGEF3, MAP3K11,EZR 0.010 BAIAP2,CFL1,RHOT2,PIK3R3,PTPN11, RHOB,CDH1,ARHGEF9,PLD1,RHOV, GNAI3,STMN1

CAMK2B,ARHGEF15, ARHGEF3,JAK3, PRKAR1B 0.000

CAMK2B,PRKAR1B 0.021

ITSN1,EPHB1 0.022

RASGRF1,RHOT2,PIK3R3,CDC25A, CASP9,NFKBIA,CAMK2A,BAD,GNAI3, FZD4,NCSTN,NRAS,RALBP1,ADCY3, PTPN11,RHOB,HIF1A,ADCY2,CASP3, TGFBR1,CDH1,ARHGEF9, PRKAG1,RHOV

PLCE1,CAMK4,PRKAG1, CAMK2A,GNAI3

CXCL12,CXCR4,CFL1,CAP1,GNAI3

2019, 11,1191

diagnosisandtreatment,indicatingtheneedforadequateironduringcriticalperiodsofbrain development.Inpreclinicalmodels,theseeffectshavebeenascribedinparttothepersistence ofabnormalitiesinmonoaminesignaling,myelination,neuralmetabolism,andtheexpressionof neuroplasticity-associatedproteinsintoadulthood[20,56–58].Themolecularmechanismsunderlying thesepersistentchangeshavenotbeenfullyelucidated.Thepresentstudygoeswellbeyond previousstudiesbysystematicallyanalyzingthealterationofDNAmethylationinducedbyearly-life irondeficiencyusingawholegenomebisulfitesequencingapproach.Consistentwithprevious transcriptomicanalysis,thechangesinDNAmethylationintheIDhippocampusmappedtofunctional networksthatareimportantforneuronalplasticity.

DNAmethylationisanimportantepigeneticmechanismregulatinggeneexpression,oftenacross thelifespan.Methylationatgenomicregionshasdifferentinfluencesongenetranscriptionalactivity dependingonthelocationofDNAmethylation.Inthepresentstudy,differentialmethylationwashighly enrichedatintergenicregions(58%)intheIDhippocampus.Thisoutcomeissimilartoourprevious findingsinpancreaticisletsofanintrauterinegrowthrestrictionratmodel[59],whereapproximately 65%ofDMRswerelocatedinintergenicregions,aswellastoothermodelsofearly-lifeadverse environments[33,60–62].Theseconservedintergenicregionsmayrepresentimportantenhancersor cis-regulatorysitesinregulatinggeneexpression[43,63,64].Thus,theseDMRsmightaccountfora substantiallyfewernumberoflociwithDMRscomparedtoanumberofdifferentiallyexpressedgenes inthemicroarraydatasetandasmalloverlapbetweenthesetwodatasets.Ourdataalsoshowed thatapproximately37%ofDMRsintheIDhippocampuswerelocatedingenebodies(26%and11% inintronsandexons,respectively).DNAmethylationingenebodiesisgenerallyassociatedwith highergeneexpressionindividingcells[65],incontrasttotheregulatoryeffectofDNAmethylation inpromoterregions.However,thisassociationisnotseeninnon-dividingcells[27].Althoughnot manycellsinthehippocampusareactivelydividingatP15,theseDNAmodificationsmighthave occurredduringtheperiodofactiveproliferationintheprenatalperiodwhenthepregnantdamand fetuswereiron-deficient.AdditionalDMRanalysisatatimepointwhenthedevelopinghippocampus undergoesactiveproliferationwillprovidefurtherinsightintothisnotion.DNAmethylationin genebodiesmaydefinetheexonboundaries,regulatealternativepromotersingenebodies,and regulatemRNAsplicingandalternativesplicing[65–68].Wanetal.(2013)showedthattissue-specific DMRsarepreferentiallylocatedinexonsandintronsofprotein-codinggenes[69].Thesebiologically relevantDMRsareenrichedinalternativelysplicedgenesandasubsetofdevelopmentalgenes.Itis possiblethattherealeffectofDNAmethylationintheP15IDhippocampusiswithinthesedomains. Ourmicroarrayanalysis[34]wasinsufficienttoprobesucheffects.Finally,irondeficiency-induced intragenicDMRscouldmodifypotentialgeneenhancers[43,44,70,71].TheintragenicDMRsintheID hippocampusmaydirectlycontributetoneuralgenedysregulationbymodifyingtheaccessibilityof alternativesplicesitesorpromoters.Theseanalysesconstituteapotentialdirectionforfuturestudy.

