Page 1

Modern and Past Climate Impact on Cryosphere/Water Resources in Central Asia

Vladimir and Elena Aizen University of Idaho, USA Huaraz, Peru , July 11-24, 2013


1.  How much  do  we  know  about  the  role  of  the  cryosphere  in  water                    resources    in  Central  Asia?     2.        What  does  the  cryosphere  mean  for  local  communi>es?   3.        Can  climate  and  cryosphere  change  cause  a  humanitarian  catastrophe                  in  Central  Asia?   4.   Are  water  problems  in  Central  Asia    the  result  of  human  impact  or  the                    result  of  global  climate  change?  


-­‐  understand the  complex  con>nental  modern  climate  and  paleoclimate  in  Euras            through    the  Holocene  and  beyond   -­‐  advancing  the  climate  predictability  by  focusing  on  natural  variability,                anthropogenic  impacts  on  climate,  and  the  poten>al  for  abrupt  climate                change    via  major  climate  drivers  

-­‐  Predict the  future  climate  and  water  resources  to  develop  adapta>on  and                mi>ga>on  prac>ces  to  support  socioeconomic  stability  in  Asia    


Partnerships with  na>onal  and  interna>onal   programs   WCAP-­‐SCAR  

CliC UNESCO HIGH   ELEVATIONS  

CADIP collabora>ve  contributors  

JAPAN Ins>tute  fo  Humanity  and  Nature   Na>onal  Ins>tute  of  Polar  Research   Chiba  University   Nagoya  University  

GERMANY University  of  Heidelberg,  GFZ  ,BGC   Bavarian  Glaciological  CommiXee  

CADIP collaborators  

CADIP since 2005

USA  lead  contributors   University  of  Idaho   Glacio-­‐Climatological  Group            University  of  Maine   Climate  Change  Ins>tute   University  of  California  Santa  Barbara   ICESS  

KYRGYZSTAN Central  Asian  Ins>tute  for   Applied  Geo-­‐Sciences  (CAIAG)   University  of  Central  Asia  (UCA)  

RUSSIA    Tomsk  State  University    Ins>tute  of  Geography  RAS  

TAJIKISTAN Ins>tute  of  Water  Problems,   Hydropower  and  Ecology  


•  Popula>on  grows   •   Agricultural  and  industrial  expansion/demand  

2000 –  100M  

1900 –  15M  


The World  Endorheic  Drainage    Basins    

Central Asia  is  the  World  largest  endorheic  basin  


.

                                               Altai    -­‐    2042  km2  ;  ~111  km3    [Dolgushin,  Niki/n,  Chinese  Glacier  Inventory]                                                      Pamir    -­‐    13424  km2  ;  ~1208  km3  [Sche/nninkov,  Dolgushin,  Chinese  Gl.  Inventory]                                                      Tien  Shan    -­‐          16,507  km2;    ~1814  km3    [Kuzmichenok,  Aizen,  Chinese  Gl.  Inventory]    

35% of  the  total  glacier  covered  area  in  high  mountains  of  Asia  and  80%  of  all  glacierized   area  located  at  large,  high  elevated  mountain  massifs.  


Glacier changes  in  Altai  and  Tien  Shan    Altai  glaciers  lost  86  km2  (-­‐6.2%)  during  the  last  40  years  .       Leviy    Aktru  glacier  terminus  in  1952,  1966,  1975,  and  2006.      

T

T

I

E

N

S

H

A

N

A

During the  last  40    years   Tien  Shan  glaciers  lost   -­‐709  km2  of  the  total   area,  (-­‐7.1%)  in  average      

Source:  SRTM  2000,   Corona  KH-­‐9,  Landsat   TM,  ETM+,  Aster,   ALOS/PRISM)    

4%

6%

8.3% 14%


Glacier changes  in  Pamir  (Amu  Darya  R.  Basin)  

Area of   glaciers   reduced   by   615   km2   (5%)   during   the   last   40-­‐years.   The   total   glacierized   area   has   changed   mainly   due   to   shrinkage   of   small   glaciers  with  an  area  of  <0.5-­‐  2.0  km2.   The   number   of   small   glaciers   in   the   1970s  was  456  while  in  2009  only  359.   The   number   of   medium   (2.1   –   10.0   km2)   and   large   glaciers   (over   100   km2)   remained  stable.  Large  glacier  massifs   reduced  to  less  than  2%.    

