Numerical Analysis 9th Edition Burden Solutions Manual

Page 1

Instructor’s Solutions Manual for Prepared by
Youngstown State University
Richard
L. Burden
Youngstown State University Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States Numerical Analysis 9th EDITION
J. Douglas Faires
Youngstown
Richard L. Burden
State University
Youngstown
Numerical Analysis 9th Edition Burden Solutions Manual Full Download: http://testbanktip.com/download/numerical-analysis-9th-edition-burden-solutions-manual/ Download all pages and all chapters at: TestBankTip.com
J. Douglas Faires
State University

© 2011 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to permissionrequest@cengage.com

ISBN-13: 978-0-538-73596-4

ISBN-10: 0-538-73596-1

Brooks/Cole 20 Channel Center Street Boston, MA 02210 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your course and learning solutions, visit academic.cengage.com

Purchase any of our products at your local college store or at our preferred online store www.ichapters.com

NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.

READ IMPORTANT LICENSE INFORMATION

Dear Professor or Other Supplement Recipient:

Cengage Learning has provided you with this product (the “Supplement”) for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the “Course”), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.

Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they

may not copy or distribute any portion of the Supplement to any third party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.

All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an “as is” basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State’s conflict of law rules.

Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.

Printed in the United States of America 1 2 3 4 5 6 7 11 10 09 08 07
Preface vii MathematicalPreliminaries 1 ExerciseSet1.1..........................................1 ExerciseSet1.2..........................................6 ExerciseSet1.3..........................................12 SolutionsofEquationsofOneVariable 19 ExerciseSet2.1..........................................19 ExerciseSet2.2..........................................22 ExerciseSet2.3..........................................26 ExerciseSet2.4..........................................31 ExerciseSet2.5..........................................34 ExerciseSet2.6..........................................36 InterpolationandPolynomialApproximation 41 ExerciseSet3.1..........................................41 ExerciseSet3.2..........................................47 ExerciseSet3.3..........................................49 ExerciseSet3.4..........................................52 ExerciseSet3.5..........................................56 ExerciseSet3.6..........................................68 NumericalDifferentiationandIntegration 71 ExerciseSet4.1..........................................71 ExerciseSet4.2..........................................78 ExerciseSet4.3..........................................82 ExerciseSet4.4..........................................87 ExerciseSet4.5..........................................91 ExerciseSet4.6..........................................94 ExerciseSet4.7..........................................96 ExerciseSet4.8..........................................99 ExerciseSet4.9..........................................101 iii
TableofContents
iv Initial-ValueProblemsforOrdinaryDifferentialEquations 105 ExerciseSet5.1..........................................105 ExerciseSet5.2..........................................108 ExerciseSet5.3..........................................113 ExerciseSet5.4..........................................119 ExerciseSet5.5..........................................129 ExerciseSet5.6..........................................133 ExerciseSet5.7..........................................144 ExerciseSet5.8..........................................149 ExerciseSet5.9..........................................152 ExerciseSet5.10.........................................159 DirectMethodsforSolvingLinearSystems 169 ExerciseSet6.1..........................................169 ExerciseSet6.2..........................................174 ExerciseSet6.3..........................................180 ExerciseSet6.4..........................................188 ExerciseSet6.1..........................................190 ExerciseSet6.6..........................................194 IterativeTechniquesinMatrixAlgebra 201 ExerciseSet7.1..........................................201 ExerciseSet7.2..........................................206 ExerciseSet7.3..........................................209 ExerciseSet7.4..........................................215 ExerciseSet7.5..........................................219 ExerciseSet7.6..........................................221 ApproximationTheory 231 ExerciseSet8.1..........................................231 ExerciseSet8.2..........................................232 ExerciseSet8.3..........................................236 ExerciseSet8.4..........................................238 ExerciseSet8.5..........................................244 ExerciseSet8.6..........................................247 ApproximatingEigenvalues 251 ExerciseSet9.1..........................................251 ExerciseSet9.2..........................................257 ExerciseSet9.3..........................................262 ExerciseSet9.4..........................................266 ExerciseSet9.5..........................................267 ExerciseSet9.6..........................................273
v NumericalSolutionsofNonlinearSystemsofEquations 281 ExerciseSet10.1.........................................281 ExerciseSet10.2.........................................284 ExerciseSet10.3.........................................287 ExerciseSet10.4.........................................290 ExerciseSet10.5.........................................291 Boundary-ValueProblemsforOrdinaryDifferentialEquations 295 ExerciseSet11.1.........................................295 ExerciseSet11.2.........................................299 ExerciseSet11.3.........................................303 ExerciseSet11.4.........................................308 ExerciseSet11.5.........................................313 NumericalSolutionstoPartialDifferentialEquations 319 ExerciseSet12.1.........................................319 ExerciseSet12.2.........................................323 ExerciseSet12.3.........................................333 ExerciseSet12.4.........................................336
vi Preface