OurWGBSanalysisoftheIDhippocampusidentifiedpertinentsignalingpathwaysthatcould underlietheneurobehavioralabnormalitiesassociatedwithearly-lifeirondeficiency.TheDNA methylomeshowedthatDNAmethylationatgenesregulatingcAMP-mediatedsignalingandprotein kinaseAsignalingwassignificantlyalteredintheP15IDrathippocampus(Table 2).Bothpathways playcriticalrolesinregulatingLTP,aswellastheplasticityofaxonalguidanceresponses[72,73].In addition,thepredictedchangestothe β-adrenergicsignalingandnitricoxidesignalingpathwaysin theIDhippocampuswouldlikelyresultinloweractivitiesofcAMP,cGMP,proteinkinaseC(PKC), mitogen-activatedproteinkinase(MAPK),andN-methyl-D-aspartate(NMDA)receptors[74,75]. Likewise,alteredRhoGTPasesignalingcouldchangetheaxonalresponsestoguidancecuesand affectneuronalconnectionsandLTPformation.TheRhofamilyofGTPasesplaysakeyrolein theformationofLTPbyregulatingcellularprocesses,includingaxonoutgrowthandgrowthcone dynamics[76,77].Thiseffectisconsistentwithandprovidesamolecularbasisforourprevious findingofabnormaldendritogenesisandsynaptogenesisintheseIDrats[17].Ourstudyalsorevealed thealterationofthereelinsignalingpathwayintheIDhippocampus.Reelinregulatesneuronal

Nutrients 2019, 11,1191

23. Tran,P.V.;Carlson,E.S.;Fretham,S.J.;Georgieff,M.K.Early-lifeirondeficiencyanemiaaltersneurotrophic factorexpressionandhippocampalneurondifferentiationinmalerats. J.Nutr. 2008, 138,2495–2501. [CrossRef]

24. Tran,P.V.;Kennedy,B.C.;Lien,Y.C.;Simmons,R.A.;Georgieff,M.K.Fetalirondeficiencyinduceschromatin remodelingattheBdnflocusinadultrathippocampus. Am.J.Physiol.Regul.Integr.Comp.Physiol. 2015, 308,R276–R282.[CrossRef]

25. Tahiliani,M.;Koh,K.P.;Shen,Y.;Pastor,W.A.;Bandukwala,H.;Brudno,Y.;Agarwal,S.;Iyer,L.M.;Liu,D.R.; Aravind,L.;etal.Conversionof5-methylcytosineto5-hydroxymethylcytosineinmammalianDNAbyMLL partnerTET1. Science 2009, 324,930–935.[CrossRef]

26. Hou,H.;Yu,H.Structuralinsightsintohistonelysinedemethylation. Curr.Opin.Struct.Biol. 2010, 20, 739–748.[CrossRef]

27. Moore,L.D.;Le,T.;Fan,G.DNAmethylationanditsbasicfunction. Neuropsychopharmacology 2013, 38,23–38. [CrossRef]

28. Weber,M.;Hellmann,I.;Stadler,M.B.;Ramos,L.;Pääbo,S.;Rebhan,M.;Schübeler,D.Distribution,silencing potentialandevolutionaryimpactofpromoterDNAmethylationinthehumangenome. Nat.Genet. 2007, 39,457–466.[CrossRef]

29. Stevens,M.;Cheng,J.B.;Li,D.;Xie,M.;Hong,C.;Maire,C.L.;Ligon,K.L.;Hirst,M.;Marra,M.A.;Costello,J.F.; etal.Estimatingabsolutemethylationlevelsatsingle-CpGresolutionfrommethylationenrichmentand restrictionenzymesequencingmethods. GenomeRes. 2013, 23,1541–1553.[CrossRef]

30. Condon,D.E.;Tran,P.V.;Lien,Y.C.;Schug,J.;Georgieff,M.K.;Simmons,R.A.;Won,K.J.Defiant:(DMRs: Easy,fast,identificationandANnoTation)identifiesdifferentiallyMethylatedregionsfromiron-deficientrat hippocampus. BMCBioinf. 2018, 19,31.[CrossRef]

