Greenhouse Effect on the Celetial Bodies of the Solar System - AZ, WF

Page 1


Please see the link above for the source text

GreenhouseEffectontheCelestialBodiesoftheSolar System

Issuedate:27January2025

Introductionn

TheIPCCreportpublishedin1990suggestedthatacomparisonoftemperatureson Earth,Venus,andMarsmayprovideevidencefortheexistenceofagreenhouse effect[1],p.21].Titan,oneofSaturn'smoons,wassuggestedasasecondpossible exampleofagreenhouseeffect[2].However,neithercaseindicateshowtheroleof thegreenhouseeffectcanbedistinguishedfromallthefactorsthatinfluencea planet’stemperature.

Thisarticleaimstopresentthecurrentlyknownfactsanddiscusshowthey correspondtotheideaofagreenhouseeffectinplanetaryatmospheres.

First,itisnecessarytoclarifyhowtheessenceofthegreenhouseeffectis understoodinmodernclimatology,howthetemperaturechangesthatdetermine thiseffectaremeasured,andwhatfactorsinfluencethetemperatureondifferent planets.

ThefollowingfactorswereconsideredintermsoftheGreenhouseEffect:

1. Thecelestialbody’sdistancefromtheSun,itsaxialtilt,thelengthof day/night,anditsproximitytootherlargemasses.

2. Thethermo-physicalparametersofthesurface.

3. Themassofthecelestialbody.

4.

5.

Whetherthecelestialbodygeneratesinternal(geothermal)heat

Thecomposition,pressure,andmassoftheatmosphere.

TheinvestigationconcludedthatthereisnoevidencethattheGreenhouseEffect utilisesatmosphericgasestoelevatethetemperatureofthesurface.

Definitionofthegreenhouseeffect

EncyclopediaBritannica[3]definesthegreenhouseeffectas:

“ a warming of Earth’s surface and troposphere (the lowest layer of the atmosphere) caused by the presence of water vapour, carbon dioxide, methane, and certain other gases in the air. ”

Letusclarifythatthecompoundslisted,likemanyothergreenhousegases includedintheIPCClist,arecharacterizedbyonecommonproperty:eachofthem doesnottransmitinfraredradiationofcertainwavelengthscharacteristicofeach substance,forexample,4.3μand15μforCO2 ” .

Itmakessensetotalkaboutthegreenhouseeffectonlyforplanetsthathavesuch gasesintheatmosphere,sinceitisthisproperty,accordingtotheconceptofthe greenhouseeffect,whichdeterminestheretentionofenergyintheatmosphereand theincreaseintemperature.

Definitionofaplanet’saverageglobaltemperature

Thegreenhouseeffecttheoryusestheconceptsofaverageglobaltemperatureand theso-calledeffectivetemperature.Thelatterisgenerallydeterminedbya

numericaldetermination,calculationbasedontheamountofenergyemittedbyan objectaccordingtotheStefan-Boltzmannequation.

TherewasamajordifficultymeasuringEarth’saverageglobaltemperatureasnot everybitofitssurfacecouldbemeasured.Hence,itsvaluewassetat15°C,by calculation,afewyearsago.AccordingtotheIPCC,thisvalueis15 oC,excluding Antarctica.

ToindicatethemovementofEarth’saverageglobaltemperature,actual measurementsoftemperatureatmanylocationsaroundtheEartharerecorded, aggregated,andaveragedtocreateanannualtemperatureanomalyvalue.To ensureconsistencyofreporting,thesamemeasurementpointsreporttheirlocal temperaturedataeachyear.

Attheconclusionofarrivingatanewannualanomalyvalue,thevalueisaddedto thecumulativesummationsofbasevalue(15°C)pluspreviousconsecutiveannual anomalyvaluestogiveanindicationofwhattheaverageglobaltemperatureis believedtobeinthelatestyearmeasured.

Thereisnocertaintythatthevaluecalculatedandreportedrepresentsthetrue averageglobaltemperature.However,theaverageglobaltemperaturedetermined isusefulinindicatingwhetherEarthiswarmerorcoolerthanpreviouslyassessed.

Notethattheannualtemperatureanomalyvaluesstandontheirownmerit.Their benefitisthattheycanbeusedtodeterminewhethertheEarthiswarmingor coolingandatwhatrateitiswarmingorcooling.

Giventhatthetemperatureondifferentplanetsvariesoveraverywiderange,and thatinmostcasesthereisnodetailedpictureofthecomponentsoftheir temperatureprofile,thereliabilityoftheaverageglobaltemperaturevalueishighly questionable.

Technologyhascometotherescue,andsatellitemeasurementsareabletoassess thevalueofaplanet’stemperature.Therefore,forapproximatecomparative assessments,actualsatellitemeasurementscanbeused.

Furtherassessmentsoftemperaturefluctuations,suchasorbit-basedmaximumand minimumvalues,dayandnightvariances,aswellasequatorialandpolar variances,areimportantinordertocompleteacelestialbody’stemperatureprofile.

Ofparticularinterestarejumpsintemperaturefoundindifferentplacesatdifferent times.

Factorsaffectingtemperature

Ingeneral,thesefactorsarerelatedtotheamountofthermalenergyenteringthe planet,thedistributionofthisenergyontheplanet'ssurface,andthenatureofthe substancethatabsorbsandreleasesheat.

TheSolarconstant(G).

Thevalue,G,resultsindeterminingthevalueofthesun’sthermalenergyfalling onacelestialbody,suchasEarth,inaccordancewiththeequation:

Where:

● L isthesolarradianceinWattspermetressquared(W/m²)emitted fromthesurfaceofthesun,

● R istheradiusoftheSuninmetres(m),and

● d isthedistancefromthesuntothecelestialbodyinmetres(m).

