Trigonometry 11th edition lial solutions manual

Page 1

Trigonometry 11th Edition Lial Solutions Manual

Visit to Download in Full: https://testbankdeal.com/download/trigonometry-11th-edition-lial-solutions-manual/

Chapter 2

Acute Angles and Right Triangles

Section 2.1 Trigonometric Functions of Acute Angles

For Exercises 1 6, refer to the Function Values of Special Angles chart on page 52 of the text.

Ay z k A y

11. a = 5, b = 12

2222222512169

13 cabcc c   side opposite12 sin hypotenuse13 side adjacent5 cos hypotenuse13 side opposite12 tan side adjacent5  

a B b c B a c B b



side adjacent5 cot side opposite12 hypotenuse13 sec side adjacent5 hypotenuse13 csc side opposite12  

12. a = 3, b = 4

22222223425 5 cabcc c   side opposite4 sin hypotenuse5 side adjacent3 cos hypotenuse5 side opposite4 tan side adjacent3  

b B c a B c b B a

  



44 Copyright © 2017 Pearson Education, Inc.
1 C;sin30 2 
2 H;cos45 2 
B;tan 451  4. 1 2 11 G;sec602 cos60   5. 3 2 112 E;csc60 sin60 3 2323 3 33    6. 3 2 1 2 cos3032 A;cot303 sin3021    7. side opposite21 sin hypotenuse29 A  side adjacent20 cos hypotenuse29 side opposite21 tan side adjacent20 A A   8. side opposite45 sin hypotenuse53 A  side adjacent28 cos hypotenuse53 side opposite45 tan side adjacent28 A A   9. side opposite sin hypotenuse An p  side adjacent cos hypotenuse side opposite tan side adjacent Am p An m  
1.
2.
3.
10. side opposite sin hypotenuse k A z  side adjacent cos hypotenuse side opposite tan side adjacent  
b B c a B c b B a

side adjacent3 cot side opposite4 hypotenuse5 sec side adjacent3 hypotenuse5 csc side opposite4 Trigonometry 11th Edition Lial Solutions Manual Visit TestBankDeal.com to get complete for all chapters
a B b c B a c B b

13. a = 6, c = 7

b B c a B c b B a

side opposite13 sin hypotenuse7 side adjacent6 cos hypotenuse7 side opposite13 tan side adjacent6     

side adjacent6 cot side opposite 13 613613 13 1313 hypotenuse7 sec side adjacent6 hypotenuse7 csc side opposite 13 713713 13 1313

a B b c B a c B b

 

b B c a B c b B a

side adjacent95 cot side opposite7 hypotenuse12 sec side adjacent 95 12951295 95 9595 hypotenuse12 csc side opposite7

a B b c B a c B b

15. a = 3, c = 10 222222 22 103 10099191 cabb bbb



b B c a B c

b B a a B b c B a c B b

side opposite91 tan side adjacent3 side adjacent3 cot side opposite 91 391391 91 9191 hypotenuse10 sec side adjacent3 hypotenuse10 csc side opposite 91 10911091 91 9191      

16. b = 8, c = 11



b B c a B c b B a

side opposite8 sin hypotenuse11 side adjacent57 cos hypotenuse11 side opposite8 tan side adjacent 57 857857 57 5757

57 5757 hypotenuse11 csc side opposite8    

17. a = 1, c = 2

222222 22 21 4133 cabb bbb 

 side opposite3 sin hypotenuse2 side adjacent1 cos hypotenuse2 side opposite3 tan3 side adjacent1 side adjacent1 cot side opposite 3 133 3 33     

(continuedonnextpage)

Copyright © 2017 Pearson Education, Inc.

Section 2.1 Trigonometric Functions of Acute Angles 45

  
222222 22 76 49361313 cabb bbb 
   
14. b = 7, c = 12 222222 22 127 144499595 caba aaa
side opposite7 sin hypotenuse12 side adjacent95 cos hypotenuse12 side opposite7 tan side adjacent 95 795795 95 9595    
 
side opposite91 sin hypotenuse10 side adjacent3 cos hypotenuse10

222222 22 118 121645757 caba aaa     
side adjacent57 cot side opposite8 hypotenuse11 sec side adjacent 57 11571157
a B b c B a c B b
b B c a B c b B a a B b

19. b = 2, c = 5

22 52 2542121 caba

30. Using 50,102,248, and 26,

we see that

yield the same values.

For exercises 31 40, if the functions in the equations are cofunctions, then the equations are true if the sum of the angles is 90º.

Copyright © 2017 Pearson Education, Inc.

46
Chapter 2 Acute Angles and Right Triangles
hypotenuse2
csc
3 2323 3 33 c B a c B b    18.
ac 2 22222
 
cos hypotenuse2
cot1
hypotenuse2 sec
2 2222 2 2 22 hyp csc b B c a B c b B a a B b c B a B        otenuse2
2 2222 2 2 22 c b  
222222
aaa  
cos hypotenuse5
tan
cot
sec
5
b B c a B c b B a a B b c B a        21521 21 21 hypotenuse5 csc side opposite2 c B b   20.       sincos90;cossin90; tancot90;cottan90; seccsc90;cscsec90       21.   cos30sin9030sin60  22.   sin45cos9045cos45  23.   csc60sec9060sec30  24.   cot73tan9073tan17  25.   sec39csc9039csc51  26.   tan25.4cot9025.4cot64.6  27.   sin38.7cos9038.7cos51.3  28.      cos20sin9020 sin70         29.      sec15csc9015 csc75        
(continued)
sec2 side adjacent1 hypotenuse2
side opposite
2,2
22 22 4222 cabb bbb
side opposite2 sin hypotenuse2 side adjacent2
side opposite2 tan1 side adjacent 2 side adjacent2
side opposite 2
side adjacent
side opposite
side opposite2 sin hypotenuse5 side adjacent21
side opposite2
side adjacent 21 221221 21 2121 side adjacent21
side opposite2 hypotenuse5
side adjacent 21
21
 
  sin90  
and cos
   tancot10 1090 21090 28040         32.   cossin230 23090 33090 312040        
31.

41. sin50sin40 

In the interval from 0º to 90º, as the angle increases, so does the sine of the angle, so sin 50º > sin 40º is true.

42. tan28tan40 

In the interval from 0º to 90º, as the angle increases, the tangent of the angle increases, so tan 40º > tan 28º tan28tan40  is true.

43.

sin46cos46 

Using the cofunction identity,   cos46sin9046sin44  . In the interval from 0º to 90º, as the angle increases, so does the sine of the angle, so sin46sin44sin46cos46  is false.

44. cos28sin28 

Using the cofunction identity,   sin28cos9028cos62  . In the interval from 0º to 90º, as the angle increases, the cosine of the angle decreases, so cos28cos62cos28sin28  is false.

45. tan41cot41 

Using the cofunction identity,   cot41tan9041tan49  . In the interval from 0º to 90º, as the angle increases, the tangent of the angle increases, so tan41tan49tan41cot41  is true.

46. cot30tan40 

Using the cofunction identity,   cot30tan9030tan60  . In the interval from 0º to 90º, as the angle increases, the tangent of the angle increases, so tan60tan40cot30cot40  is false.

47. sec60sec30 

In the interval from 0º to 90º, as the angle increases, the cosine of the angle decreases, so the secant of the angle increases. Thus, sec60sec30  is true.

48. csc20csc30 

In the interval from 0º to 90º, as the angle increases, sine of the angle increases, so cosecant of the angle decreases. Thus csc20csc30  is false.

Use the following figures for exercises 49 64.

49. side opposite1 tan30 side adjacent 3 133



Section 2.1 Trigonometric Functions of Acute Angles 47
33.      sin210cos320 21032090 51090 510020         34.      sec10csc220 1022090 33090 36020         35.      tan34cot510 3451090 8690 89612         36.      cot52tan24 522490 7690 78412         37.      sin20cos25 202590 31590 310535         38.      cos250sin220 25022090 43090 46015         39.      sec310csc8 310890 41890 47218         40.      csc40sec20 402090 22090 27035        
Copyright © 2017 Pearson Education, Inc.
3 33


50. side adjacent3 cot303 side opposite1 

51. side opposite1 sin30 hypotenuse2 

52. side adjacent3 cos30 hypotenuse2 

53. hypotenuse2 sec30 side adjacent 3 2323 3 33

54. hypotenuse2 csc302 side opposite1 

55. hypotenuse2 csc452 side opposite1 

56. hypotenuse2 sec452 side adjacent1 

57. side adjacent1 cos45 hypotenuse 2 122 2 22

58. side adjacent1 cot451 side opposite1 

59. side opposite1 tan451 side adjacent1 

60. side opposite1 sin45 hypotenuse 2 122 2 22

61. side opposite3 sin60 hypotenuse2 

62. side adjacent1 cos60 hypotenuse2 

63. side opposite3 tan603 side adjacent1 



65. Because 3 sin60 2  and 60° is between 0° and 90°, A60. 

66. 0.7071067812 is a rational approximation for the exact value 2 2 (an irrational value).