Preface

This Instructor’sManualfortheNinthEditionofNumericalAnalysisbyBurdenand Fairescontainssolutionstoalltheexercisesinthebook.Althoughtheanswersto theoddexercisesarealsointhebackofthetext,wehavefoundthatusersofthe bookappreciatehavingallthesolutionsinonesource.Inaddition,theresultslisted inthisInstructor’sManualoftengobeyondthosegiveninthebackofthebook.For example,wedonotplacethelongsolutionstotheoreticalandappliedexercisesin thebook.Youwillfindthemhere.

AStudentStudyGuidefortheNinthEditionofNumericalAnalysisisalsoavailableandthesolutionsgivenintheGuidearegenerallymoredetailedthanthoseinthe Instructor’sManual.Inordertomakeitconvenientforinstructors,wehaveplaced anasterisk(*)inthisManualinfrontofeachexercisewhosesolutionisgiveninthe StudentStudyGuide.Hopefullythiswillhelpwithyourhomeworkassignmentsand testproblems.

WehaveaddedanumberofexercisestothetextthatinvolvetheuseofaComputer AlgebraSystem.WehavechosenMapleasourstandard,becausetheir NumericalAnalysis packageparallelsthealgorithmsinthisbook,butanyofthesesystemscan beused.Inourrecentteachingofthecoursewefoundthatstudentsunderstoodthe conceptsbetterwhentheyworkedthroughthealgorithmsstep-by-step,butletthe computeralgebrasystemdothetediouscomputation.

IthasbeenourpracticetoincludestructuredalgorithmsinourNumericalAnalysis bookforallthetechniquesdiscussedinthetext.Thealgorithmsaregiveninaform thatcanbecodedinanyappropriateprogramminglanguage,bystudentswitheven aminimalamountofprogrammingexpertise.

Atourwebsiteforthebook, http://www.math.ysu.edu/∼faires/Numerical-Analysis/

youwillfindallthealgorithmswrittenintheprogramminglanguagesFORTRAN, Pascal,C,Java,aswellasintheComputerAlgebraSystems,Maple,MATLAB, andMathematica.FortheNinthEdition,wehaveaddednewMapleprogramsto reflectthechangesintheirsystemandtoincludeportionsoftheir NumericalAnalysis package.

vii

Thewebsitealsocontainsadditionalinformationaboutthebookandwillbeupdatedregularlytoreflectanymodificationsthatmightbemade.Forexample,we willplacethereanyresponsestoquestionsfromusersofthebookconcerninginterpretationsoftheexercisesandappropriateapplicationsofthetechniques.

Wewillhaveasetofpresentationmaterialreadysoonformanyofthemethods inthebook.ThesearebeingconstructedbyProfessorJohnCarrollofDublinCity UniversityusingtheBeamerpackageofLATEX,andwillbeplacedonthewebsite. TheBeamerpackagecreatesPDFfilesthataresimilartoPowerPointpresentations butincorporatesmathematicalelementseasilyandcorrectly.Wearequiteexcited aboutthismaterialandexpecttohavemanyofthepresentationsreadybeforethey wouldnormallybecoveredintheFalltermof2010.Ifyousendusane-mailwewill keepyoupostedonourprogress.

WehopeoursupplementpackageprovidesflexibilityforinstructorsteachingNumericalAnalysis.Ifyouhaveanysuggestionsforimprovementsthatcanbeincorporatedintofutureeditionsofthebookorthesupplements,wewouldbemostgrateful toreceiveyourcomments.Wecanbemosteasilycontactedbyelectronicmailatthe addresseslistedbelow.

viii Preface
YoungstownStateUniversity RichardL.Burden burden@math.ysu.edu August20,2010 J.DouglasFaires faires@math.ysu.edu

MathematicalPreliminaries

Note:Anasterisk(*)beforeanexerciseindicatesthatthereisasolutionintheStudent StudyGuide.