ThevaluesofLandRareconsideredtobeapproximatelyconstant,butthevalue ofdchangeswithtimeasthecelestialbodybeingassessedmovesfromperihelion toaphelioninitsorbit.Sincethesolarenergyfallingonthecelestialbodymayor maynotbedistributedevenly,andthethermo-physicalpropertiesofthesurface materialmaydifferindifferentplaces,therelationshipbetweenthesolarconstant andthesurfacetemperatureiscomplex.

AllcelestialbodiesintheSolarSystemhavedifferentdynamicsintheirrotational, orbital,andaxialinclinationproperties.Itisnotasimplemattertodeterminethe resultingtemperatureofacelestialbodybycalculationalone.Thereare

G=LR

difficulties,therefore,inbeingabletocompareassessedtemperaturesbetweenone celestialbodyandanother.

Otherfactors

Thereisalsotheuncertaintyofacelestialbody’sothersourcesofsurface temperatureaffectingheat,andwhetherthecelestialbodyhas,ordoesn’thave,an atmosphereandwateronitssurface.

Therearealsootherfactorsthatcanhaveaneffectonacelestialbody’ssurface temperatureprofile,suchas:

● Geothermalheat-knowntoaffectEarth’ssurfacetemperature.

● Geothermalheatcouldhaveaneffectonthesurfacetemperatureofotherof the SolarSystem’scelestialbodies.

● Earthalonehasananthropogenicfactorthataffectsitssurfacetemperature.

● Orbitalvelocityandgravitationalforcesactinginoppositioncanalsobea sourceofinternalheatgenerationthataffectsthesurfaceofacelestialbody. Thisisofparticularinterestwhenrelatedtocelestialbodiesthatorbita parentplanet.It’stheforcesgeneratedbytheorbitalvelocityand gravitationalinteractionsthatkeeptheorbitingbodyfromcrashingintothe planet Titan,abodythatorbitsSaturn(oneofSaturn’smoons),issucha celestialbody.

Theobliquitytoorbitofplanets.

Obliquity,alsoknownasaxialtilttoorbit,referstotheanglebetweenthe rotationalaxisofaplanetandtheperpendiculartoitsorbitalplane Atiltvalueof zerocorrespondstothecelestialbodynothavingtheseasonaleffectasexperienced onEarth,wherethenorthernandsouthernhemispheresalternatetheir summer/winterexperiencesataphelionandperihelion.

Instead,thedistanceacelestialbodywithazeroaxialtiltisfromthesunduringits orbittimedeterminesseasonalvariationsaffectingthewholeofthesurface.Its

orbitswingsthewholeofthecelestialbodyinafluidmotionfromsummer(hot withhighestinsolationatperihelion)towinter(coldwithlowestinsolationat aphelion).Thespringandautumnseasonsarenotseparatorsofoscillating hemisphericsummersandwintersasoccursonEarth.Thecelestialbodywithan axialtiltofzeroispermanentlyinastateofequalhemisphericalirradiation.

Earth’sobliquitytodayis23.5°.DespitethisbeingEarth’scase,thesunwouldn’t seetheEarthasanythingotherthanasingularmasswithafacingsurfacethat receivestheheatdirectedtoit.Thesun’sirradiationisoblivioustothefactthatthe Earthhasanangleofobliquity.

Hencetheaverageglobaltemperature,anoverallassessmentofacelestialbody’s temperatureoveroneorbitofthesun(notnecessarilyoneearthyear),is independentofobliquityandsubjecttothedifferencebetweenincomingand outgoingradiationbasedonboththecelestialbody’sdistancefromthesun,the intensityofthesun’sirradiationandanyotherincidentalsourcesofheatthataffect thesurface.

Earth’sobliquityservesanotherpurpose.ItoscillatesthepartofEarth’ssurface thatreceivesthesun’sinsolation,transferringtheheatreceivedtolocationsthat wouldotherwisereceivelimitedtononeoftheSun’sirradiation.

OnEarth,theobliquitydistributesthetotalenergyreceivedabouttoday’s hemisphericallatitudesasitswings47°oflatitudeinoneorbitoftheSun,thereby enhancingtheconditionsoflivabilitythroughouttheEarth.Thus,itchangesthe resultingsurfacetemperaturegradientsbynotconcentratingitsheattoastatic latitudeaswouldoccuriftheobliquitywere0°.

Iftheearthhad0°obliquitythen,basedon…

● Thesolarconstantof1367W/m².

● Theatmospherehasthesamemassandcomposition.

● Irradiation’sminimumlossof52%asittraversestheatmospheretothe surface.

● Aunitofinsolation’sgreaterareaofcover(surfacerelief)thefurtherupthe latitudesitreaches.

● Anequivalent328W/m²(24%ofthesolarconstant)atthetopofthe atmosphere,representingavalueof82W/m²astheaverageofthesurface insolationdistributionacrossthewholeofthesurfaceareadefinedby latitudes0°to90°,where0°istheplaneoftheecliptic.

…theearthwouldbesubjectedtothefollowingconditions:

1.

Latitudes+10°to-10°abouttheequatoronthelongitude perpendiculartotheeclipticwouldreceiveaconstantaverage650W/m².The areawouldbeperpetuallyhot.

2.

Latitudes80°to90°,inboththenorthernandsouthernhemispheres,would beperpetuallycold Theselatitudeswouldreceiveaconstantaverageof 58W/m²onthelongitudeperpendiculartotheeclipticduetothe significantlygreaterlossoftheirradiationasittravelledtothesurface throughtheatmosphere,anditspreadacrossagreaterarea.

3.

Ifboththetotalsurfaceareathelatitudeseparatorsrepresentandthe day/nighteffectsaretakenintoaccount,theequatorialregionswouldreceive aconstant163W/m²andthePolarRegionswouldreceiveaconstant14W/m² i.e.,8.6%oftheW/m²receivedattheequatorialregion.

Insummary:

1.