67.

68.

The line passes through (0, 0) and   3,1. The slope is change in y over the change in x Thus, 1133 3 333 m  and the equation of the line is 3 3 yx 

The line passes through   0,0 and   1,3. The slope is change in y over the change in x

Thus, 3 3 1 m  and the equation of the line is 3.yx 

69. One point on the line 3 yx  is the origin   0,0. Let   , xy be any other point on this line. Then, by the definition of slope, 0 3, 0 yy m xx  but also, by the definition of tangent, tan3.   Because tan603,  the line 3 yx  makes a 60° angle with the positive x-axis (See exercise 68).

Copyright © 2017 Pearson Education, Inc.

48
Chapter 2 Acute Angles and Right Triangles
 




64. hypotenuse2 csc60 side opposite 3 2323 3 33 

70. One point on the line 3 , 3 yx  is the origin

  0,0. Let   , xy be any other point on this line. Then, by the definition of slope, 03 , 03 yy m xx  but also, by the definition of tangent, 3 tan. 3   Because 3 tan30, 3  the line 3 3 yx  makes a 30° angle with the positive x-axis. (See Exercise 67).

71. (a) Each of the angles of the equilateral triangle has measure   1 3 18060

72. (a) The diagonal forms two isosceles right triangles. Each angle formed by a side of the square and the diagonal measures 45º.

(b) The perpendicular bisects the opposite side so the length of each side opposite each 30º angle is k.

(b) By the Pythagorean theorem, 2222222 kkckcck  Thus, the length of the diagonal is 2 k

(c) Let x = the length of the perpendicular. Then apply the Pythagorean theorem. 2 22222 22 24 33 xkkxkk xkxk 

The length of the perpendicular is 3k

(d) In a 30º-60º right triangle, the hypotenuse is always 2 times as long as the shorter leg, and the longer leg has a length that is 3 times as long as that of the shorter leg. Also, the shorter leg is opposite the 30º angle, and the longer leg is opposite the 60º angle.

(c) In a 45º-45º right triangle, the hypotenuse has a length that is 2 times as long as either leg.

73. Apply the relationships between the lengths of the sides of a 3060 right triangle first to the triangle on the left to find the values of y and x, and then to the triangle on the right to find the values of z and w. In the 3060 right triangle, the side opposite the 30 angle is 1 2 the length of the hypotenuse. The longer leg is 3 times the shorter leg.

Copyright © 2017 Pearson Education, Inc.

Section 2.1 Trigonometric Functions of Acute Angles 49

Thus, we have  9 2 1993 9 and 3 222 9333 3, so, 62 33 33 and 2, so 233 2 yxy y yzz wzw      

74. Apply the relationships between the lengths of the sides of a 3060 right triangle first to the triangle on the left to find the values of a and b. In the 3060 right triangle, the side opposite the 30 angle is 1 2 the length of the hypotenuse. The longer leg is 3 times the shorter leg.  1

aba

2412 and 3123

Apply the relationships between the lengths of the sides of a 4545 right triangle next to the triangle on the right to find the values of d and c. In the 4545 right triangle, the sides opposite the 45 angles measure the same. The hypotenuse is 2 times the measure of a leg. 123 db and

75. Apply the relationships between the lengths of the sides of a 4545 right triangle to the triangle on the left to find the values of p and r. In the 4545 right triangle, the sides opposite the 45 angles measure the same. The hypotenuse is 2 times the measure of a leg.

Thus, we have 3 rq 1521523

76. Apply the relationships between the lengths of the sides of a 3060 right triangle first to the triangle on the right to find the values of m and a. In the 3060 right triangle, the side opposite the 60 angle is 3 times as long as the side opposite to the 30 angle. The length of the hypotenuse is 2 times as long as the shorter leg (opposite the 30 angle).

Thus, we have 15 and 2152 prp

Apply the relationships between the lengths of the sides of a 3060 right triangle next to the triangle on the right to find the values of q and t. In the 3060 right triangle, the side opposite the 60 angle is 3 times as long as the side opposite to the 30 angle. The length of the hypotenuse is 2 times as long as the shorter leg (opposite the 30 angle).

Thus, we have 77373

Apply the relationships between the lengths of the sides of a 4545 right triangle next to the triangle on the left to find the values of n and q. In the 4545 right triangle, the sides opposite the 45 angles measure the same. The hypotenuse is 2 times the measure of a leg. Thus, we have 143 3 na and

77. Because 1 , 2 Abh  we have 2 2

Copyright © 2017 Pearson Education, Inc.

50 Chapter 2 Acute Angles and Right Triangles
2

    21232126 cd
3333 r q  and   2256106tq
56
73 and 3 333 mm  73143 22 33 ama    
143146
qn    
22 33
11
222 AsssAs 
or .

78. Let h be the height of the equilateral triangle. h bisects the base, s, and forms two 30°–60° right triangles.

The formula for the area of a triangle is

1

. 2 Abh  In this triangle, b = s. The height h of the triangle is the side opposite the 60° angle in either 30°–60° right triangle. The side opposite the 30° angle is 2 s . The height is 3 3. 22 ss  So the area of the entire triangle is 2 133 224 Asss 

79. Graph the equations in the window [–1.5, 1.5] × [–1.2, 1.2]. The point of intersection is (0.70710678, 0.70710678). This corresponds to the point 22 , . 22

82.

2 sin454sin45422 42 y y  and

83. The legs of the right triangle provide the coordinates of P, 

84.

22,22.

These coordinates are the sine and cosine of 45°.

80. Yes, the third angle can be found by subtracting the given acute angle from 90°, and the remaining two sides can be found using a trigonometric function involving the known angle and side.

22 x x

The legs of the right triangle provide the coordinates of P. P is   1,3.

Section 2.2 Trigonometric Functions of Non-Acute Angles

1. The value of sin 240° is negative because 240° is in quadrant III. The reference angle is 60° , and the exact value of sin 240° is 3 2

2. The value of cos 390° is positive because 390° is in quadrant I. The reference angle is 30° , and the exact value of cos 390° is 3 2

Copyright © 2017 Pearson Education, Inc.

Section 2.2 Trigonometric Functions of Non-Acute Angles 51
 

  
81.
2

cos454cos45422 42 x x
3

sin602sin6023 22 y y
and 1 cos602cos6021


3. The value of tan (–150°) is positive because –150° is in quadrant III. The reference angle is 30° and the exact value of tan (–150°) is 3 3

4. The value of sec 135° is negative because 135° is in quadrant II. The reference angle is 45° , and the exact value of sec 135° is 2.

5. C; 1809882  (98° is in quadrant II)

6. F; 212180 = 32°  (212° is in quadrant III)

7. A; 135360225  and 225180 = 45°  (225° is in quadrant III)

8. B; 60360300  and 36030060  (300° is in quadrant IV)

9. D; 750236030  (30° is in quadrant I)

10. B; 480360120  and 18012060

(120° is in quadrant II)

Copyright © 2017 Pearson Education, Inc.

52 Chapter
2 Acute Angles and Right Triangles
 sin  cos  tan  cot  sec  csc  11. 30 1 2 3 2 3 3 3 23 3 2 12. 45 2 2 2 2 1 1 2 2 13. 60 3 2 1 2 3 3 3 2 23 3 14. 120 3 2 cos120 cos60 1 2    3 cot120 cot60 3 3    sec120 sec60 2    23 3 15. 135 2 2 2 2 tan135 tan45 1    cot135 cot45 1    2 2 16. 150 sin150 sin30 1 2    3 2 3 3 cot150 cot30 3    sec150 sec30 23 3    2 17. 210 1 2 cos210 cos30 3 2    3 3 3 sec210 sec30 23 3    2 18. 240 3 2 1 2 tan240 tan60 3    cot240 cot60 3 3    2 23 3


19. To find the reference angle for 300,  sketch this angle in standard position.

21. To find the reference angle for 405°, sketch this angle in standard position.

The reference angle is 36030060. 

Because 300° lies in quadrant IV, the sine, tangent, cotangent, and cosecant are negative.

The reference angle for 405° is 405° – 360° = 45°. Because 405° lies in quadrant I, the values of all of its trigonometric functions will be positive, so these values will be identical to the trigonometric function values for 45° See the Function Values of Special Angles table on page 52.)

20. To find the reference angle for 315,  sketch this angle in standard position.

cot405cot451

sec405sec452

csc405csc452

22. To find the reference angle for 420º, sketch this angle in standard position.

The reference angle is 36031545. 

Because 315° lies in quadrant IV, the sine, tangent, cotangent, and cosecant are negative.

The reference angle for 420º is 420º 360º = 60º. Because 420º lies in quadrant I, the values of all of its trigonometric functions will be positive, so these values will be identical to the trigonometric function values for 60°. See the Function Values of Special Angles table on page 52.)

3

sin420sin60 2 1

cos420cos60 2

tan420tan603

Copyright © 2017 Pearson Education, Inc.