ExerciseSet1.1,page14

*1.Foreachpart, f ∈ C[a,b]onthegiveninterval.Since f (a)and f (b)areofoppositesign,the IntermediateValueTheoremimpliesthatanumber c existswith f (c)=0.

2.(a)[0, 1]

(b)[0, 1], [4, 5], [ 1, 0]

*(c)[ 2, 2/3], [0, 1], [2, 4]

(d)[ 3, 2], [ 1, 0.5],and[ 0.5, 0]

3.Foreachpart, f ∈ C[a,b], f ′ existson(a,b)and f (a)= f (b)=0.Rolle’sTheoremimplies thatanumber c existsin(a,b)with f ′(c)=0.Forpart(d),wecanuse[a,b]=[ 1, 0]or [a,b]=[0, 2].

4.Themaximumvaluefor |f (x)| isgivenbelow.

*(a)(2ln2)/3 ≈ 0 4620981

(b)0.8

(c)5.164000

(d)1.582572

*5.For x< 0, f (x) < 2x + k< 0,providedthat x< 1 2 k.Similarly,for x> 0, f (x) > 2x + k> 0, providedthat x> 1 2 k.By Theorem1.11,thereexistsanumber c with f (c)=0.If f (c)=0 and f (c′)=0forsome c′ = c,thenbyTheorem1.7,thereexistsanumber p between c and c′ with f ′(p)=0.However, f ′(x)=3x2 +2 > 0forall x.

6.Suppose p and q arein[a,b]with p = q and f (p)= f (q)=0.BytheMeanValueTheorem, thereexists ξ ∈ (a,b)with f (p) f (q)= f ′(ξ)(p q)

But, f (p) f (q)=0and p = q. So f ′(ξ)=0, contradictingthehypothesis.

7.(a) P2 (x)=0

(b) R2(0 5)=0 125;actualerror=0 125 1

135372on[0, 1]

(c)

(d)Anerrorboundis7

(a) P3 (0 5)=0 312500,f (0 5)=0 346574.Anerrorboundis0 2916,andtheactualerror is0 034074.

(b) |f (x) P3 (x)|≤ 0 2916on[0

(d)Anerrorboundis0 0583,andtheactualerroris4 687 × 10

2 ExerciseSet1.1 (c) P2 (x)=1+3(x 1)+3(x 1)2 (d) R2(0 5)= 0 125;actualerror= 0 125 8. P3(x)=1+ 1 2 x 1 8 x2 + 1 16 x3 x 0 5 0 751 251 5 P3 (x)1.22656251.33105471.55175781.6796875 √x +11 22474491 32287571 51 5811388 |√x +1 P3(x)| 0.00181760.00817900.05175780.0985487 *9.Since P2 (x)= 1 + x and R2(x)= 2eξ(sin ξ +cos ξ) 6 x 3 for some ξ between x and0,wehavethefollowing: (a) P2 (0 5)=1 5and |f (0 5) P2 (0 5)|≤ 0 0932; (b) |f (x) P2 (x)|≤ 1 252; (c) 1 0 f (x) dx ≈ 1 5; (d) | 1 0 f (x) dx 1 0 P2 (x) dx|≤ 1 0 |R2 (x)| dx ≤ 0 313,andtheactualerroris0 122. 10. P2(x)=1 461930+0 617884 x π 6 0 844046 x π 6 2 and R2(x) = 1 3 eξ(sin ξ+cos ξ) x π 6 3 for some ξ between x and π 6 . (a) P2 (0.5)=1.446879and f (0.5)=1.446889.Anerrorboundis1.01 × 10 5,andtheactual erroris1.0 × 10 5 .
|f (x) P2 (x)|≤ 0.
(b)
1 0 P2(x)
1 0 f (x) dx =1
378025
dx =1.376542and
.
3
2 1
403 × 10
,andtheactualerroris1 483 × 10 3 11. P3(x)=(x 1)
2 (x 1)3
5
1
,
5]
1 5 0 5 (x 1) ln x
=0
(c) 1 5 0 5 P3 (x) dx =0 083,
dx
088020
12.(a)
4+6
2 4x3; P3(0 4)= 2
3
P3 (x)=
x x
016
4) P3(0 4)
=0
4+6x x2 4x3; P4(0 4)= 2 016
(b) |R3 (0 4)|≤ 0 05849; |f (0
|
013365367 (c) P4 (x)=
4) P4(0 4)
=0
(d) |R4 (0 4)|≤ 0 01366; |f (0
|
013365367