Theaverageglobaltemperaturewouldbethesamevaluewhetherthe obliquitywas0°or23.5°inabodythathadnoothersourceofincidental heatandnoheatstoragematter.Inthiscase,thecelestialbodyissubject onlytotheintensityoftheSun’sirradiationandthedissipationofthe interceptedheattospace.

2.

Thepositionandsurfaceareaofbothoceansandland,themassofthe atmosphere,water,andincidentalheatsourcesthatimpactthecelestialbody, includingthesunastheprimaryheatsource,wouldallhaveabearingon heatcapture,dissipation,andresultantaverageglobaltemperature.

3.

Thetiltofaplanet'saxisaffectsthedistributionofincidentsolarradiation. Differencesinaxialtiltvaluesofdifferentcelestialbodiesintroduce uncertaintyinassessingthecausesofsurfacetemperaturedifferencesat specificpointsofcelestialbodiesbeingcompared.

4.

Othersourcesofincidentalheatcancontributetothesurfacetemperatureof acelestialbody.

Siderealrotationalperiod.

Thisvalue,whichdeterminesthetimeittakesforacelestialbodytorotateabout itsaxis,affectstheamountofheatthecelestialbodyreceiveswhenitfacestheSun andtheamountofheatthecelestialbodydissipateswhenitnolongerfacesthe Sun.Notethatamoonthatorbitsaplanet,suchasTitan,willalsohavean additionalimpedimenttoitsabsorptionofthesun’sheatwhenitmovesintothe shadowoftheplanetitorbits.

Thematterthatabsorbstheirradiationconsistsoftheland,atmosphere,andwater ifthelattertwomassesexistonthecelestialbody.Othersourcesofheatdirectedto thesurfaceaddtothetotaloftheheatabsorbedfromthesun’sinsolationwhilethe surfacefacesthesun.Dissipationofthesurfaceheatbeginswhentheincoming heatbecomeslessthanthetemperaturethecelestialbody’ssurfacehasbeen elevatedto,andincreasesinitsrateofdissipationwhenthesurfacenolongerfaces thesun.

Thematterthatstoresheatdeterminestheextentofheatdissipationbasedonits propertiesandmass.Ifthecelestialbodyisonawarmingtrend,lessheatis dissipatedthanabsorbed.Theoppositeoccursifthecelestialbodyisonacooling trend.

Comparisonsbetweencelestialbodiesthatdon’thaveanatmosphereora substantialamountofwatertothosethathavearesubjecttoerrorininterpretation.

Thesepropertiesincludetheabilitytoreflectsolarradiation(albedo),thermal conductivity,andheatcapacityofthesubstancesthatformthesurface,andsurface relief.

Thepropertyofthealbedo,itsreflectivity,issetataparticularvalueiffactorsthat impactthevalueofthealbedo,suchastheclimateofaparticularlocation,remain thesameoveranextendedperiodoftime.Ifanyofthefactorspertinenttothe determinantvalueofthealbedochange,thenthevalueofthealbedochanges.The changeinalbedohappensafterthefactorsthatdeterminethevalueofthealbedo change.Thechangeinthevalueofthealbedoisaneffectandnotacause.A changeinthepropertyofthesurface,andhencethevalueofthealbedo,could resultineitheranincreaseoradecreaseinthereflectivityofthesurface.

Thermalconductivityandheatcapacityofsubstancesarepropertiesparticulartoa matter.Theyplayanimportantpartinthecaptureandreleaseofincoming radiation.

Surfacerelief,asitappliestotheangleofincidenceoflightfallingonthesurface ofaplanet,isthebasisofdeterminingthechangeintheintensityofincomingsolar radiationbasedonitssquaremetrevaluethefurtherupthelatitudestheincident lightreaches.

Presenceandcompositionoftheatmosphere.

Thefactthattheatmospheredelaysthereleaseoftheplanet'sabsorbedheatinto spaceisobvious.Thequestioniswhetherthisisduetotheabilityofcertaingases toabsorbinfraredradiationortotheheatcapacityofallthecomponentsofthe atmosphere.

Thereareconflictingargumentsaboutthisaspectofsurfaceheatdissipationto space.

Researchconductedasreportedinthearticle

https://www.academia.edu/83219570/Earths Energy Balance and Thermodynami c Propertiesindicatesthatthewholeoftheatmosphereparticipatesinthe dissipationofEarth’sheattospace.Theatmosphereactsasaconstantlyactiveheat

transfermechanismfromthesurfacetospaceinaccordancetoincomingand outgoingheatsupplyandthermodynamicdifferences.

AnalternativeconceptembracedbytheGreenhouseEffectisthattheadditionof carbondioxidetotheatmosphereincreasestheeffectofacreatedradiativeforce thatwarmstheEarth’ssurface.Theobjectiveofthisarticleistodiscusswhether carbondioxidehasthecapacitytocauseEarth’sglobalwarmingdilemma.

Specificfactors.

Theseincludetheplanet'sinternalheat,unpredictablemovementsofatmospheric andwater(inthecaseofEarth)currents,andpossiblyprocessesthatarecurrently undetected.

Boththeatmosphere’sgasesandwaterhavethecapacitytoabsorbandstoreheat. Waterismuchbetteratstoringheatthantheatmosphere.(1kgofwaterabsorbs4.2 timesmoreheatthan1kgoftheearth'satmosphere). Waterisalsoaperpetual supplierofheattotheatmospherebywayofthehydrologiccycle;bothin observanceofthelawsofthermodynamicsandthebehaviourofthehydrologic cycle.

ComparisonofMercuryandVenus

MercuryisclosertotheSunthanVenus,andaccordingly,theaveragevalueofthe solarconstantforitismuchgreater:9116versus2611W/m2, respectively.Atthe sametime,Mercuryisassignedanaveragetemperatureof440K,andVenus737K [4].Thisfactisusuallyexplainedbythegreenhouseeffectoftheatmosphereof Venus,whichconsistsof96.5%carbondioxide.However,thepossibleroleof otherfactorsmustalsobeconsidered.