Section 2.2 Trigonometric Functions of Non-Acute Angles 53
3 sin300sin60 2 1 cos300cos60 2 tan300tan603 3 cot300cot60 3 sec300sec602 23 csc300csc60 3      
2 sin315sin45 2 2 cos315cos45 2 tan315tan451 cot315cot451
     
sec315sec452 csc315csc452
sin405sin45
2
2 2 cos405cos45 2 tan405tan451
     
  
   (continuedonnextpage)

23. To find the reference angle for 480º, sketch this angle in standard position.

25. To find the reference angle for 570º sketch this angle in standard position.

480º is coterminal with 480º 360º = 120º. The reference angle is 180º 120º = 60º. Because 480º lies in quadrant II, the cosine, tangent, cotangent, and secant are negative.

570° is coterminal with 570º 360º = 210º. The reference angle is 210º 180º = 30º. Because 570º lies in quadrant III, the sine, cosine, secant, and cosecant are negative.

2 3

3

23

3

26. To find the reference angle for 750°, sketch this angle in standard position.

24. To find the reference angle for 495º, sketch this angle in standard position.

495º is coterminal with 495º 360º = 135º. The reference angle is 180º 135º = 45º. Because 495° lies in quadrant II, the cosine, tangent, cotangent, and secant are negative.

750° is coterminal with 30 because 750236075072030.  Because 750 lies in quadrant I, the values of all of its trigonometric functions will be positive, so these values will be identical to the trigonometric function values for 30. 

Copyright © 2017 Pearson Education, Inc.

54
Chapter 2 Acute Angles and Right Triangles
(continued)    3 cot420cot60 3 sec420sec602 23 csc420csc60 3   
    3 sin480sin60 2 1 cos480cos60 2 tan480tan603 3 cot480cot60 3        sec80sec602 23 csc480csc60 3  
2 sin495sin45 2 2 cos495cos45 2 tan495tan451    cot495cot451 sec495sec452 csc495csc452   
1 sin570sin30
cos570cos30
tan570tan30
cot570cot303
sec570sec30
csc570csc302      
2 3
sin750sin30
cos750cos30
tan750tan30
   (continuedonnextpage)
1
2 3
2 3
3

27. 1305º is coterminal with 1305336013051080225  . The reference angle is 225º 180º = 45º. Because 1305º lies in quadrant III, the sine, cosine, and secant and cosecant are negative.

The reference angle for 300  is 30036060.

Because 300  lies in quadrant I, the values of all of its trigonometric functions will be positive, so these values will be identical to the trigonometric function values for 60°. See the Function Values of Special Angles table on page 52.)

28. 1500º is coterminal with 150043601500144060

Because 1500º lies in quadrant I, the values of all of its trigonometric functions will be positive, so these values will be identical to the trigonometric function values for 60°.

390° is coterminal with 3902360390720330.

The reference angle is 36033030.

Because 390° lies in quadrant IV, the sine, tangent, cotangent, and cosecant are negative.

29. To find the reference angle for 300, sketch this angle in standard position.

31. –510° is coterminal with 5102360510720210.  The reference angle is 21018030.  Because –510° lies in quadrant III, the sine, cosine, and secant and cosecant are negative.

Copyright © 2017 Pearson Education, Inc.

Section 2.2 Trigonometric Functions of Non-Acute Angles 55
(continued) cot750cot303 23 sec750sec30 3 csc750csc302   
2 sin1305sin45 2 2 cos1305cos45 2 tan1305tan451 cot1305cot451 sec1305sec452 csc1305csc452      
 .
      3 sin420sin60 2 1 cos420cos60 2 tan420tan603 3 cot420cot60 3 sec420sec602 23 csc420csc60 3      

      3 sin300sin60 2 1 cos300cos60 2 tan300tan603 3 cot300cot60 3 sec300sec602 23 csc300csc60 3       30.


   1 sin390sin30 2 3 cos390cos30 2 3 tan390tan30 3        cot390cot303 23 sec390sec30 3 csc390csc302   
   1 sin510sin30 2 3 cos510cos30 2 3 tan510tan30 3        cot510cot303 23 sec510sec30 3 csc510csc302   

32. 1020º is coterminal with 102033601020108060

Because 1020º lies in quadrant I, the values of all of its trigonometric functions will be positive, so these values will be identical to the trigonometric function values for 60. 

35. 1860º is coterminal with 1860636018602160300 

The reference angle is 360º 300º = 60º. Because 1860º lies in quadrant IV, the sine, tangent, cotangent, and cosecant are negative.

33. 1290° is coterminal with 1290436012901440150.

The reference angle is 18015030. 

Because 1290° lies in quadrant II, the cosine, tangent, cotangent, and secant are negative.

36. 2205º is coterminal with 2205736022052520315

angle is 360º 315º = 45º. Because 2205º lies in quadrant IV, the sine, tangent, cotangent, and cosecant are negative.

34. 855º is coterminal with 85533608551080225  . The reference angle is 225º 180º = 45º. Because 855º lies in quadrant III, the sine, cosine, and secant and cosecant are negative.

37. Because 1305 is coterminal with an angle of 1305336013051080225,

it lies in quadrant III. Its reference angle is 22518045.

Because the sine is negative in quadrant III, we have

38. Because 1500 is coterminal with an angle of 150043601500144060,  it lies in quadrant I. Because 1500 lies in quadrant I, the values of all of its trigonometric functions will be positive, so

Copyright © 2017 Pearson Education, Inc.

56 Chapter
Acute
2
Angles and Right Triangles
 .
      3 sin420sin60 2 1 cos420cos60 2 tan420tan603 3 cot420cot60 3 sec420sec602 23 csc420csc60 3      

1 sin2670sin30 2 3 cos2670cos30 2 3 tan2670tan30 3    cot2670cot303 23 sec2670sec30 3 csc2670csc302   
      2 sin855sin45 2 2 cos855cos45 2 tan855tan451 cot855cot451 sec855sec452 csc855csc452      
      3 sin1860sin60 2 1 cos1860cos60 2 tan1860tan603 3 cot1860cot60 3 sec1860sec602 23 csc1860csc60 3      
.

reference
      2 sin2205sin45 2 2 cos2205cos45 2 tan2205tan451 cot2205cot451 sec2205sec452 csc2205csc452      
The


2 sin1305sin45. 2 
sin1500sin60.

3
2

39. Because 510  is coterminal with an angle of 5102360510720210,  it lies in quadrant III. Its reference angle is 21018030.  The cosine is negative in quadrant III, so

40. Because 1020  is coterminal with an angle of 102033601020108060,  it lies in quadrant I. Because 1020  lies in quadrant I, the values of all of its trigonometric functions will be positive, so

41. Because 855º is coterminal with 85533608551080225  , it lies in quadrant III. Its reference angle is 225º 180º = 45º. The cosecant is negative in quadrant III, so

42. Because 495º is coterminal with an angle of 4952360495720225  , it lies in quadrant III. Its reference angle is 22518045.  Tthe secant is negative in quadrant III, so   sec495sec452. 

43. Because 3015º is coterminal with 3015836030152880135  , it lies in quadrant II. Its reference angle is 180º 135º = 45º. The tangent is negative in quadrant II, so tan3015tan451. 

cot135tan60sin180

? cos3060cos30cos60 



  cos3060cos900  and 3131

3

54.  ? sin30sin60sin3060 

1313

sin30sin60

sin3060sin901

Copyright © 2017 Pearson Education, Inc.

Section 2.2 Trigonometric Functions of Non-Acute Angles 57

3 cos510cos30. 2 
 tan1020tan603. 
 

csc855csc452.
3 cot2280cot60.
 45. 2 2 22 31 sin120cos120 22 31 1 44         46. 22 22 22 sin225cos225 22 22 1 44     47.    222 2 2 2 2tan1203sin150cos180 1 2331 2 123 2331 44          48.   2 2 cot135sin304tan45 119 14114 222   49.  222 2 2 2 sin225cos270tan60 227 033 242      50.   222 2 2 2 cot90sec180csc135 012121   51.  222
        
 
44. Because 2280º is coterminal with 2280636022802160120  , it lies in quadrant II. Its reference angle is 180º 120º = 60º. The cotangent is negative in quadrant II, so 1301910  
2 2 2 cos60sec150csc210 123 2 23 1429 4 4312
52.
244 4 2 4
53.
cos30cos60

Evaluate each side to determine whether this statement is true or false.
222 
31
0, 2   so the statement is false.
 

Evaluate each side to determine whether this statement is true or false.
222   and
Because 13 1, 2   the given statement is false.

55. ? cos602cos30 

Evaluate each side to determine whether this statement is true or false.

1 cos60 2  and 3 2cos3023 2   

Because 1 3, 2  the statement is false.

56. ? 2 cos602cos301 

Evaluate each side to determine whether this statement is true or false. 1 cos60 2  and 2 2 33 2cos3012121 24

Because 11 , 22  the statement is true.