Area of  glaciers  in  1973:                          12,449  km2  

Area of  glaciers  in  2009:                          11,834  km2   River  runoff  

Source: SRTM  2000,  Corona  KH-­‐9  (1970th),  Landsat  TM,  ETM+,  Aster   (1980-­‐90th),  ALOS/PRISM  (2000th)      


2003   2002   1995   1977   1956   1943   1869   1800  

Petrov Glacier,  Akshiirak  glacierized  massif   in  Tien  Shan  retreat  3  km  between  1869   (first  topographic  survey)  and  2003.  


Central Pamir  (Fedchenko  Glacier,  Amu   Dar’ya    R.  Basin)  

1.1 km   Fedchenko   Glacier   terminus   retreated   since     1928  (map  in  background),    and  755  m  between  1958   (black)  and  2009  (blue,  GPS  survey).  Total  area  loss  2.91   km2  (-­‐0.5%).  Red  line  is  1980  geodeZc  survey.  


Central Pamir  (Fedchenko  Glacier,  Amu     Dar’ya    R.  Basin)   90  m  

C

B

(a) surface  lowering  of  Fedchenko  glacier  from  1958  to   2009  along  the  center  profile  (90  m  near  the  terminus  and     20  m  at  4000  m  a.s.l.),  (b)  surface  (lower  image  KH-­‐9  and   SRTM  ),  (c)  Fedchenko  Glacier  surface  coved  by  moraine   debris    (25  km  from  terminus)  

The volume  loss  5  km³  over  the  period   of  81  years  relates  to  an  iniZal  volume   of  131  km³  in  1928  (3.8%).  


Central Tien  Shan    (Inylchek  Glacier,  Tarim  R.  Basin)  

1974

2009

1943

50 m  

The Inylchek  Glacier  terminus  retreated  0.7  km  since  1943  (aerial  photo),    434  m  between  1974  (KH-­‐9)  and   2009  (ALOS  Prism).  Total  area  loss  0.98  km2  (-­‐0.3%).    


Snow covered  area  changes  (SCA,  %)      

analysis used  all  available  AVHRR  (1979-­‐2009  )  and  all  available  MODIS  Terra-­‐8  day  snow  cover   product  from  2000  to  2009      

SCA (%)   computed   for   each   5   km   grid   from   eight-­‐day  snow  cover  data  relies  on  elevaZon   (higher  elevaZon,  higher  SCA).    

Trend of   snow   cover   change   computed   using   Mann-­‐Kendall's   test   shows   staZsZcal   significant   SCA  change  rate  per  decade.  

6,056,480 km2  is  annually  covered  by  snow  in  CA  (about  45%  of  the  total  study  area  of  13,500,000  km2,   Pamir   and   Tien   Shan   show   significant   decrease   in     trend   of   SCA   percentage   per   decade   above   3000   –   4000  m  asl  (-­‐3.22%  to  -­‐4.06%)  but  elevated  in  Altai  (+2.51%).  DuraZon  of  snow  melt  from  the  date  of   maximum  snow  cover  to  the  date  of  it’s  disappearance  reduced  by  30  days  in  Tien  Shan  and  Pamir.    


(Marchenko et  al,  2007)  


Precipita>on and  air  temperature  changes   Over  60  years    observaZonal  data  analysis  from  251  meteorological  long-­‐term  staZons  located  at    an  elevaZon   range  between  -­‐25  m  below  sea  level  to  4169  m  asl  between  Mongolia  and  the  Caspian  Sea,  and  between   south  Siberia  and  Tibetan  Plateau   Aral-­‐Caspian    Basin  

Aral Sea  

Balkhash Lake  

Altai and   Mongolia  

Tien Shan  

Pamir Air  temperature,  oC  

Tarim R.  Basin,   Taklimakan   Desert    

PrecipitaZon ,  mm  

Differences in   30-­‐year   averages   of   annual   precipitaZon   (dPan=   avePan1973-­‐2009   –   avePan1942-­‐1972).     Increased   variability   of   annual   precipitaZon,   parZcularly   over   3,000m  asl.  