VenushasanatmospherecomposedprimarilyofCO2gas,whichcanholdand transmitheattospace.Mercurydoesnothaveanatmosphere.Therotational propertiesofeachoftheplanetstherefore,haveadifferentimpactonitsheat contentanditsaverageglobaltemperature.

OnVenus,duetothelongdaylighthours(thelongestamongtheplanetsinthe solarsystem),thetemperaturedifferenceisrelativelysmall:theaverage temperatureonthenightsideisfoundtobe698K[5].AttheMercurydayside reachestemperatureof700K,whilenightsidecoolsto93K[6].

However,beforeproceedingwiththisnotionoftheplanets'day/nighttemperatures andconsequentaverageglobaltemperature,it’simportanttoevaluatethereasons eachplanethasthemeasuredtemperaturesbasedoneachplanet’sknownorbital androtationalproperties.

TheabovedatacorrectlyrepresentsthetemperaturevaluesofbothMercuryand Venus.However,it’simportanttonotethatthemeasurementsdonottakeinto considerationtwo(2)importantfactorsthatdetermineMercury’stemperatureon thedayandnightsides.Thesefactorsare:

1. Mercury’sproximitytothesun

2.

Mercury’sslowrateofrotationcausesittobeellipticallytidallylockedto thesun[20]ina3:2resonance.Mercuryrotatesonitsaxis1.5 timesduring 1orbitofthesun.

Figure1showsMercury’srotationasitorbitsthesun(fromabove),andthatit completes2orbitsbeforethesamesurfacefacesthesunagain.Hence,theterm “ellipticallytidallylocked”isappliedtoMercuryandtheSun’srelationship.

Thesun’sirradiationispersistentonthesurfacefacingthesunfor587Earthdays ofMercury’s88Earthdays’orbitofthesun

Figure2showsdifferentphasesofthesun’sirradiationstrikingMercury’s changingsurfaceareaasitrotatesonitsaxisduringitsorbitofthesun

Theconsequenceofthetwo(2)factorsnotedaboveisthatMercuryabsorbsagreat dealofheatthatisstoredinthewholeofthemassofMercury.Theheatisslowly releasedonthenightsideoftheplanet,whereitssurfacenighttemperaturehas beenmeasuredat93KdespiteMercury’sexposuretothecoldofspaceandnot havinganatmosphere.

Therefore,theestimateofMercury'saveragetemperatureisunderstandableasits proximitytothesun,itsorbitalandrotationalproperties,andtheabsenceofan

atmospherecreateanorbitingplanetaryentitythatcannotberelatedtothe dynamicsandpropertiesexhibitedbyVenusorEarth.

However,theroleoftheatmospheremakessensetodiscusswhencomparing VenuswithEarth.

VenusandEarth

WhencomparingtemperaturesonVenusandEarth,itisnecessarytotakeinto accountsuchcomparisonfactorsasthevaluesof: ComparisonData

Venus’s177.4°obliquitytranslatestoithavinganoscillationabouttheeclipticof 2.6°.Hence,Venus’sobliquityisnotparticularlysignificant.Itwouldnotallowfor anymajorredistributionofthesun’sheatdirectedtoVenusabouttheoscillating latitudes

DuetothemanytimeslongerdaylighthourscomparedtoEarthandthesmall orbitalinclination(thepracticalabsenceofseasonaltemperaturechanges),Venus, intheabsenceofanyothersignificantformofheatimpactingthesurface,isheated toahighertemperatureprincipallyduetoitsproximitytothesun.Onlythesun, therefore,determineshowhotVenusbecomes.Thisisdespitethepossibilitythat

Venusalsogeneratesgeothermalheatthatcontributestothetotaltemperaturethe planethasbeenmeasuredtohave.

ThatVenusreachesahighertemperaturebecauseofitsproximitytothesunandits longerdayisunderstandable.Butitsnighttimewouldalsolastlonger,and thereforeithasmoretimetodissipateitsheattothecoldofspace.Venus’saverage globaltemperaturewouldsettletoavaluethattakesintoconsiderationthesun’s incomingirradiation,anygeneratedgeothermalheat,itscapacitytostoreheat,and itsrateofdissipation

Venus’sfasterrateofrotationandatmospherewouldpresentitselfwithadifferent temperatureprofile,notassteeplyinfluencedbyitsproximitytothesunas Mercury,butstillsubjecttoitscapacitytostore,permeateandmaintaininternal heatduetoitsrobustatmosphericcapthatwouldmaintainaconstanttemperature aboutitswholesurface.

It’sVenus’srateofdissipationoftheheatitabsorbsthatisthequandary.The questionofwhatretainstheheatatthesurfacelingers.

Thematterisfurtherinflatedbythefactthatat-14°latitudeandsolarzenithangle 17°[17]onlyabout3.4%oftheincidentsolarenergyreachesthesurface (2622W/m²atTOAand89.4W/m²onthesurface).Hence,astheday/nightsurface temperaturesareequal[18],thenitcanonlybetheheatcontainedintheadditional solarradiationthatreachesthesurfacethatisdissipatedonthenightsideas quicklyasthedaysidereceivesitinamannerthatmaintainsequalsurface day/nighttemperaturevalues.

ThereisnowateronVenus.Anycalculationappliedtodetermineitssurface temperaturewould,orshould,showthatitstemperatureisbasedontheheatthe landandatmosphereabsorbsfromthesunanditspossiblegeothermal complement.

Additionally,thepossibilityofatmosphericheatdistributionintheVenusian atmospherealsoneedstobeconsidered.Heatcouldbetransferredfromhottocold regionsofVenusbythesurfacewindsthatrangeinspeedof0.3to1.0m/s[19] therebyequalisingthesurfacetemperaturebetweenthedayandnightsurfaces.