*14.Firstweneedtoconvertthedegreemeasureforthesinefunctiontoradians.Wehave180

MathematicalPreliminaries 3 13 P4(x) = x + x3 (a) |f (x) P4 (x)|≤ 0 012405 (b) 0 4 0 P4 (x) dx =0 0864, 0 4 0 xex 2 dx =0 086755 (c)8 27 × 10 4 (d) P ′ 4 (0 2)=1 12,f ′(0 2)=1 124076.Theactualerroris4 076 × 10 3
◦ = π radians,so1◦ = π 180 radians.Since, f (x)=sin x,f ′(x)=cos x,f ′′(x)= sin x, and f ′′′(x)= cos x, wehave f (0)=0, f ′(0)=1, and f ′′(0)=0. Theapproximationsin x ≈ x isgivenby f (x) ≈ P2 (x)= x, and R2(x)= cos ξ 3! x3 . Ifwe usethebound | cos ξ|≤ 1,then sin π 180 π 180 = R2 π 180 = cos ξ 3! π 180 3 ≤ 8 86 × 10 7 15.Since42◦ =7π/30radians,use x0 = π/4.Then Rn 7π 30 ≤ π 4 7π 30 n+1 (n +1)! < (0 053)n+1 (n +1)! For |Rn( 7π 30 )| < 10 6 , it sufficestotake n =3.To7digits, cos42◦ =0 7431448and P3(42◦)= P3( 7π 30 )= 0 7431446, sotheactualerroris2 × 10 7 *16.(a) P3 (x)= 1 3 x + 1 6 x 2 + 23 648 x3 (b) Wehave f (4)(x)= 119 1296 ex/2 sin x 3 + 5 54 ex/2 cos x 3 , so f (4)(x) ≤ f (4)(0 60473891) ≤ 0 09787176, for0 ≤ x ≤ 1, and |f (x) P3 (x)|≤ f (4)(ξ) 4! |x|4 ≤ 0 09787176 24 (1)4 = 0.004077990.

arethesameat x0

(b) P2 (x)=3+4(x 1)+3(x 1)2

23.(a)Theassumptionisthat f (xi)=0foreach i =0, 1,...,n.ApplyingRolle’sTheorem oneachontheintervals[xi,xi+1 ]impliesthatforeach i =0, 1,...,n 1thereexistsa number zi with f ′(zi)=0.Inaddition,wehave

<z0 <x1 <z1 < <zn 1 <xn ≤ b.

(b)Applythelogicinpart(a)tothefunction g(x)= f ′(x)withthenumberofzerosof g in [a,b]reducedby1.Thisimpliesthatnumbers wi,for i =0, 1,...,n 2existwith

g ′(wi)= f ′′(wi)=0, and a<z0 <w0 <z1 <w1 < wn 2 <zn 1 <b.

(c)Continuingbyinductionfollowingthelogicinparts(a)and(b)provides n+1 j distinct zerosof f (j) in[a,b].

(d)Theconclusionofthetheoremfollowsfrompart(c)when j = n,forinthiscasethere willbe(atleast)(n +1) n =1zeroin[a,b].

*24.Firstobservethatfor f (x)= x sin x wehave f ′(x)=1 cos x ≥ 0,because 1 ≤ cos x ≤ 1 forallvaluesof x.Also,thestatementclearlyholdswhen |x|≥ π,because | sin x|≤ 1.

(a)Theobservationimpliesthat f (x)isnon-decreasingforallvaluesof x,andinparticular that f (x) >f (0)=0when x> 0.Hencefor x ≥ 0,wehave x ≥ sin x,andwhen 0 ≤ x ≤ π, | sin x| =sin x ≤ x = |x|

(b)When π<x< 0,wehave π ≥−x> 0.Sincesin x isanoddfunction,thefact(from part(a))thatsin( x) ≤ ( x)impliesthat | sin x| = sin x ≤−x = |x| Asaconsequence,forallrealnumbers x wehave | sin x|≤|x|

25.Since R2 (1)= 1 6 eξ,forsome ξ in(0, 1),wehave |

andobtaintheresult.