31. Fretham,S.J.;Carlson,E.S.;Georgieff,M.K.Theroleofironinlearningandmemory. Adv.Nutr. 2011, 2, 112–121.[CrossRef]

32. Tran,P.V.;Fretham,S.J.;Wobken,J.;Miller,B.S.;Georgieff,M.K.Gestational-neonatalirondeficiency suppressesandirontreatmentreactivatesIGFsignalingindevelopingrathippocampus. Am.J.Physiol. Endocrinol.Metab. 2012, 302,E316–E324.[CrossRef]

33. Sheaffer,K.L.;Kim,R.;Aoki,R.;Elliott,E.N.;Schug,J.;Burger,L.;Schübeler,D.;Kaestner,K.H.DNA methylationisrequiredforthecontrolofstemcelldifferentiationinthesmallintestine. GenesDev. 2014, 28, 652–664.[CrossRef]

34. Carlson,E.S.;Stead,J.D.;Neal,C.R.;Petryk,A.;Georgieff,M.K.Perinatalirondeficiencyresultsin altereddevelopmentalexpressionofgenesmediatingenergymetabolismandneuronalmorphogenesisin hippocampus. Hippocampus 2007, 17,679–691.[CrossRef]

35.Chilton,J.K.Molecularmechanismsofaxonguidance. Dev.Biol. 2006, 292,13–24.[CrossRef]

36.Dickson,B.J.Molecularmechanismsofaxonguidance. Science 2002, 298,1959–1964.[CrossRef]

37. Egea,J.;Klein,R.BidirectionalEph-ephrinsignalingduringaxonguidance. TrendsCell.Biol. 2007, 17, 230–238.[CrossRef]

38. Rohani,N.;Canty,L.;Luu,O.;Fagotto,F.;Winklbauer,R.EphrinB/EphBsignalingcontrolsembryonicgerm layerseparationbycontact-inducedcelldetachment. PLoSBiol. 2011, 9,e1000597.[CrossRef]

39. Shamah,S.M.;Lin,M.Z.;Goldberg,J.L.;Estrach,S.;Sahin,M.;Hu,L.;Bazalakova,M.;Neve,R.L.;Corfas,G.; Debant,A.;etal.EphAreceptorsregulategrowthconedynamicsthroughthenovelguaninenucleotide exchangefactorephexin. Cell 2001, 105,233–244.[CrossRef]

40. Rex,C.S.;Chen,L.Y.;Sharma,A.;Liu,J.;Babayan,A.H.;Gall,C.M.;Lynch,G.DifferentRhoGTPase-dependent signalingpathwaysinitiatesequentialstepsintheconsolidationoflong-termpotentiation. J.Cell.Biol. 2009, 186,85–97.[CrossRef]

41. Malenka,R.C.;Nicoll,R.A.Long-termpotentiation—Adecadeofprogress? Science 1999, 285,1870–1874. [CrossRef]

42.Nicoll,R.A.ABriefHistoryofLong-TermPotentiation. Neuron 2017, 93,281–290.[CrossRef]

43. Blattler,A.;Yao,L.;Witt,H.;Guo,Y.;Nicolet,C.M.;Berman,B.P.;Farnham,P.J.GloballossofDNA methylationuncoversintronicenhancersingenesshowingexpressionchanges. GenomeBiol. 2014, 15,469. [CrossRef]

44. Singer,M.;Kosti,I.;Pachter,L.;Mandel-Gutfreund,Y.Adiverseepigeneticlandscapeathumanexonswith implicationforexpression. NucleicAcidsRes. 2015, 43,3498–3508.[CrossRef]

Nutrients 2019, 11,1191

88. Branco,M.R.;Ficz,G.;Reik,W.Uncoveringtheroleof5-hydroxymethylcytosineintheepigenome. Nat.Rev.Genet. 2011, 13,7–13.[CrossRef]

89. Szulwach,K.E.;Li,X.;Li,Y.;Song,C.X.;Wu,H.;Dai,Q.;Irier,H.;Upadhyay,A.K.;Gearing,M.;Levey,A.I.; etal.5-hmC-mediatedepigeneticdynamicsduringpostnatalneurodevelopmentandaging. Nat.Neurosci. 2011, 14,1607–1616.[CrossRef]

90. Hahn,M.A.;Qiu,R.;Wu,X.;Li,A.X.;Zhang,H.;Wang,J.;Jui,J.;Jin,S.G.;Jiang,Y.;Pfeifer,G.P.;etal. Dynamicsof5-hydroxymethylcytosineandchromatinmarksinMammalianneurogenesis. Cell.Rep. 2013, 3, 291–300.[CrossRef]

91. Al-Mahdawi,S.;Virmouni,S.A.;Pook,M.A.Theemergingroleof5-hydroxymethylcytosinein neurodegenerativediseases. Front.Neurosci. 2014, 8,397.[CrossRef]

© 2019bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution (CCBY)license(http://creativecommons.org/licenses/by/4.0/).