OnEarth,morethantwo-thirdsofthesurfaceisoccupiedbywater,theheat capacityofwhichismuchhigherthanthatofthesubstancesthatformthesurface oftheland.Accordingly,thesurfaceofthewaterisheatedtoalowertemperature. ThereisnowateronthesurfaceofVenus.Itssurfacetemperaturewouldcauseall thewatertoboilaway.Furthermore,thereisnodataontheheatcapacityofthe Venusianground.Itcanbeassumedthatthisvalueislowerthanforwater,and, therefore,allotherthingsbeingequal,thesurfaceofVenuscanheatuptoahigher temperaturethanthesurfaceofwateronEarth

Onecouldeasilyassumethepresenceofintensevolcanicactivityand, consequently,amuchgreatercontributionoftheplanet'sinternalheatcomparedto Earth,basedonthefactthattheatmosphereofVenusconsistsmainlyofCO2

However,thatassumptionmaybeincorrect.Itcouldbethat,atthetimeofVenus’s formation,allthecarbonavailablewascombusted.Itscurrentatmospheremaybe theresidualoftheoriginalcombustionthatcreatedtheCO2 andothervaporised molecularcompounds,suchasthecloudsofsulphuricacid[21],thatgravityheld ontoastheplanet’ssolidmatterformedandconsolidatedintotheplanetit ultimatelybecame,completewithanatmosphere.

Analternativepossibilitytoitssurfaceinstabilityisthatthecontinualintense radiationfromthesuncreatedaninternalheatthatcausedVenus’smantle becomingvolatile:conditionswhich,togetherwithacombinationofgravitational influences,createdsurfacevolcanicandseismicconvulsions.

Takingintoaccounttheabovecircumstances,itisextremelydifficult(ifpossibleat all)toisolatetheroleoftheatmosphereinheatingtheplanet.Althoughthe atmosphereactingasalidonVenusisquitepossible.

Venus’sandEarth’satmospheresdiffersignificantlyinboththetotalamountofgas andincomposition.TheatmosphericpressureonVenusis93timeshigherthanon Earth.

TheatmosphereofVenuscontains965%CO2 (a“greenhouse”gas)and35%N2 (a“non-greenhouse”gas).TheatmosphereofEarthconsistsmainlyofthe “non-greenhouse”gasesO2,N2,andArandcontainsvariableamountsofthe “greenhouse”gasH2O(fromhundredthsofapercentto4%)andabout0.04%CO2 (calculatedonadryairbasis).Thequestionofwhethertheeffectoftheatmosphere

isdeterminedbythetotalamountofgasorbythe“greenhouse”gasesisof fundamentalimportance.

TheessenceofthegreenhouseeffecthypothesisproposedbyArrhenius(1896)to explaintheheatingoftheatmosphereandthesurfaceoftheEarthisthat greenhousegases(CO2 andH2O)absorbinfraredradiationreflectedfromtheEarth andretaintheabsorbedenergyintheatmosphere,slowingitsreleasetospace.

SolarradiationfallingontheEarthcoversarangeofenergiesfromhigh(cosmic rays)torelativelylow(nearinfraredregion),whichcorrespondstowavelengths fromthousandthsofamicrometre(μ)to4μ.Themainabsorptionbandsofcarbon dioxide(near4.3μand15μ)areintheregionofinfraredradiationreflectedand emittedbytheEarth,whiletheroleofband4.3μisnotmentionedinpublications onthegreenhouseeffect.

Itislogicaltoassume(thereisnodatacontradictingthisassumption)thatthe distributionofsolarenergybywavelengthonVenusisthesameasonEarth.The resultsofthestudiesintheabove-citedworkofR.Singh[5]inagreementwith otherauthors,showthatonlyabout2.5%ofsolarenergyreachesthesurfaceof Venus(forEarth,thisvalueisabout50%).Howcanthisenergybeconvertedinto theenergyofinfraredradiationabsorbedbycarbondioxide?Forsuchabsorption, itisnecessarythatthewavelengthoftheradiationatleastapproachthemain absorptionbandofCO2.

BasedonWien'slaw,whichrelatesthewavelengthcorrespondingmaximum intensityofradiationandthetemperatureoftheemittingsurfaceintheequation: λmax=b/T

(Where:b=2898μ/KandTisthetemperatureofthecelestialbody)

Itwasfoundthatthecalculatedλmaxvaluesfor“mean”temperaturesof288K (earth)and737K(Venus)[4]resultinwavelengthvaluesof10.1μand3.9μ, respectively.Thatis,Venus’scalculatedvalueisconsiderablyfurtherawayfrom CO2’sstated15μabsorptionbandthanthevaluecalculatedforEarth.

Itisimportanttonotethat,although“mean”temperatureswereusedintheabove calculation,itistheactualphysicaltemperaturesthatdeterminethewavelengthof theradiationwhencalculatedbyWien’sLaw.InEarth’scase,thewholeofits

surfaceisatdifferenttemperaturesandwouldthereforebeemittingradiationsof differentwavelengthsbasedontheactualphysicaltemperatureoftheradiating surface.Eachpocketofcommontemperaturewouldhavetobecalculated independentlyforitsemittedradiation’swavelength.

IfwetakeintoconsiderationthatEarth’sday/nighttemperaturerangesaboutthe baseof288Kfrom260Kto308Kataparticularlatitudeandlongitude,thenthe maximumoftheemittedradiationfromtheplanetwouldbeintherangeof11.15μ to9.41μ.ThisrangeofwavelengthsdoesnotcorrespondtoCO2'spredominant15μ absorptionbandsnortoits4.3μ,2.7μ,and2.8μabsorptionbands.