57. ? 22 sin45cos451  22 2222

Because 1 = 1, the statement is true.

58. 22 tan601sec60 

Evaluate each side to determine whether this statement is true or false.

2 2 tan60131314  and 22 sec6024  . Because 4 = 4, the statement is true.

59.  ? cos2452cos45 

Evaluate each side to determine whether this statement is true or false.

  cos245cos900  and 2 2cos4522 2

Because 02,  the statement is false.

60.  ? sin2302sin30cos30 

Evaluate each side to determine whether this statement is true or false.

Because 33 22  , the statement is true.

61. 1 sin 2  

Because sin  is positive,  must lie in quadrants I or II. Because one angle, namely 30,  lies in quadrant I, that angle is also the reference angle,  The angle in quadrant II will be 18018030150.  

62. 3 cos 2  

Because cos  is positive,  must lie in quadrants I or IV. One angle, namely 30,  lies in quadrant I, so that angle is also the reference angle,  The angle in quadrant IV will be 36036030330.  

63. tan3  

Because tan  is negative,  must lie in quadrants II or IV. The absolute value of tan  is 3, so the reference angle,  must be 60.  The quadrant II angle  equals 18018060120, 

 and the quadrant IV angle  equals 36036060300.

64. sec2  

Because sec  is negative,  must lie in quadrants II or III. The absolute value of sec  is 2, so the reference angle,  must be 45.  The quadrant II angle  equals 18018045135, 

 and the quadrant III angle  equals 18018045225.

65. 2 cos 2  

Because cos  is positive,  must lie in quadrants I or IV. One angle, namely 45,  lies in quadrant I, so that angle is also the reference angle,  The angle in quadrant IV will be 36036045315.   

Copyright © 2017 Pearson Education, Inc.

58 Chapter 2 Acute Angles and Right Triangles

31 1

     
22

1
  
2244

 

 3 sin230sin60 2  133 2sin30cos302 222       
  


  

66. 3 cot 3  

Because cot  is negative,  must lie in quadrants II or IV. The absolute value of cot  is 3 , 3 so the reference angle,  must be 60.  The quadrant II angle  equals 18018060120,    and the quadrant IV angle  equals 36036060300.   

67. csc2  

Because csc  is negative,  must lie in quadrants III or IV. The absolute value of csc  is 2, so the reference angle, ,  is 30 . The angle in quadrant III will be 18018030210    , and the quadrant IV angle is 36036030330  

68. 3 sin 2

Because sin  is negative,  must lie in quadrants III or IV. The absolute value of sin  is 3 2 , so the reference angle, ,  is 60°. The angle in quadrant III will be 18018060240

 , and the quadrant IV angle is 36036060300   

71. csc2 



Because csc  is negative,  must lie in quadrants III or IV. The absolute value of csc  is 2, so the reference angle,  must be 45.  The quadrant III angle  equals 18018045225.    and the quadrant IV angle  equals 36036045315.

72. cot1  

Because cot  is negative,  must lie in quadrants II or IV. The absolute value of cot  is 1, so the reference angle,  must be 45.  The quadrant II angle  equals 18018045135.

and the quadrant IV angle  equals 36036045315.

73. 150º is in quadrant II, so the reference angle is 180º 150º = 30º.

Because 150º is in quadrant II, the x- coordinate will be negative. The coordinates of P are 

33,3

74. 225º is in quadrant III, so the reference angle is 225º 180º = 45º.

Because tan  is positive,  must lie in quadrants I or III. One angle, namely 30 , lies in quadrant I, so that angle is also the reference angle, . The angle in quadrant III will be 18018030210   

70. 1 cos 2  

Because cos  is negative,  must lie in quadrants II or III. The absolute value of cos  is 1 , 2 so the reference angle,  must be 60.  The quadrant II angle  equals 18018060120,    and the quadrant III angle  equals 18018060240.   

Because 225º is in quadrant III, both the x- and y-coordinates will be negative. The coordinates of P are   52,52

75. For every angle  , 22 sincos1  .

Because  22 0.80.60.640.361  , there is an angle  for which cos0.6   and sin0.8   . Because cos0   and sin0   ,  lies in quadrant IV.

76. For every angle  , 22 sincos1 

Because     22 39145 24 43169144 1  , there is no angle  for which 2 3 cos   and

sin   .

Copyright © 2017 Pearson Education, Inc.

Section 2.2 Trigonometric Functions of Non-Acute Angles 59


69. 3 tan 3  
  
 
  
cos30cos30633
xr r 
1 sin30sin3063

3
2 x
and
2 y yr r
2 cos45cos451052 2 x xr r  and 2 sin45sin451052
y yr r 
2
3 4

77. If  is in the interval   90,180 , then 901804590 2    . Thus 2  lies in quadrant I, and cos 2  is positive.

78. If  is in the interval   90,180 , then 901804590 2    . Thus 2 

lies in quadrant I, and sin 2  is positive.

79. If  is in the interval   90,180 , then 90180270180360  

Thus 180   lies in quadrant IV, and   sec180   is positive.

80. If  is in the interval   90,180 , then 90180270180360  

Thus 180   lies in quadrant IV, and   cot180   is negative.

81. If  is in the interval   90,180 , then 9018090180 18090  





Because 180º is coterminal with 180º + 360º = 180º and 90º is coterminal with 90º + 360º = 270º,  lies in quadrant III, and   sin  is negative.

82. If  is in the interval   90,180 , then 9018090180 18090   



Because 180º is coterminal with 180º + 360º = 180º and 90º is coterminal with 90º + 360º = 270º,  lies in quadrant III, and   cos  is negative.

83. When an integer multiple of 360° is added to , the resulting angle is coterminal with  The sine values of coterminal angles are equal.

84. When an integer multiple of 360° is added to , the resulting angle is coterminal with . The cosine values of coterminal angles are equal.

85. The reference angle for 115° is 180° 115° = 65°. Because 115° is in quadrant II the cosine is negative. Sin  decreases on the interval (90°, 180°) from 1 to 0. Therefore, sin 115° is closest to 0.9.

86. The reference angle for 115° is 180° 115° = 65°. Because 115° is in quadrant II the cosine is negative. Cos  decreases on the interval (90°, 180°) from 0 to –1. Therefore, cos 115° is closest to 0.4.

87. When 45   , 2 sincos 2  . Sine and cosine are both positive in quadrant I and both negative in quadrant III. Because

18045180225,   45º is the quadrant I angle, and 225º is the quadrant III angle.

88. When 45   , 2 sincos 2  . Sine and cosine are opposites in quadrants II and IV. Thus, 18018045135   in quadrant II, and 36036045315   in quadrant IV.

Section 2.3 Approximations of Trigonometric Function Values

For Exercises 1 10, be sure your calculator is in degree mode.

1. J 2. B 3. E 4. F

5. D 6. I 7. H 8. A

9. G 10. C

For Exercises 11 40, be sure your calculator is in degree mode. If your calculator accepts angles in degrees, minutes, and seconds, it is not necessary to change angles to decimal degrees. Keystroke sequences may vary on the type and/or model of calculator being used. Screens shown will be from a TI-84 Plus C calculator. To obtain the degree (°) and (′) symbols, go to the ANGLE menu (2nd APPS).

For Exercises 11 40, we include TI-84 screens only for those exercises involving cotangent, secant, and cosecant.

11. sin38420.625243  

12. cos41240.750111  

Copyright © 2017 Pearson Education, Inc.

60 Chapter 2 Acute Angles and Right Triangles

13. sec13151.027349

14. csc145451.776815

21. 1 tan23.40.432739

22. 1 cos14.80.966823

23. cos77 cot770.230868

24. sin33 tan330.649408

25.

26.

27.

cot904.72tan4.720.082566

cos903.69sin3.690.064358

1 cos510.629320 csc9051

15. cot1834815.055723

29.

30.

31.

11 tan9022cot22 tan220.404026

1 tan1.4739716 tan1.473971655.845496

1 tan6.4358841 tan6.435884181.168073

16. tan421301.841771

sin312120.740805

csc317361.483014

33.

1 sin0.27843196 sin0.2784319616.166641

1 sin0.84802194 sin0.8480219457.997172

cot512201.907415

Copyright © 2017 Pearson Education, Inc.

Section 2.3 Approximations of Trigonometric Function Values 61
 
 
 
 
 
 
 
 
 
 
 
 
17.
18.
tan80065.729742
19.
20.
 
cot23.4
 
sec14.8
sin77   
  
cos33
 

 


 

  
28.

   

   

   

   
32.

38.491580        
11 cot1.2575516 1 cot1.2575516tan 1.2575516

41. A common mistake is to have the calculator in radian mode, when it should be in degree mode (and vice verse).

42. If the calculator allows an angle  where 0360   , then we need to find an angle within this interval that is coterminal with 2000º by subtracting a multiple of 360º: 2000536020001800200  . Then find cos 200°. If the calculator is more restrictive on evaluating angles (such as 090   ), then reference angles need to be used.