4 ExerciseSet1.1 17.(a) P3 (x)=ln(3)+ 2 3 (x 1) + 1 9 (x 1)2 10 81 (x 1)3 (b)max0≤x≤1 |f (x) P3 (x)| = |f (0) P3 (0)| =0.02663366 (c) ˜ P3 (x)=ln(2)+ 1 2 x2 (d) max0≤x≤1 |f (x) P3 (x)| = |f (1) P3 (1)| =0 09453489 (e) P3 (0)approximates f (0)betterthan ˜ P3 (1)approximates f (1). 18. Pn(x)= n k=0 xk,n ≥ 19 19. Pn(x)= n k=0 1 k! x k ,n ≥ 7 20.For n odd, Pn(x)= x 1 3 x3 + 1 5 x5 + ·· · + 1 n ( 1)(n 1)/2xn.For n even, Pn(x)= Pn 1(x). 21.Aboundforthemaximumerroris0 0026. 22.(a) P (k) n (x0 )= f (k)(x0 )for k =0, 1,...,n. Theshapesof Pn and f
a ≤ x0
2
| = 1 6 |1 eξ| ≤ 1 6 (e 1)
e t2 = ∞ k=0 ( 1)kt2k k! tointegrate 2 √π x 0 e t2 dt,
E R
(1)
26.(a)Usetheseries

(d)0

MathematicalPreliminaries 5
Wehave 2 √π e x 2 ∞ k=0 2kx2k+1 1 3 (2k + 1) = 2 √π 1 x 2 + 1 2 x 4 1 6 x7 + 1 24 x8 + ·· · x + 2 3 x3 + 4 15 x5 + 8 105 x7 + 16 945 x9 + = 2 √π x 1 3 x 3 + 1 10 x 5 1 42 x 7 + 1 216 x 9 + ·· · = erf(x)
8427008
(b)
(c)0
8427069
n andpositive x wehave thebound erf(x) 2 √π n k=0 ( 1)kx2k+1 (2k +1)k! < x2n+3 (2n +3)(n + 1)! . Wehavenosuchboundforthepositivetermseriesinpart(b). 27.(a)Let x0 beanynumberin[a,b] Given ǫ> 0, let δ = ǫ/L. If |x x0 | <δ and a ≤ x ≤ b, then |f (x) f (x0 )|≤ L|x x0| <ǫ. (b)UsingtheMeanValueTheorem,wehave |f (x2) f (x1)| = |f ′(ξ)||x2 x1 |, forsome ξ between x1 and x2 ,so |f (x2 ) f (x1 )|≤ L|x2 x1 | (c)Oneexampleis f (x)= x1/3 on[0, 1]. *28.(a)Thenumber 1 2 (f (x1 )+ f (x2 )) istheaverageof f (x1 )and f (x2 ),soitliesbetweenthese twovaluesof
f (ξ)= 1 2 (f (x1 )+ f (x2 )) = 1 2 f (x1)+ 1 2 f (x2 )
m =min
x1
,f (x2 )} and M =max{f (x1),f (x2 )} Then m ≤ f (x1) ≤ M and m ≤ f
≤ M, so c1m ≤ c1f (x1 ) ≤ c1 M and c2m ≤ c2f (x2 ) ≤ c2M. Thus (c1 + c2)m ≤ c1f (x1 )+ c2f (x2) ≤ (c1 + c2 )M and m ≤ c1f (x1 )+ c2f (x2) c1 + c2 ≤ M.
theIntermediateValueTheorem1.11appliedtotheintervalwithendpoints
1
x2
ξ between x1
x2 forwhich f (ξ)= c1f (x1)+ c2f (x2 ) c1 + c2 .
(e)Theseriesinpart(a)isalternating,soforanypositiveinteger
f .BytheIntermediateValueTheorem1.11thereexistanumber ξ between x1 and x2 with
(b) Let
{f (
)
(x2)
By
x
and
,thereexistsanumber
and

(c)Let f (x)= x2 +1, x1 =0, x2 =1, c1 =2,and c2 = 1.Thenforallvaluesof x,

)

29.(a)Since f iscontinuousat p and f (p) =0,thereexistsa δ> 0with

f (x) f (p)| < |f (p)| 2 , for |x p| <δ and a<x<b.Werestrict δ sothat[p δ,p + δ]isasubsetof[a,b].