Thisdoesnotatallagreewiththeideaoftherolecarbondioxideisexpectedto playinheatingthesurfaceandatmosphereofVenusbasedontheconceptofthe greenhouseeffect.

EarthandMoon

Comparisonofthesetwocelestialbodiesisofinterestbecausetheybothreceive approximatelythesameenergyperunitsurfaceareafromtheSun,whichmakesit possibletojudgetheroleofotherfactorsinfluencingtemperature.Becauseofthe lackofanatmosphere,theMooncanonlygiveofftheheatitreceivesfromtheSun byradiation.

TheStefan-Boltzmannequationisthereforeapplicabletothisprocessifthe amountofenergyabsorbed,aswellasthevaluesofalbedoandemissivityofthe substance(s)thatmakeupthesurface,canbereliablydetermined.Itshouldbe notedthat,inaccordancewiththeideaofthegreenhouseeffect,NASAexperts attributeanaveragetemperatureof-20°CtotheMoon[4],whichroughly coincideswiththe"effective"temperatureoftheEarth-18°C.SincetheBond albedovaluefortheMoonissmallerthanfortheEarth(0.11versus0.294),the calculatedvalueofthe"effective"(blackbody)temperatureturnsouttobegreater thantheaveragetemperature:270.4K(-2.8°C)[7].

Despiteitbeingpossibletojudgetheroleofotherfactorsinfluencingthe temperatureoftheMoonandEarth,therearesignificantdifferencesthathavetobe takenintoconsiderationwhenconsideringtheMoon,otherthanthelackofan atmosphere.

TheMoonhasnowateronitssurface.Thereisalsonoinformationonwhetherthe Moongeneratesanyinternal(geothermal)heat.Avalidcomparisonbetweenthe2 bodiescanonlybebasedonlandmatter.

Also,theMoonhasparticulardynamicsthatdifferfromEarth:

1. ItsdaysurfacetemperaturevariesonlywiththedistancetheEarthisfrom thesunduringEarth’sorbitaroundthesun.

2

Itsrotationaboutitsaxisisconstant.

3. ItisacelestialbodytiedtotheEarthwithpartofitsorbitoftheEarth, causingittobeinEarth’sshadowofthesun.

4. ThegravitationalforcesthatapplybetweentheEarthandtheMoonare nearlyconstant(theMoonisslowlydistancingitselffromtheEarth).

Inconclusion,withoutwateroratmosphere,themoonrepresentsabodythatcan’t becomparedtoEarth.ItmaybepossibletoapplytheStefan-Boltzmannequation tobothbodiestoderivecomparativevalues,buttheresultswouldneedtohave several“modifications”toarriveataparticularlybindingrelativitythatcanbeused tosupportordenytheCO2 theoryofglobalwarming.

Nonetheless,duetothestrikingenvironmentaldifferencesbetweentheMoonand theEarth,thetemperaturesarrivedatbytheNASAexpertscannot beexplainedby thegreenhouseeffecttheory.

DespitethestarkenvironmentaldifferencesbetweentheMoonandEarththeIPCC considersthepositivedifferencebetweenthemeanandeffectivetemperaturesof theplanetasoneoftheproofsofthegreenhouseeffectandattributesthisentire differencetogreenhousegases[1].

Ifthisisso,thenontheMoon,wherethereisnoatmosphereatall,these temperaturesshouldcoincidewithinthecalculationerror.Thefactthatthemean temperatureontheMoonislowerthantheeffectivetemperatureindicateseither thatoneofthesequantities(orboth)isincorrectlydetermined,or,morelikely,that theveryideaofcomparingthesequantitiesisincorrect

Amatterthatneedsfurtherconsideration,inadditiontotheabsenceofan atmosphere,isthattheMoonhasnowateronitssurface.Theimportanceofthe absenceofwatercannotbeignored,orwashedaway,inanycalculationtoassess theMoon’smeanoreffectivetemperatures.

Sincetheheatcapacityandthermalconductivityofwateraremuchgreaterthan thoseofthesubstancesthatformthesurfaceoftheland(sand,soil,clay,etc.),then withanequalamountofabsorbedthermalenergythisleadstotheemergenceofa significantdifferenceintemperaturebetweendifferentareasofthesurface.A studyofthethermo-physicalpropertiesofthelunarsoil(regolith)showsthatthey varygreatlywithtemperature[8],butthereisnoevidenceofsignificant differencesindifferentpartsofthesurface.

Basedonthis,onemightexpectatemperaturedifferencebetweenthepolarand equatorialregionsontheMoon,witharelativelystabletemperaturewithinthese regions.However,thisassumptionisnotsupportedbytheresultsofmeasurements [9].Theseresultsprovidedetailedinformationontemperaturechangesindifferent areasofthelunarsurface,maximumandminimumtemperaturevalues,the presenceofrelativelywarmerandcolderareas,andtemperaturevariationsat differentlatitudesandatdifferenttimesofthelunarday.Inparticular,the maximumtemperatureatmiddayattheequatorreaches397K,andatnightinthe PolarRegions(latitude85degrees)itdropsto50K.About250billion measurementsweremadebetweenJuly2009andApril2015,buttheauthors[9] donotraisethequestionofestimatingtheaverageglobaltemperatureoftheMoon: thefactsshowthatthisvalueismeaningless.

EarthandMars

Asinpreviouscases,thefactsthatmayberelatedtothegreenhouseeffectare considered.Thefollowingastronomicalparametersareknown[10]:

Astronomical Parameter

6 km

6 km

Fromthecomparisonofsolarradiationvalues,itisobviousthatthetemperatureon MarsissignificantlylowerthanonEarth.SinceMarshasagreaterdifference betweenthedistancestotheSunatperihelionandaphelion,andalsoasomewhat largervalueofobliquity,onecanexpectgreatertemperaturedifferencesthere comparedtoEarth.Indeed,temperaturecanvaryfrom-125°Cnearthepolesto 20°Catmiddayneartheequator[11]duringthewinter.