43. Find   1 1.482560 tan 969 A = 56º.

44. Find the sine of 22º. A = 0.3746065934º

45. sin35cos55cos35sin551 

46. cos100cos80sin100sin801 

47. 22 sin36cos361 

48. 2sin2513cos2513sin50260  

49. cos7529cos1431sin7529sin14310  

50. cos2814cos6146sin2814sin61461  

51. ? sin10sin10sin20 

Using a calculator gives sin10sin100.34729636  and sin200.34202014.  Thus, the statement is false.

62 Chapter 2 Acute Angles and Right Triangles Copyright © 2017 Pearson Education, Inc. 34.  11 csc1.3861147 1 csc1.3861147sin 1.3861147 46.173582         35.  11 sec2.7496222 1 sec2.7496222cos 2.7496222 68.673241         36.  11 sec1.1606249 1 sec1.1606249cos 1.1606249 30.502748      37.  1 cos0.70058013 cos0.7005801345.526434     38.  1 cos0.85536428 cos0.8553642831.199998     39.  11 csc4.7216543 1 csc4.7216543sin 4.7216543 12.227282         40.  11 cot0.21563481 1 cot0.21563481tan 0.21563481 77.831359        

52. ? cos402cos20 

Using a calculator gives cos400.76604444  and 2cos201.87938524.  Thus, the statement is false.

53. ? sin502sin25cos25 

Using a calculator gives sin500.76604444  and 2sin25cos250.76604444.  Thus, the statement is true.

54. ? 2 cos702cos351 

Using a calculator gives cos700.34202014  and 2 2cos3510.34202014.  Thus, the statement is true.

55. ? 2 cos4012sin80 

Using a calculator gives cos400.76604444  and 2 12sin800.93969262.  Thus, the statement is false.

56. ? 2cos3822cos7644 

Using a calculator gives 2cos38221.56810939   and cos76440.22948353.   Thus, the statement is false.

57. ? sin3948cos39481  

Using a calculator gives sin3948cos39481.408393221.   Thus, the statement is false.

58.  ? 11 22 sin40sin40 

Using a calculator gives 1 2 sin400.32139380  and   1 2 sin400.34202014. 

Thus, the statement is false.

59. ? 22 1cot42.5csc42.5 

Using a calculator gives 2 1cot42.52.1909542  and 2 csc42.52.1909542. 

Thus, the statement is true.

60. ? 22 tan72251sec7225 

Using a calculator gives 2 tan7225110.9577102   and 2 sec722510.9577102.   Thus, the statement is true.

61.  ? cos3020cos30cos20sin30sin20 

Using a calculator gives   cos30200.64278761  and cos30cos20sin30sin200.64278761.  Thus, the statement is true.

62.  ? cos3020cos30cos20 

Using a calculator gives   cos30200.64278761  and cos30cos201.8057180.  Thus, the statement is false.

63. sin0.92718385   sin  is positive in quadrants I and II.

  1 sin0.9271838568

The angle in quadrant II with the same sine is 180° – 68° = 112°

64. sin0.52991926   sin  is positive in quadrants I and II.

 1 sin0.5299192632

The angle in quadrant II with the same sine is 180° – 32° = 148°

65. cos0.71933980   cos  is positive in quadrants I and IV.

  1 cos0.7193398044

The angle in quadrant IV with the same cosine is 360° – 44° = 316° .

66. cos0.10452846   cos  is positive in quadrants I and IV.   1 cos0.1045284684

The angle in quadrant IV with the same cosine is 360° – 84° = 276°

67. tan1.2348971   tan  is positive in quadrants I and III.

  1 tan1.234897151

The angle in quadrant III with the same tangent is 180° + 51° = 231° .

Copyright © 2017 Pearson Education, Inc.

Section 2.3 Approximations of Trigonometric Function Values 63

68. tan0.70020753  

tan  is positive in quadrants I and III.

 1 tan0.7002075335

The angle in quadrant III with the same tangent is 180° + 35° = 215° .

69. sin 2100sin1.865.9670lb

sin 2400sin2.4100.5100lb

180   .

72.  sin  tan  180  3º 0.0523 0.0524 0.0524 3.5º 0.0610 0.0612 0.0611 4º 0.0698 0.0699 0.0698

tan2000(0.04)80 lb FW    

W F  

(d) Use 180

1

sin 150 1503000sinsin 3000 0.05sinsin0.052.9

sin 120 120sin(2.7) sin(2.7) 25472500lb

sin 145 145sin(3) sin(3) 27712800lb

WW W

sin 130 1302600sinsin 2600 0.05sinsin0.052.9 76.  sin  tan  180  0º 0.0000 0.0000 0.0000 0.5º 0.0087 0.0087 0.0087 1º 0.0175 0.0175 0.0175 1.5º 0.0262 0.0262 0.0262 2º 0.0349 0.0349 0.0349 2.5º 0.0436 0.0437 0.0436

V R gf    

 22 66 tan32.2(0.14tan3)

2 102 ft per sec 3 102.67ft per sec    102.67

f

Vg   0.14

Copyright © 2017 Pearson Education, Inc.

64
Chapter 2 Acute Angles and Right Triangles
FW
  

 
F
70.
FW F 

FW      

FW       73.
FW WW
     74.
FW
     75.
F is negative because the car is traveling downhill. 71. FW F F
1    
W
sin 2200sin276.77889275lb 2000sin2.276.77561818lb
The 2200-lb car on a 2° uphill grade has the greater grade resistance.
sintan 180 W FWW   
tan0.04
(a) From the table, we see that if  is small, sintan
(b)
(c) 4
100
3.75
lb 180 F  
from part (b). Let
  and W = 1800. 1800(3.75) 118
  0.14 f 
77. 45 mph = 66 ft/sec, 66 ,3,32.2,Vg
703ft
70 mph70mph· 3600 sec1

1701ft V R gf    
78. There are 5280 ft in one mile and 3600 sec in one min.
1hr5280 ft
mi
,3,32.2,

22 102.67 tan32.20.14tan3

79. Intuitively, increasing  would make it easier to negotiate the curve at a higher speed much like is done at a race track. Mathematically, a larger value of  (acute) will lead to a larger value for tan.  If tan  increases, then the ratio determining R will decrease. Thus, the radius can be smaller and the curve sharper if  is increased.

cc c   

As predicted, both values are less.

80. From Exercises 77 amd 78,

80.9 ft/sec · 3600 sec/hr · 1 mi/5280 ft55 mph, 

speed limit should be 55 mph.

Because 1c is only given to one significant digit, 2c can only be given to one significant digit. The speed of light in the second medium is about 2108  m per sec.



sinsin sinsin 310sin28 210 sin39  

Because 1c is only given to one significant digit, 2c can only be given to one significant digit. The speed of light in the second medium is about 2108  m per sec.

1121 2 221 8 2 8 8 1 2 8           

   

(b) 81262,2.610 c   m per sec and 8 1 310 c  m per sec

1121 2 221 8 2 8 8 1 2 8     

cc cc

sinsin sin sin 2.610sin62 sin 310 2.610sin62 sin50 310           

83. 81190,310 c   m per sec, and 8 2 2.25410 c     

sinsin sin sin 2.25410sin90 sin 310 2.254101 2.254 3 310 2.254 sin48.7 3

cc 

1121 2 221 8 2 8 8 8 1 2           

Copyright © 2017 Pearson Education, Inc.

Section 2.3 Approximations of Trigonometric Function Values 65
    22 22 66 tan32.20.14tan4 644ft 102.67 tan32.20.14tan4 1559ft V R gf V R gf        
 2 . tan V R gf    Solving for V we have    2 2 tan tan tan V RVRgf gf VRgf       1150 ,2.1,32.2,Rg   0.14 f     tan
VRgf   
81. (a) 812146,31,310

  1112 2
8 8 2
sin46 cc c c c      
115032.20.14tan2.180.9 ft/sec
The
c
m per sec
221
sinsin sinsin 310sin31 210
(b) 812139,28,310 c  m per sec  
1112 2 221 8 8 2 c c
82. (a) 81240,1.510 c   m per sec, and 8 1 310 c  m per sec cc cc     
sinsin sin sin 1.510sin40 sin 310 1.510sin40 sin19 310
   
  
cc

Light from the object is refracted at an angle of 40.8° from the vertical. Light from the horizon is refracted at an angle of 48.7° from the vertical. Therefore, the fish thinks the object lies at an angle of 48.7° – 40.8° = 7.9° above the horizon. 85. 1

mi

89. For Auto A, calculate 70cos1068.94.

Auto A’s reading is approximately 69 mph. For Auto B, calculate 70cos2065.78.

Auto B’s reading is approximately 66 mph.

90. The figure for this exercise indicates a right triangle. Because we are not considering the time involved in detecting the speed of the car, we will consider the speeds as sides of the right triangle. Given angle , cos. r a  

Thus, the speed that the radar detects is cos. ra   This confirms the “cosine effect” that reduces the radar reading.