Differences in   30-­‐year   averages   of   annual   mean   air   temperatures   (dTan   =   aveTan1973-­‐1942   –   aveTan1942-­‐2009)   .     +0.65°C  difference  and    mainly  in  summer  up  to  +0.9°C.  


River runoff  in  Central  Asia    

For the  last  thirty    six  years  (1973-­‐2009),  the  long-­‐term  mean  runoff    in  the  glacierized   basins  on  average  increased  by  2%  compared  with    the  previous  thirty    three  years   (1943-­‐1973),  while  thirty  three  year  mean  in  annual  maximum  runoff  decreased  by  5%   on  average     %  

Rela/ve changes  of  the  last  thirty  year  annual  mean  (dQan/Qan)  and  maximum   (dQmax/Qmax)  river  runoff  in  comparison  to  sixty  six  year  averages,  %  ,  and   changes  in  dates  of  maximum  river  runoff  (ddQmax).    


Xixia Dynasty(11~13C)

Khara Khoto:  relics  in  deserts  


Slide 6.  


RUSSIA

Ice-coring sites:

(a)

(c) (d)  

INDIA

(b)

(a)  Western Belukha Plateau (4115m asl) August 2003, Altai, Southern Siberia (b)  Inylchek Glacier (5220m asl) August 2000, Central Tien Shan (c)  Grigorieva Ice-cap (4563m asl) August 2007, Inner Tien Shan, (d)  Fedchenko Glacier (5000m asl and 5400 m asl), Central Pamir 2009 and 2005.


Pre-­‐boreal Industrial  

Pre-­‐industrial

LIA

MW

HCO

YDSC

δ18O

Core depth,  m  

Years

8.2ky CE  

Belukha Plateau ice-coring site, Siberian Altai, 2003). DL

81.4 81.6

(A) Stable isotopic composition (δ18O), 1m/0.5 m and 200 samples moving averages for the period of moderate/abrupt changes (ice-core from Belukha Plateau, Siberian Altai, 2003) and (B) in Tien Shan (Grigorieva Ice-cap (2007).

81.8 82.0

The  Holocene  Climate   Op>mum  ,  8.2ky  CE  

82.2 82.4 82.6

82.8 83.0

Core depth,  m  

δ18O

85.4m core from Gregoriev Ice-cap Soil organic dated by 14C at the core bottom

83.2

83.4 83.6 83.8 84.0 84.2

84.4 84.6 84.8 85.0 85.2

Core depth,  m  

The Younger  Dryas,   15,650-­‐15,000    BP,  the  last   glacial  period  

85.4 85.6 85.8 86.0 86.2

86.4

BoXom soil  


Dated stable  δ18O  isotope  records  10-­‐year   record  (bold  line)  and  25-­‐year  record  (double   bold  line)  

ToCcentennial -8 -10 YD  –  Younger  Dryas   PBO  –  Pre-­‐Boreal   8.2  ka  Cold    Event   HCO  –  Holocene  Climate  OpZmum   SCD    -­‐    Severe  Centennial  Drought     PWP  –  Prolong  Warm  Period        

-12 -14 -16

2003-1900

999-900

0-99 BC

1000-1099

2000-2099

3000-3099

4000-4099

5000-5099

6000-6099

7000-7099

8000-8099

9000-9099

10000-10099

-18 -20

Centennial (red   solid   line),   the   Modern   (blue   dashed   line)   and   Recent   Warm   Period   (black   dash-­‐domed   line)   means   of   reconstructed  air  temperature  for  circa  12,700  years     Aizen  et  al,  submi]ed  to  the  J.  of  Glaciology  


The   dried   watercourse     between   Aral   and     Caspian   seas   developed  during    the  Bølling/Allerød    interstadial.  


Thank  you!  

Aizen: Climate impact on cryosphere water resources Central Asia ppt  

Slides for presentation given to High Mountains Adaptation Partnership in Huaraz, Peru on 13 July 2013.

Read more
Read more
Similar to
Popular now
Just for you