TheaveragetemperaturevaluesforMarsreportedindifferentsourcesarenotthe same:

● -65 °C(208K)inreference[4],

● -60 oC(213K)inreference[11],and

● -55 °C(218K)inreference[12].

TheIPCCacceptsthevalueoftheEarth’saveragetemperaturetobeabout15 oC (288K).

Incontrast,thecalculatedvaluesofblackbodytemperaturewerefoundtobe209.8 KforMarsand254KforEarth[10].

SinceMars,unlikeEarth,doesnotshowareliabledifferencebetweenthemean andeffectivetemperatureattributedtothegreenhouseeffect,letuscomparethe atmosphericcharacteristicsofbothplanets.

ThetotalatmosphericpressureonMarsis6.35mbar[11]comparedto1baron Earth.ThevolumeconcentrationofcarbondioxideintheatmosphereofMarsis 95.3%[11]comparedto0.042%onEarth.Itfollowsthatthepartialpressureof CO2 onMarsis14.4timeshigherthanonEarth.Thus,onMars,withamuch higherpartialpressureofgreenhousecarbondioxide,nosignificantdifferenceis foundbetweentheaverageglobalandeffectivetemperatures.Thesefactsareinno wayconsistentwiththeideaofthegreenhouseeffectandappeartobeignoredby thesupportersoftheCO2-basedgreenhouseeffect.

Titan

Whentalkingaboutthegreenhouseeffect,itisnecessarytofirstdeterminethe amountofenergyfallingontheplanetandthegreenhousegasthatholdsthis energyintheatmosphere.Titan,asasatelliteofSaturn,receivesapproximatelythe sameamountofsolarenergy(15W/m 2)i.e.approximately90timeslessthan Earth.TheatmosphericpressureonTitanis1.6timesgreaterthanonEarth,the atmospherecontainsabout95%nitrogenandabout5%methane,andtheaverage temperatureistakentobe-179 oC(94K)[13].Thegreenhouseeffecthypothesis attributesgreenhousepropertiestomethane,whichabsorbsinfraredradiationinthe wavelengthrangesof3.1-3.6μand7.4–8.2μ.Thevalueofλ maxaccordingtothe Wienequationforatemperatureof94Kis30.8μ,thatis,veryfarfromthe absorptionbandsof"greenhouse"methane.

TheauthorsofthepublicationonthegreenhouseeffectonTitan[2]claimthat"a greenhouseeffectcausedprimarilybypressure-inducedopacityofN2,CH4,and H2 ”.Thisisaratherstrangestatement,contrarytothegenerallyaccepteddefinition ofgreenhousegases.Indeed,nitrogenandhydrogenmoleculesarenon-polar,have nodipolemoment,andnovibrationalmodesresponsibleforabsorptioninthe infraredregion.ThetemperatureonTitanisclosetothecondensationtemperature

ofnitrogen(78K).However,evenliquidnitrogenat66Kexhibitsabsorptionof radiationintheregionof30-150cm-1 (330-67μ)withamaximumat55cm-1 (180 μ)[14],thatis,veryfarfromtheabove-mentionedvalueλ max forTitanat94K.

Similarstudiesofinfraredabsorptionhavenotbeenfoundforhydrogen.Giventhe lackofdataonthetemperaturedistributiononTitan'ssurface,the"average" temperatureof94Kcannotbeconsideredreliableeither.Therefore,theassertion aboutthepresenceofagreenhouseeffectonTitancannotbeconsideredjustified.

Jupiter

Jupiterisnotmentionedinanypublicationonthegreenhouseeffect,althoughthis giantgasplanet,consistingofnon-greenhousehydrogenandhelium,hasthe highesttemperatureinthesolarsystem.Thetemperatureinthecenteroftheplanet reaches25,000Katapressureofabout50-100millionatmospheresand decreasesfromthecentertothesurface:forexample,atapressureof22atmitis 400K[15].Itisquitepossiblethatatapressureofabout90atm,thetemperature onJupiterwillbeofthesameorderasonVenus.Itisdifficulttofindamore illustrativeexampledemonstratingtheconnectionbetweentemperatureandgas pressure,especiallyforgasesthatdonotabsorbinfraredradiation,i.e.,thosethat areclearlynotrelatedtothegreenhouseeffect.

R.I.Holmes[16]calculatedthetemperatureforJupiteratanatmosphericpressure equaltoEarth'susingamathematicallymodifiedformoftheidealgasequation:

T=PM/Rρ

(Where:Misthemeanmolarmassandρisthedensityoftheatmosphere.)

ThevalueofMiscalculatedbasedonthecompositionoftheatmosphere,andthe densitycanbedeterminedusingreferencedataonthedensityofgasesatvarious temperaturesandpressuresandusingtheadditivityruletocalculatethedensityof thegasmixture.Thus,thecoincidenceofthecalculatedandmeasuredtemperature valuesusingtheHolmesmethodessentiallyshowstheapplicabilityoftheidealgas equationinacertainrangeoftemperaturesandpressurestoatmospheresof differentcompositions.Thefactthatthiscalculation[16]turnedouttobe applicablebothtotheatmosphereofJupiter,consistingofnon-greenhouse hydrogenandhelium,andtotheatmosphereofVenus,madeofgreenhousecarbon dioxidecanbeconsideredaseriousargumentagainstthegreenhouseeffecttheory.

Conclusion

Evidenceofthegreenhouseeffectinaplanet'satmospheremaybeachangeinthe temperatureoftheatmosphereand/orsurfacethatcanbereliablyattributedto greenhousegas,takingintoaccountallotherfactorsaffectingtemperature.The methodofcomparingglobalaverageandeffective(blackbody)temperatures adoptedinmostmodernstudiescannotbeconsideredcorrectduetothelackof dataonthedistributionoftemperaturesontheplanetsandtheamountofenergy emittedbytheplanets.Atthesametime,thelackofdifferencebetweenthese temperaturesmayserveasanargumentagainstthegreenhouseeffect.