91. h = 1.9 ft, 1 0.9,3,  2 4,   S = 336 ft:

2 4(3)336 550 ft 2001.9336tan.9 L  

92. h = 1.9 ft, 1 1.5,3,  2 4,   S = 336 ft:

2 4(3)336 369 ft 2001.9336tan1.5 L  

87. Negative values of  require greater distances for slowing down than positive values.

88. Using the values for 12 and KK from Exercise

Copyright © 2017 Pearson Education, Inc.

66
Chapter 2 Acute Angles and Right Triangles
84. 8119029.660.4,310 c   m per sec, and 8 2 2.25410 c  8 1 310 c  m per sec     1121 2 221 8 2 8 1 2 sinsin sin sin 2.25410sin60.4 sin 310 2.254 sin60.4 3 2.254 sinsin60.440.8 3 cc cc              
1hr5280
55 mph55mph·
sec1
3 V   2
30 mph30mph· 3600 sec1 mi 44 ft per sec V   3.5,   1 0.4, K  2 0.02. K       22 12 12 22 1.05 64.4sin 1.0580.6744 155 ft 64.40.40.02sin3.5 VV D KK      86. 1 80.67ft per sec, V  2 44 ft per sec, V  2,   12 0.4, and 0.02. KK      22 12 12 22 1.05 64.4sin 1.0580.6744 194 ft 64.40.40.02sin2 VV D KK       
ft
3600
2 80 ft per sec80.67ft per sec,
1hr5280 ft
73,
2V
D
  1 1hr5280
90 mph90mph· 3600 sec1
132 ft per sec V         22 12 12 22 2 22 2 1.05 64.4sin 1.05132 200 64.40.40.02sin3.5 1.051321.05 200 23.12 VV D KK V V             2 2 2 2 2 2 2 2 2 2 2 20023.1218,295.21.05 462418,295.21.05 13,671.21.05 13,671.2 1.05 13020.19048 114.106 V V V V V V       2 114ft/sec · 3600 sec/hr · 1 mi/5280
78 mph V  
determine
when
= 200, 3.5,
ft
mi
ft


 



Chapter 2 Quiz

.

Thus, the area of each of the triangles is 2 11 22 sin bhx

. So, the area of the solar cell is 22 1 2 6sin3sin xx

5. 180º 135º = 45º, so the reference angle is 45º. The original angle (135º) lies in quadrant II, so the sine and cosecant are positive, while the remaining trigonometric functions are negative.

6. 150º is coterminal with 360º 150º = 210º. This lies in quadrant III, so the reference angle is 210º 180º = 30º. In quadrant III, the tangent and cotangent functions are positive, while the remaining trigonometric functions are negative.

7. 1020º is coterminal with 1020º 720º = 300º. This lies in quadrant IV, so the reference angle is 360º 300º = 60º. In quadrant IV, the cosine and secant are positive, while the remaining trigonometric functions are negative.

Because sin  is positive,  must lie in quadrants I or II, and the reference angle, ,  is 60°. The angle in quadrant I is 60º, while the angle in quadrant II is

Copyright © 2017 Pearson Education, Inc.

Chapter 2 Quiz 67
hypotenuse405 A 
cos hypotenuse405
tan
A A   side adjacent324 cot side opposite243 hypotenuse405 sec side adjacent324 hypotenuse405 csc side opposite243 A A A    2.  sin  cos  tan  cot  sec  csc  30 1 2 3 2 3 3 3 23 3 2 45 2 2 2 2 1 1 2 2 60 3 2 1 2 3 3 3 2 23 3 3. 1 sin3036sin303618 362 3 cos3036cos3036183 362 18 tan45118 21836 sin45182 2 2 w w x x w y yy w z zz    
(Sections 2.1 2.3) 1. side opposite243 sin
side adjacent324
side opposite243
side adjacent324
h hx x  
4. The height of one of the six equilateral triangles from the solar cell is
sinsin
  
 
.
2 sin135 2  ; 2 cos135 2  tan1351  ; cot1351  sec1352  ; csc1352 
  1 sin150sin30 2 3 cos150cos30 2    3 tan150tan30 3      cot150cot303 23 sec150sec30 3 csc150csc302   
3 sin1020sin60 2 1 cos1020cos60 2   tan1020tan603 3 cot1020cot60 3 sec1020sec602 23 csc1020csc60 3     8. 3 sin 2  
18018060120   

9. sec2  

Because sec  is negative,  must lie in quadrants II or III. The absolute value of sec  is 2, so the reference angle,  must be 45.  The quadrant II angle  equals 18018045135,    and the quadrant III angle  equals 18018045225.   

10. sin42180.673013  

11.   sec212121.181763  

12. tan2.674321069.497888 

13. csc2.386114724.777233 

14. The statement is false.

  sin6030sin901  , while 3131 sin60sin30 222   .

15. The statement is true. Using the cofunction identity,   tan9035cot35 

Section 2.4 Solutions and Applications of Right Triangles

1. B 2. D 3. A

4. F 5. C 6. E

7. 23.825 to 23.835

8. 28,999.5 to 29,000.5

9. 8958.5 to 8959.5

10. No. Points scored in basketball are exact numbers and cannot take on values that are not whole numbers.

11. If h is the actual height of a building and the height is measure as 58.6 ft, then 58.60.05. h 

12. If w is the actual weight of a car and the weight is measure as 1542 lb, then 15420.5. w 

13. 3620, A   c = 964 m

9090 903620 896036205340

sinsin3620 964 964sin3620571m (rounded to

 three significant digits)

coscos3620 964 964cos3620777 m (rounded to

three significant digits)

14. X = 47.8°, z = 89.6 cm 9090 9047.842.2

89.6 89.6sin47.866.4cm

(rounded to three significant digits)

coscos47.8 89.6 89.6cos47.860.2cm

(rounded to three significant digits)

15. N = 51.2°, m = 124 m

m

nn  

three significant digits) 124

m N pp 

 three significant digits)

Copyright © 2017 Pearson Education, Inc.

68 Chapter 2 Acute Angles and Right Triangles
ABBA B    
Aaa c a   
bb A c b    
YXYX Y  
X z x  
sinsin47.8
xx
Xyy z y  
9090
MNMN M  
9051.238.8
N
tantan51.2 124 124tan51.2154m (rounded to n
coscos51.2 124 198m (rounded to cos51.2 p


903140 896031405820

68.4 km (rounded to sin3140

three significant digits)

16. 3140,35.9kmAa    

bb

three significant digits)

9042.089247.9108 ABAB A 

 56.851

(rounded to five significant digits)



56.851

62.942 cm tan42.0892

(rounded to five significant digits)

18. 68.5142,3579.42Bc

ABAB A  

9068.514221.4858

bb B c b  

sinsin68.5142 3579.42

3579.42sin68.51423330.68 m

aa B

coscos68.5142 3579.42 3579.42cos68.51421311.04 m

19. 12.5,16.2ab

Using the Pythagorean theorem, we have 222222 2 12.516.2 418.6920.5 ft (rounded to three abcc cc

  significant digits)  1 12.5 tantan 16.2 12.5 tan37.6540 16.2 370.65406037393740 a AA b A    

(rounded to three significant digits)

5220 (rounded to three significant digits)

20. 4.80,15.3ac

222222 222 222

abcb b b b    

4.80

 1

(rounded to six significant digits)  

Section 2.4 Solutions and Applications of Right Triangles 69
  9090
ABBA B     35.9 sinsin3140 35.9
Aa
c    
35.9 tantan3140 35.9
Aa
Copyright © 2017 Pearson Education, Inc. b
cc
58.2km (rounded to tan3140
9090
 
56.851
17. 42.0892,56.851Bb

sinsin42.0892 56.851 84.816
cm
sin42.0892 b B cc c 
tantan42.0892
b B aa a 
9090
c a
(rounded to six significant digits)
 1 16.2 tantan 12.5 16.2 tan52.3460 12.5
520.3460605221
b BB a B      
14.5
sinsin
sin18.2839
Using the Pythagorean theorem, we have
4.8015.3 4.8015.3 15.34.80211.05
m (rounded to three
significant digits)
15.3 4.80
15.3
a AA b A    
continuedonnextpage)
180.28396018171820
(rounded to three significant digits) (

to three significant digits)

21. No. You need to have at least one side to solve the triangle. There are infinitely many similar right triangles satisfying the given conditions.

22. If we are given an acute angle and a side in a right triangle, the unknown part of the triangle requiring the least work to find is the other acute angle. It may be found by subtracting the given acute angle from 90°.

23. Answers will vary. If you know one acute angle, the other acute angle may be found by subtracting the given acute angle from 90°. If you know one of the sides, then choose two of the trigonometric ratios involving sine, cosine or tangent that involve the known side in order to find the two unknown sides.

24. If you know the lengths of two sides, the Pythagorean theorem can be used to find the length of the remaining side. Then an inverse trigonometric function can be used to find one of the acute angles. The other acute angle may be found by subtracting the calculated acute angle from 90°.