Thus,for x ∈ [p δ,p + δ],wehave x ∈ [a,b].So

If f (p) > 0, then

If f (p) < 0, then |f (p)| = f (p),and

Ineithercase, f (x) =0,for x ∈ [p δ,p + δ].

(b)Since f iscontinuousat p and f (p)=0,thereexistsa δ> 0with

f (x) f (p)| <k, for |x p| <δ and a<x<b.

Werestrict δ sothat[p δ,p + δ]isasubsetof[a,b].Thus,for x ∈ [p δ,p + δ],wehave |f (x)| = |f (x) f (p)| <k.

ExerciseSet1.2,page28

1.Wehave

6 ExerciseSet1.2
c
f (x
> 0but c1f (x1)+ c2f (x2 )
1 + c2 = 2(1) 1(2) 2 1 =0
|
2
2
|f (p)| 2 <f (x) f (p) < |f (p)| 2 and f (p) |f (p)|
<f (x) < f (p) + |f (p)|
f
2
2 > 0, so f (x) > f (p
(p) |f (p)|
= f (p)
) |f (p)| 2 > 0.
f
f (p)
2 = f (p) f (p) 2 = f
p) 2 < 0.
(x) <f (p)+ |
|
(
|
AbsoluteerrorRelativeerror (a)0.0012644 025 × 10 4 (b)7 346 × 10 6 2 338 × 10 6 (c)2 818 × 10 4 1 037 × 10 4 (d)2.136 × 10 4 1.510 × 10 4 (e)2.647 × 101 1.202 × 10 3 (f)1.454 × 101 1.050 × 10 2 (g)4201 042 × 10 2 (h)3 343 × 103 9 213 × 10 3

2. Thelargestintervalsare:

(a)(3 1412784, 3 1419068)

(b)(2 7180100, 2 7185536)

*(c)(1 4140721, 1 4143549)

(d)(1 9127398, 1 9131224)

3.Thelargestintervalsare

(a)(149.85,150.15)

(b)(899.1,900.9)

(c)(1498.5,1501.5)

(d)(89.91,90.09)

4.Thecalculationsandtheirerrorsare:

MathematicalPreliminaries 7
× 10 3 (c)(i)139/660(ii)0.211(iii)0.210(iv)2
3,3 × 10 3 (d)(i)301/660(ii)0.455(iii)0.456(iv)2 × 10 3,1 × 10 4
ApproximationAbsoluteerrorRelativeerror (a)134 0.0795 90 × 10 4 (b)133 0.4993 77 × 10 3 (c)2.00 0.327 0.195 (d)1.67 0.0031 79 × 10 3 *(e)1.80 0.154 0.0786 (f) 15.10.05463.60 × 10 3 (g)0.2862.86 × 10 4 10 3 (h)0.00 0.0215 1.00 6.Wehave ApproximationAbsoluteerrorRelativeerror (a)133.9 0.0211.568 × 10 4 (b)132.5 0.0017 55 × 10 6 (c)1.700 0.0270.01614 (d)1.673 0 0 (e)1.9860.032460.01662 (f) 15 160.0053773 548 × 10 4 (g)0.28571 429 × 10 5 5 × 10 5 (h) 0.017000.00450.2092
(a)(i)17/15(ii)1.13(iii)1.13(iv)both3 × 10 3 (b)(i)4/15(ii)0.266(iii)0.266(iv)both2 5
× 10
5.Wehave
8 ExerciseSet1.2
ApproximationAbsoluteerrorRelativeerror (a)133 0.9216.88 × 10 3 (b)132 0.5013.78 × 10 3 (c)1.00 0.673 0.402 (d)1.67 0.0031 79 × 10 3 *(e)3.55 1.60 0.817 (f) 15 20.04540.00299 (g)0.2840.001710.00600 (h)0 0.02150 1
ApproximationAbsoluteerrorRelativeerror (a)133.9 0.0211.568 × 10 4 (b)132.5 0.0017 55 × 10 6 (c)1.600 0.0730.04363 (d)1.673 0 0 (e)1.9830.029450.01508 (f) 15 150.0046223 050 × 10 4 (g)0.28552 143 × 10 4 7 5 × 10 4 (h) 0 017000.00450.2092
ApproximationAbsoluteerrorRelativeerror *(a)3.145576133.983 × 10 3 1.268 × 10 3 (b)3.141621032.838 × 10 5 9.032 × 10 6 10.Wehave ApproximationAbsoluteerrorRelativeerror (a)2.71666670.00161525 9418 × 10 4 (b)2.7182818012.73 ×10 8 1 00 × 10 8
7.Wehave
8.Wehave
9.Wehave
MathematicalPreliminaries 9 11 (a)Wehave lim x→0 x cos x sin x x sin x = lim x→0 x sin x 1 cos x = lim x→0 sin x x cos x sin x =lim x→0 2 cos x + x sin x cos x = 2 (b) f (0.1) ≈−1.941 (c) x(1 1 2 x2 ) (x 1 6 x3) x (x 1 6 x3 ) = 2 (d) Therelativeerrorinpart(b)is0 029.Therelativeerrorinpart(c)is0 00050. 12.(a)lim x→0 ex e x x =lim x→0 ex + e x 1 =2 (b) f (0.1) ≈ 2.05 (c) 1 x 1 + x + 1 2 x 2 + 1 6 x3 1 x + 1 2 x 2 1 6 x3 = 1 x 2x + 1 3 x3 =2 + 1 3 x 2 ; usingthree-digitroundingarithmeticand x =0 1,weobtain2 00. (d)Therelativeerrorinpart(b)is=0 0233.Therelativeerrorinpart(c)is=0 00166. 13.Wehave x1 AbsoluteerrorRelativeerror x2 AbsoluteerrorRelativeerror (a)92.260.015421 672 × 10 4 0.0054196 273 × 10 7 1 157 × 10 4 (b)0.0054211 264 × 10 6 2 333 × 10 4 92 264 580 × 10 3 4 965 × 10 5 (c)10.986 875 × 10 3 6 257 × 10 4 0.0011497 566 × 10 8 6 584 × 10 5 (d) 0 0011497 566 × 10 8 6 584 × 10 5 10 986 875 × 10 3 6 257 × 10 4 14.Wehave Approximationfor x1 AbsoluteerrorRelativeerror (a)92.24 0.0045804.965 × 10 5 (b)0.0054172.736 × 10 6 5.048 × 10 4 (c)10.98 6 875 × 10 3 6 257 × 10 4 (d) 0 0011497 566 × 10 8 6 584 × 10 5 Approximationfor x2 AbsoluteerrorRelativeerror (a)0 0054182 373 × 10 6 4 377 × 10 4 (b) 92 255 420 × 10 3 5 875 × 10 5 (c)0 0011497 566 × 10 8 6 584 × 10 5 (d) 10 986 875 × 10 3 6 257 × 10 4

15.Themachinenumbersareequivalentto

(a)3224

(b) 3224

*(c)1.32421875

(d)1.3242187500000002220446049250313080847263336181640625

16.(a)NextLargest:3224 00000000000045474735088646411895751953125; NextSmallest:3223.99999999999954525264911353588104248046875

(b)NextLargest: 3224.00000000000045474735088646411895751953125; NextSmallest: 3223 99999999999954525264911353588104248046875

*(c)NextLargest:1.3242187500000002220446049250313080847263336181640625; NextSmallest:1 3242187499999997779553950749686919152736663818359375

(d)NextLargest:1 324218750000000444089209850062616169452667236328125; NextSmallest:1 32421875

17.(b)Thefirstformulagives 0 00658,andthesecondformulagives 0 0100.Thetruethreedigitvalueis 0 0116

18.(a) 1 82

(b)7.09 × 10 3

(c)Theformulain(b)ismoreaccuratesincesubtractionisnotinvolved.