WhencomparingthetemperaturesofVenusandMercury,thehighertemperature onVenusisusuallyattributedtothegreenhouseeffectofCO2 intheatmosphereof Venus.However,itisnotpossibletoquantifytheinfluenceontemperatureofsuch astronomicalfactorsasthemuchlongersolardayonVenus,thegreaterdifference betweenthedistancesfromtheSunatperihelionandaphelionforMercury,andthe muchsmallermassofMercury.

ForVenus,ithasbeenestablishedthattheamountofsolarenergyreachingthe surfaceisonly2.5%ofthetotalamount;therefore,almostalltheenergyis absorbedbytheatmosphere.Thedistributionofsolarenergybywavelength, accordingtodatafortheEarth,correspondstotherangefromultrashortto4μ. SincethemainabsorptionbandsofCO2areat4.3μand15μ,itturnsoutthateither carbondioxidecouldnotabsorbtheincidentsolarenergy,ortheabsorptionofheat bytheatmosphereisnotassociatedwiththeabilityofthegastoabsorbinfrared radiation.Thelatterismorelikely.

WhencomparingtheatmospheresofEarthandMars,itisclearthatthetotal atmosphericpressureonEarthis160timesgreater,butthepartialpressureof greenhousecarbondioxideis15timesgreateronMars.Atthesametime,the differencebetweentheaverageglobalandeffectivetemperaturesonMarsiswithin thecalculationerror,which,accordingtotheory,doesnotindicatethepresenceofa greenhouseeffect.Thisobviouscontradictionisnotexplainedinanyworkonthe greenhouseeffectinplanetaryatmospheres.

AnattempttoprovethepresenceofagreenhouseeffectinTitan'satmospherealso cannotbeconsideredconvincing,sincetheauthorscouldnotexplainwhatthe sourceoftheenergyis(theenergyofsolarradiationonTitanisapproximately90

timeslessthanonEarth)anddidnotprovehownitrogenandhydrogencould acquirethepropertiesofgreenhousegasesundertheseconditions.

Asaresult,itcanbeconcludedthattheexistenceofthegreenhouseeffectinthe atmosphereofplanetshasnotbeenproven.

References

1.ClimateChange.TheIPCCScientificAssessment.1990.414pp. https://www.ipcc.ch/site/assets/uploads/2018/03/ipcc far wg I full report.pdf

2.C.P.McKay,J.B.Pollack,R.Courtin.TheGreenhouseandAntigreenhouse EffectsonTitan.-Science,vol.253,issue5024,pp.1118-1121,1991. https://www.science.org/doi/10.1126/science.11538492

3.https://www.britannica.com/science/greenhouse-effect

4 PlanetaryFactSheet–Metric https://nssdcgsfcnasagov/planetary/factsheet/

5 D Singh.Venusnightsidesurfacetemperature.ScientificReports,9,1137 (2019) https://doiorg/101038/s41598-018-38117-x https://www nature com/articles/s41598-018-38117

6.MercuryFacts.https://science.nasa.gov/mercury/facts/

7.Moon/EarthComparison.

https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html

8.M.Siegler.AModelfortheThermophysicalPropertiesofLunarRegolithat LowTemperatures.2019.https://www.academia.edu/88848725

9.J.-P.Williams,D.F.Paige,B.T.Greenhagen,E.Sefton-Nash.Theglobalsurface temperaturesoftheMoonasmeasuredbytheDivinarLunarRadiometer Experiment.-Icarus,v.83,pp.300-325,2017.

https://www.sciencedirect.com/science/article/pii/S0019103516304869

10.MarsFactSheet.https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html

11.MarsAtmosphere:FactsaboutCompositionandClimate.2023.

https://www.space.com/16903-mars-atmosphere-climate-weather.html

12.TheEuropeanSpaceAgency.FactsaboutMars.

https://www.esa.int/Science Exploration/Space Science/Mars Express/Facts abou t Mars

13.Titan:Facts.https://science.nasa.gov/saturn/moons/titan/facts/

14.J.Sammios,U.Mittag,T.Dorfmuller.Thefarinfraredabsorptionofliquid nitrogen.Amoleculardynamicssimulationstudy.-MolecularPhysics,v.56,No.3, 551-556,1985.

https://www.academia.edu/104172125/The far infrared absorption spectrum of liquid nitrogen

15.Jupiterplanet.

https://www.britannica.com/place/Jupiter-planet/Cloud-composition

16.R.I.Holmes.MolarMassVersionoftheIdealGasLawPointstoaVeryLow ClimateSensitivity.-EarthSciences,v.6,No.6,157-163,2017.

https://www.academia.edu/97495433/Molar Mass Version of the Ideal Gas La w Points to a Very Low Climate Sensitivity?email work card=thumbnail

17.J.Grandidieretal,2023,FeasibilityofpowerbeamingthroughtheVenus atmosphere,ActaAstronautica,Vol211,October2023,pp376-381, https://doi.org/10.1016/j.actaastro.2023.06.042, https://www.sciencedirect.com/science/article/abs/pii/S0094576523003417?via%3 Dihub

18.N.T.Tillman,2012,HowHotisVenus? https://wwwspacecom/18526-venus-temperaturehtml

19.NASA,VenusFactSheet, https://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.htm

20.YeongDaeKwon,2007,3:2Mercury-SunSynchronization,Courseworkfor Physics210,StanfordUniversity,Autumn2007, http://large.stanford.edu/courses/2007/ph210/kwon2/

21.P.Sohn,LastupdatedJanuary11,2024,Venus'atmosphere:Composition, cloudsandweather,https://www.space.com/18527-venus-atmosphere.html

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.