26. B = 46.0°, c = 29.7 m 90 90

 

AB AB A

9046.044.0



c a

29.7 29.7sin46.021.4m bb B c b

 

9090 9073.017.0 ABAB A   128 tantan73.0

128 39.1in(rounded to tan73.0 three significant digits)



25. A = 28.0°, c = 17.4 ft 90 90 9028.062.0

128 134in(rounded to sin73.0 three significant digits)

sinsin28.0 17.4

Aaa c a

17.4sin28.08.17ft

  (rounded to three significant digits)

bb

coscos28.00 17.4

17.4cos28.0015.4ft

A c b   (rounded to three significant digits)

ABBA

9090 9062.527.5

Copyright © 2017 Pearson Education, Inc.

70 Chapter 2 Acute Angles and Right
Triangles
(continued)  1 4.80 coscos 15.3 4.80 cos71.7161 15.3 710.71616071437140 a BB c B     (rounded
AB BA B  
aa B
 
coscos46.0 29.7 29.7cos46.020.6m
(rounded to three significant digits)
sinsin46.0
(rounded to three significant digits)
128 sinsin73.0
b B aa aa b B cc cc      
27. Solve the right triangle with B = 73.0°, b = 128 in. and C = 90°
B   12.7 tantan62.5
Aa bb b    (continuedonnextpage)
28. A = 62.5º, a = 12.7 m
12.7
6.61m(rounded to tan62.5 three significant digits)

Aa cc c 



(continued) 12.7 sinsin62.5 12.7 14.3m(rounded to sin62.5 three significant digits)

222222 22 2213 48416931518 m (rounded to two significant digits)

tantan61.0 39.2 39.2tan61.070.7cm Aaa b a

b A cc c





  (rounded to three significant digits) 39.2 coscos61.0 39.2 80.9cm cos61.0

30. B = 51.7º, a = 28.1 ft

9090

9051.738.3







tantan51.7 28.1 28.1tan51.735.6ft(rounded to three significant digits) 28.1 coscos51.7 28.1 45.3ft (rounded to cos51.7 three significant digits)

31. a = 13 m, c = 22m

13 sinsin 22 13 sin36.221536 22     

1 AA

(rounded to two significant digits)

b

BB

1     

32. b = 32 ft, c = 51 ft

caba

aaa

We will determine the measurements of both A and B by using the sides of the right triangle. In practice, once you find one of the measurements, subtract it from 90 to find the other.

b

(rounded to two significant digits)

b

c B

(rounded to two significant digits)

Section 2.4 Solutions and Applications of Right Triangles 71
Copyright © 2017 Pearson Education, Inc.

29. A = 61.0º, b = 39.2 cm 9090 9061.029.0 ABBA B 
 (rounded to three significant digits)
ABBB A 
bb B a b a B cc c   
cabb bbb  
We will determine the measurements of both A and B by using the sides of the right triangle. In practice, once you find one of the measurements, subtract it from 90 to find the other.
a
c A
13 coscos 22 13 cos53.778454 22
c B
(rounded to two significant digits)
 
222222 22 5132 26011024157740 ft (rounded to two significant digits)
1 AA
32 coscos 51 32 cos51.137751 51    
c A 
1 BB
32 sinsin 51 32 sin38.862339 51     

33. a = 76.4 yd, b = 39.3 yd

 22222 22 76.439.35836.961544.49

7381.4585.9yd (rounded to three significant digits)

We will determine the measurements of both A and B by using the sides of the right triangle. In practice, once you find one of the measurements, subtract it from 90 to find the other.

a AA b A        (rounded

to three significant digits)

a = 18.9 cm, c = 46.3 cm

76.4 tantan 39.3 76.4 tan62.7788 39.3

1



39.3 tantan 76.4 39.3 tan27.2212 76.4 270.22126027132710

(rounded to three significant digits)  b BB a B

to three significant digits) 34. a = 958 m, b = 489 m

1        (rounded

(rounded to three significant digits)

cabcab  

2222222 958489

917,764239,1211,156,885

1075.5658871080 m (rounded to three significant digits)

Copyright © 2017 Pearson Education, Inc.

72 Chapter 2 Acute Angles
and Right Triangles
cabcab   
a AA b A       
620.77886062476250

 1 489 tantan 958 489 tan27.0415 958 270.04156027022700 b BB a B        (rounded
35.
222222 22 46.318.9 2143.69357.211786.48 42.3
cabb bb b     1 18.9 sinsin 46.3 18.9 sin24.09227 46.3 240.092276024062410 a AA c A        (rounded to three significant digits)  1 18.9 coscos 46.3 18.9 cos65.9077 46.3 650.90776065546550 a BB c B        (rounded to three significant digits)
We will determine the measurements of both A and B by using the sides of the right triangle. In practice, once you find one of the measurements, subtract it from 90 to find the other.
1 958 tantan 489 958 tan62.9585 489 630.95856062586300
to three significant digits)
cm

36. b = 219 cm, c = 647 m AB BA B

38.

m cab

(rounded to three significant digits)

2 647219 418,60947,961        sinsin5324 387.1

190.78466019471950

5051 AB BA B     

Aaa c a bb A c b        

   

sinsin1347 1285 1285sin1347306.2m(rounded to four significant digits)

c b

    coscos3909

B c a

40. B = 82º51′ , c = 4.825 cm

9090 90825189608251 709 ABAB A     sinsin8251 4.825 4.825sin82514.787m(rounded

41. If B is a point above point A as shown in the figure, the angle of elevation from A to B is the acute angle formed by the horizontal line through A and the line of sight from A to B.

42. No. An angle of elevation (and also an angle of depression) must be an acute angle.

44. An angle of depression (and also an angle of elevation) is measured from a horizontal line to the line of sight and. Angle CAB is formed by the line of sight and vertical line AC.

Section 2.4 Solutions and Applications of Right Triangles 73
222 222 2
370,648 609
a a a a     
 1
coscos 647 219
647
b AA c A       
 1
sinsin
647
b BB c B       
Copyright © 2017 Pearson Education, Inc. 90 90 905324 89605324 3636
219
cos70.2154
700.21546070137010
(rounded
to three significant digits)
219
647 219 sin19.7846
(rounded to
three significant digits)
37. A = 53º24′ , c = 387.1 ft
387.1sin5324310.8ft(rounded to four significant digits) coscos5324 387.1
387.1cos5324230.8ft(rounded to four significant digits)
A = 13º47′ , c = 1285 m 9090
90134789601347 7613 ABBA B
Aaa c a bb A c b        
coscos1347 1285 1285cos13471248m(rounded to four significant digits)
B
aa
39. B = 39º09′ , c = 0.6231 m 90    
90 903909 89603909
sinsin3909 0.6231 0.6231sin39090.3934m(rounded to four significant digits)
bb
0.6231 0.6231cos39090.4832m(rounded to four significant digits)
bb B c b     coscos8251
to four significant digits)
aa B c a    
4.825 4.825cos82510.6006m(rounded to four significant digits)
43. Angles DAB and ABC are alternate interior angle formed by the transversal AB intersecting parallel lines AD and BC. Thus they have the same measure.

45. sin4350' 13.5

13.5sin4350'9.3496000

The ladder goes up the wall 9.35 m. (rounded to three significant digits)

46. T = 32° 10  and S = 5750

48. Let x = the diameter of the sun.

so

We will use this angle, d, and half of the diameter to set up the following equation.

Because 32 10 5750 896090, ST 

triangle RST is a right triangle. Thus, we have

53.1tan321033.395727

The distance across the lake is 33.4 m. (rounded to three significant digits)

47. Let x represent the horizontal distance between the two buildings and y represent the height of the portion of the building across the street that is higher than the window.

The diameter of the sun is about 864,900 mi. (rounded to four significant digits)

49. The altitude of an isosceles triangle bisects the base as well as the angle opposite the base. The two right triangles formed have interior angles which have the same measure. The lengths of the corresponding sides also have the same measure. The altitude bisects the base, so each leg (base) of the right triangles is

Let x = the length of each of the two equal sides of the isosceles triangle.

The height of the building across the street is about 128 ft. (rounded to three significant digits)

The length of each of the two equal sides of the triangle is 26.92 in. (rounded to four significant digits)

Copyright © 2017 Pearson Education, Inc.

74 Chapter 2 Acute
Angles and Right Triangles
d d  
tan3210 53.1
RS
   
RS
30.030.3 tan20.082.4 tan20.0 tan50.0 30.0 tan50.0tan50.0 tan20.0 height = 30.0 30.0 tan50.030.0 tan20.0 128.2295 x x y x yx y               
32, 
 1 3216. 2  
The included angle is
 1 2 tan16 92,919,800 292,919,800tan16 864,943.0189 x x    
42.36 2  21.18
in.
21.18 cos38.12cos38.1221.18 21.18 26.921918 cos38.12 x x x   
53.1m

50. The altitude of an isosceles triangle bisects the base as well as the angle opposite the base. The two right triangles formed have interior angles which have the same measure. The lengths of the corresponding sides also have the same measure. The altitude bisects the base, so each leg (base) of the right triangles are 184.2 2  92.10 cm. Each angle opposite to the base of the right triangles measures

1 2 68443422. 