Article ASlow-DigestingCarbohydrateDietduringRat PregnancyProtectsOffspringfromNon-Alcoholic FattyLiverDiseaseRiskthroughtheModulationof theCarbohydrate-ResponseElementandSterol RegulatoryElementBindingProteins

RafaelSalto 1 ,ManuelManzano 2 ,MaríaDoloresGirón 1, *,AinaraCano 3 ,AzucenaCastro 3 , José DámasoVílchez 1 ,ElenaCabrera 1 andJosé MaríaLópez-Pedrosa 2

1 DepartmentofBiochemistryandMolecularBiologyII,SchoolofPharmacy,UniversityofGranada,Campus deCartuja,18071Granada,Spain;rsalto@ugr.es(R.S.);e.damaso@go.ugr.es(J.D.V.); elenacc_20@hotmail.com(E.C.)

2 AbbottNutritionR&D,AbbottLaboratories,18004Granada,Spain;manuel.manzano@abbott.com(M.M.); jose.m.lopez@abbott.com(J.M.L.-P.)

3 OWLMetabolomics,ParqueTecnológicodeBizkaia,48160Deiro,Spain; acano@owlmetabolomics.com(A.C.);acastro@owlmetabolomics.com(A.C.)

* Correspondence:mgiron@ugr.es;Tel.: +34-958-246363

Received:12February2019;Accepted:11April2019;Published:14April2019

Abstract: High-fat(HF)andrapiddigestive(RD)carbohydratedietsduringpregnancypromote excessiveadipogenesisinoffspring.Thiseffectcanbecorrectedbydietswithsimilarglycemic loads,butlowratesofcarbohydratedigestion.However,theeffectsofthesedietsonmetabolic programmingintheliversofoffspring,andthelivermetabolismcontributionstoadipogenesis,remain tobeaddressed.Inthisstudy,pregnantinsulin-resistantratswerefedhigh-fatdietswithsimilar glycemicloadsbutdifferentratesofcarbohydratedigestion,HighFat-RapidDigestive(HF–RD)diet orHighFat-SlowDigestive(HF–SD)diet.Offspringwerefedastandarddietfor10weeks,andthe impactofthesedietsonthemetabolicandsignalingpathwaysinvolvedinliverfatsynthesisand storageofoffspringwereanalyzed,includingliverlipidomics,glycogenandcarbohydrateandlipid metabolismkeyenzymesandsignalingpathways.Liversfromanimalswhosemotherswerefedan HF–RDdietshowedhighersaturatedtriacylglyceroldepositswithlowercarbonnumbersanddouble bondcontentscomparedwiththeHF–SDgroup.Moreover,theHF–RDgroupexhibitedenhanced glucosetransporter2,pyruvatekinase(PK),acetylcoenzymeAcarboxylase(ACC)andfattyacid(FA) synthaseexpression,andadecreaseinpyruvatecarboxylase(PyC)expressionleadingtoanaltered liverlipidprofile.TheseparameterswerenormalizedintheHF–SDgroup.Thechangesinlipogenic enzymeexpressionwereparalleltochangesinAktPKBphosphorylationstatusandnuclearexpression incarbohydrate-responseelementandsterolregulatoryelementbindingproteins.Inconclusion,an HF–RDdietduringpregnancytranslatestochangesinliversignalingandmetabolicpathwaysin offspring,enhancingliverlipidstorageandsynthesis,andthereforenon-alcoholicfattyliverdisease (NAFLD)risk.ThesechangescanbecorrectedbyfeedinganHF–SDdietduringpregnancy.