19.Theapproximatesolutionstothesystemsare

10 ExerciseSet1.2
(a) x =2 451, y = 1 635 (b) x =507 7, y =82 00 20.(a) x =2.460 y = 1.634 (b) x =477.0 y =76.93
f (x)=(((1 01ex 4 62)ex 3 11)ex +12 2)ex 1 99 (b) 6 79 (c) 7 07
|− 7 61 ( 6 71)| =0 82and |− 7 61 ( 7 07)| =0 54 Nestingissignificantlybettersincetherelativeerrorsare 0 82 7 61 = 0.108and 0 54 7 61 = 0.071,
375 ≤ Volume ≤ 86 625and71 5 ≤ SurfaceArea ≤ 119 5.
n =77
*21.(a)Innestedform,wehave
(d)Theabsoluteerrorsare
22.Wehave39
23.(a)

When P isdoubledand V ishalved,1 99 ≤ P ≤ 2 01and0 0497 ≤ V ≤ 0 0503sothat 286.61◦ ≤ T ≤ 293.72◦ . Notethat19◦C=292.16K.Thelaboratoryfiguresarewithinan acceptablerange.

MathematicalPreliminaries 11 (b) n =35 *24.When dk+1 < 5, y fl(y) y = 0.dk+1 × 10n k 0.d1 × 10n ≤ 0 5 × 10 k 0 1 = 0.5 × 10 k+1 . When dk+1 > 5, y fl(y) y = (1 0.dk+1 ) × 10n k 0.d1 × 10n < (1 0 5) × 10 k 0 1 = 0.5 × 10 k+1 . 25.(a) m =17 (b)Wehave m k = m! k!(m k)! = m(m 1) · ·· (m k 1)(m k)! k!(m k)! = m k m 1 k 1 m k 1 1 (c) m = 181707 (d)2,597,000;actualerror1960;relativeerror7 541 × 10 4 26.(a)Theactualerroris |f ′(ξ)ǫ|,andtherelativeerroris |f ′(ξ)ǫ|·|f (x0 )| 1,wherethenumber ξ isbetween x0 and x0 + ǫ (b)(i)1 4 × 10 5;5 1 × 10 6 (ii)2 7 × 10 6;3 2 × 10 6 (c)(i)1 2;5 1 × 10 5 (ii)4 2 × 10 5;7 8 × 10 5
(e)0.0065
(h)
*28.Since0
≤ P ≤ 1
≤ V ≤ 0 1005,0 082055 ≤ R ≤ 0 082065,and0
N ≤
Notethat15
C=288
27.(a)124.03 (b)124.03 (c) 124.03 (d) 124.03
(f)0.0065 (g) 0.0065
0 0065
995
005,0 0995
004195 ≤
0 004205,wehave287 61◦ ≤ T ≤ 293 42◦
16K.

Theactualvalueis1.549.Significantround-offerroroccursmuchearlierinthefirst method.

(b)Thefollowingalgorithmwillsumtheseries

INPUT N ; x1,x2 ,...,xN OUTPUT SUM

STEP1 Set SUM =0 STEP2 For j =1,...,N set i

STEP3 OUTPUT(SUM ); STOP.

2.Wehave

12
ExerciseSet1.3
1 1 + 1 4 .. . + 1 100 =1.53; 1 100 + 1 81 + .. . + 1 1 =1.54.
ExerciseSet1.3,page39 1.(a)
N i=1 xi inthereverseorder.
N j
SUM = SUM + xi
=
+1
ApproximationAbsoluteErrorRelativeError (a)2.7153 282 × 10 3 1 207 × 10 3 (b)2.7162 282 × 10 3 8 394 × 10 4 (c)2.7162 282 × 10 3 8 394 × 10 4 (d)2.7182 818 × 10 4 1 037 × 10 4
(b)
4.4terms *5.3terms 6.(a) O 1 n (b) O 1 n2 (c) O 1 n2 (d) O 1 n
Theratesofconvergenceare: (a) O(h2 ) (b) O(h) (c) O(h2 ) (d) O(h)
n(n
n +2)(n 1)
2additions. Numerical Analysis 9th Edition Burden Solutions Manual Full Download: http://testbanktip.com/download/numerical-analysis-9th-edition-burden-solutions-manual/ Download all pages and all chapters at: TestBankTip.com
*3.(a)2000terms
20,000,000,000terms
7.
*8.(a)
+1)/2multiplications;(
/

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Numerical Analysis 9th Edition Burden Solutions Manual by Johne863 - Issuu