Keywords: earlyprogramming;hepaticlipogenesis;insulin-resistantpregnancy;metabolicflexibility; non-alcoholicfattyliverdisease;slowdigestingcarbohydrates

1.Introduction

Humanshavedevelopedmetabolicadaptationstopromoteenergystorageinperiodsoffasting. Theyareespeciallysuitedtostimulatingfatstoragefromothernutrientsandcarbohydratesasan

Nutrients 2019, 11,844

larddiet(HF;20.5%fat,24.2%protein,41.5%carbohydratesand7.9%fiberperweight)priortomating forsixweeks.ControlanimalswerefedastandardreferencedietAIN93M.Ratswerematedforthree daysandthenrandomlyassignedtooneoftheexperimentaldietsduringgestation:ahigh-fatdiet containingslow-digestingcarbohydrates(HF–SDgroup),ahigh-fatdietcontainingrapid-digesting carbohydrates(HF–RDgroup)oranAIN93Gdietforthereferencegroup.Compositionofthethree dietsusedduringgestationisdescribedinMartinetal.[6](SupplementaryTableS1).Alldietswere preparedatAbbottNutritionR&Dfacilities.Atthedelivery,allanimalswerefedAIN93Gdiets regardlessofthedietconsumedduringpregnancy.Onday21afterdelivery,allpupswereweaned ontotheAIN93Mdietandhousedforsevenadditionalweeks(Figure 1).Attheoutcome,insulinand glucagonserumconcentrationswereassayed(SupplementaryTableS2).

Figure1. Experimentalmodel.Virginratswereassignedtooneofthreeexperimentalgroups:reference damsfedastandardrodentdietbeforematingandthroughoutpregnancy;damsfedahigh-fatdiet (HF)sixweeksbeforematingandthenanHFdietcontainingeithercarbohydrateswithahigh(HF–RD) orlow(HF–SD)digestionratethroughoutpregnancy.Atdelivery,alltheanimalswerefedthestandard rodentdietfortheremainderofthestudy(10weeks).SDR,Sprague-Dawleyrats.

2.3.LiverLipidomicsAnalysis

AbsoluteconcentrationofTAGsintheliverwasmeasuredusingatriglycerides-LQkit(Spinreact, Barcelona,Spain).Metaboliteprofileswereanalyzedaspreviouslydescribed[7,8].Briefly,two separateUHPLC-time-of-flight(TOF)–MS-basedplatforms(AgilentTechnologies,SantaClara,CA, USA)analyzingmethanolandchloroform–methanolliverextractswerecombinedtosemi-quantify lipidspecies.Non-esterifiedfattyacyls,bileacidsandlysoglycerophospholipidswereanalyzedin themethanolextractplatform.Forthis,methanolwasaddedtothefrozenlivertissue(30:1, v/w), andthismixturewashomogenizedwithaPrecellys24grinder(Precellys,Montigny-le-Bretonneux, France),followedbyproteinprecipitation.Themethanolusedforextractionwasspikedwithinternal standardsnotfoundinlivertissueusingthesamemethod.Afterbriefvortexmixing,sampleswere incubatedovernightat 20 ◦ C.Supernatantswerecollectedanddriedaftercentrifugationat 16,000× g for15min.Thedriedextractswereresuspendedinmethanol,centrifugedat16,000× g for5minand supernatantswerecollectedandtransferredtovialsforUHPLC–MS(AgilentTechnologies,Santa Clara,CA,USA)analysis.

Thechloroform–methanolextractplatformprovidedcoverageoverglycerolipids, glycerophospholipids,sterollipidsandsphingolipids.LivertissueswerehomogenizedinthePrecellys 24grinderbymixingwithchloroform–methanol(2:1, v/v)andsodiumchloride(50mmol/L)(overall ratio1:30:3, w/v/v),followedbyproteinprecipitation.Theextractionsolventwasspikedwithinternal standardsnotdetectedusingthesamemethod.Afterbriefvortexmixing,sampleswereincubatedat 20 ◦ Cfor1h.Aftercentrifugationat16,000× g for15min,thelowerorganicphasewascollected andthesolventremoved.Thedriedextractswerethenresuspendedinacetronitrile–isopropanol(1:1), centrifugedat16,000× g for5minand,finally,supernatantsweretransferredtovialsforUHPLC–MS analysis.LipidnomenclaturefollowstheLIPIDMAPSconvention, www.lipidmaps.org

ThiscombinedanalysiswasestablishedforrodentlivertissuebyOWLMetabolomics(Derio, Spain).DataobtainedwiththeUHPLC–MSwereprocessedwiththeTargetLynxapplicationmanager forMassLynx4.1(WatersCorp.,Milford,MA,USA).Intra-andinter-batchnormalizationfollowedthe

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.