Let h = the altitude.

h h h

The altitude of the triangle is 134.7 cm. (rounded to four significant digits)

51. Let h represent the height of the tower. In triangle ABC we have tan34.6 40.6 40.6tan34.628.0081  

The height of the tower is 28.0 m. (rounded to three significant digits)

In triangle ABC, 252 sin3230

252 469.0121 sin3230 d d    

53. Let x = the length of the shadow.

5.75 tan23.4 tan23.45.75 5.75 13.2875 tan23.4 x x x    

54. Let x = the horizontal distance that the plan must fly to be directly over the tree.

10,500 tan1350 tan135010,500 10,500 42,641.2351 tan1350 x x x      

55. Let   the angle of depression.

52. Let d = the distance from the top B of the building to the point on the ground A

1 39.8239.82 tantan 51.7451.74 37.583735       

Copyright © 2017 Pearson Education, Inc.

Section 2.4 Solutions and Applications of Right Triangles 75
 
In triangle ABC, 92.10 tan3422tan342292.10 92.10 134.67667 tan3422    
h h
The distance from the top of the building to the point on the ground is 469 m. (rounded to three significant digits)
The length of the shadow is 13.3 ft. (rounded to three significant digits)
The horizontal distance that the plan must fly to be directly over the tree is 42,600 ft. (rounded to three significant digits)

56. Let x = the height of the taller building; h = the difference in height between the shorter and taller buildings; d = the distance between the buildings along the ground.

59. In order to find the angle of elevation, , we need to first find the length of the diagonal of the square base. The diagonal forms two isosceles right triangles. Each angle formed by a side of the square and the diagonal measures 45˚

28.0 tan141028.0tan1410 28.0 110.9262493m

(We hold on to these digits for the intermediate steps.) To find h, solve

tan4640 tan4640110.9262493tan4640 117.5749

Thus, the value of h rounded to three significant digits is 118 m. 28.011828.0146m,

so the height of the taller building is 146 m.

57. Let   the angle of elevation of the sun.

Thus, length of the diagonal is 7002 ft. To to find the angle, , we consider the following isosceles triangle.

58. Let   the angle of elevation of the sun.

The height of the pyramid bisects the base of this triangle and forms two right triangles. We can use one of these triangles to find the angle of elevation, 

Rounding this figure to two significant digits, we have 22.

Copyright © 2017 Pearson Education, Inc.

76 Chapter 2 Acute Angles and
Right Triangles
tan1410 d d d    

h d hd    
xh
34.0934.09 tantan 37.6237.62 42.18       
1
1 55.2055.20 tantan 27.6527.65 63.39       
22222 2 7007002700 27007002 dd dd  
By the Pythagorean theorem,
1 200 tan 3502 200 tan22.0017 3502       
 

60. Let y = the height of the spotlight (this measurement starts 6 feet above ground)



y y 

Rounding this figure to three significant digits, we have 577. y 

x x    

The distance from the assigned target is 34.0 mi. (rounded to three significant digits)

Section 2.5 Further Applications of Right Triangles

However, the observer’s eye-height is 6 feet from the ground, so the cloud ceiling is 5776583  ft.

61. (a) Let x = the height of the peak above 14,545 ft.

1. C 2. D 3. A 4. G

5. B 6. H 7. F 8. J

9. I 10. E

11. ( 4, 0)

The diagonal of the right triangle formed is in miles, so we must first convert this measurement to feet. Because there are 5280 ft in one mile, we have the length of the diagonal is   27.01345280 

142,630.752. Find the value of x by solving sin5.82.

142,630.752 x 

The bearing of the airplane measured in a clockwise direction from due north is 270°. The bearing can also be expressed as N 90° W, or S 90° W.

14,463.2674 x  

142,630.752sin5.82

Thus, the value of x rounded to five significant digits is 14,463 ft. Thus, the total height is about

14,545 + 14,463 = 29,008 ≈ 29,000 ft.

(b) The curvature of the earth would make the peak appear shorter than it actually is. Initially the surveyors did not think Mt. Everest was the tallest peak in the Himalayas. It did not look like the tallest peak because it was farther away than the other large peaks.

12. (5, 0)

The bearing of the airplane measured in a clockwise direction from due north is 90°. The bearing can also be expressed as N 90° E, or S 90° E.

Copyright © 2017 Pearson Education, Inc.

Section 2.5 Further Applications of Right Triangles 77
tan30.0 1000 1000tan30.0577.3502
62. Let x = the distance from the assigned target. In triangle ABC, we have tan0030 234,000 234,000tan003034.0339

13. (0, 4)

The bearing of the airplane measured in a clockwise direction from due north is 0°. The bearing can also be expressed as N 0° E or N 0º W.

14. (0, 2)

The bearing of the airplane measured in a clockwise direction from due north is 180°. The bearing can also be expressed as S 0° E or S 0º W.

15. ( 5, 5)

The bearing of the airplane measured in a clockwise direction from due north is 315°. The bearing can also be expressed as N 45° W.

16. ( 3, 3)

The bearing of the airplane measured in a clockwise direction from due north is 225°. The bearing can also be expressed as S 45° W.

17. (2, 2)

The bearing of the airplane measured in a clockwise direction from due north is 135°. The bearing can also be expressed as S 45° E.

18. (2, 2)

The bearing of the airplane measured in a clockwise direction from due north is 45°. The bearing can also be expressed as N 45° E.

19. Let x = the distance the plane is from its starting point. In the figure, the measure of angle ACB is 

38180128385290°.

Therefore, triangle ACB is a right triangle.

Copyright © 2017 Pearson Education, Inc.

78 Chapter 2 Acute Angles and Right Triangles

(continuedonnextpage)

Because , drt  the distance traveled in 1.5 hr is (1.5 hr)(110 mph) = 165 mi. The distance traveled in 1.3 hr is (1.3 hr)(110 mph) = 143 mi.

Using the Pythagorean theorem, we have 2222

47,674218.3438 xx xx

2 16514327,22520,449

The plane is 220 mi from its starting point. (rounded to two significant digits)

20. Let x = the distance from the starting point. In the figure, the measure of angle ACB is   2718011727 6390. 

Therefore, triangle ACB is a right triangle.

Applying the Pythagorean theorem, we have 2222

2 27397291521 2250225047.4342

The ships are 47 nautical mi apart (rounded to 2 significant digits).

22. Let x = distance the ships are apart. In the figure, the measure of angle BCA is 3603225290.  Therefore, triangle BCA is a right triangle. Because , drt  the distance traveled by the first ship in 2.5 hr is (2.5 hr)(17 knots) = 42.5 nautical mi and the second ship is (2.5hr)(22 knots) = 55 nautical mi.

Applying the Pythagorean theorem, we have 2222

2 55140302519,600 22,62522,625150.4161

The distance of the end of the trip from the starting point is about 150 km. (rounded to two significant digits)

21. Let x = distance the ships are apart. In the figure, the measure of angle CAB is 1304090.  Therefore, triangle CAB is a right triangle.

Because , drt  the distance traveled by the first ship in 1.5 hr is (1.5 hr)(18 knots) = 27 nautical mi and the second ship is (1.5hr)(26 knots) = 39 nautical mi.

Applying the Pythagorean theorem, we have 222242.5554831.25 4831.2569.5072

The ships are 70 nautical mi apart (rounded to 2 significant digits).

23. Let b = the distance from dock A to the coral reef C.

In the figure, the measure of angle CAB is 9058223138,  and the measure of angle CBA is 328222705822. 

Because 3138582290,   ABC is a right triangle.

Copyright © 2017 Pearson Education, Inc.

Section 2.5 Further Applications of Right Triangles 79
(continued)
 
xx
 
xx
xx xx  
xx x  
2587 2203 ft b A b b b     x
cos 2587 cos31382587cos3138

24. Let C = the location of the ship, and let c = the distance between the lighthouses. 18012943 1796012943

The measure of angle CBA is 905340896053403620. 

The measure of angle CAB is 903620896036205340. 

A + B = 90°, so C = 90°. Thus, we have sinsin5340

2.502.50

2.50sin53402.0140

5017394390,   so we have a right triangle. Thus, 3742 sin3943sin39433742 3742 5856.1020 sin3943

The distance between the lighthouses is 5856 m (rounded to four significant digits).

25. Let x = distance between the two ships.

The distance of the transmitter from B is 2.01 mi. (rounded to 3 significant digits)

27. Let b = the distance from A to C and let c = the distance from A to B

The angle between the bearings of the ships is

180°28°10 + 61°5090°.

 The triangle formed is a right triangle. The distance traveled at 24.0 mph is (4 hr) (24.0 mph) = 96 mi. The distance traveled at 28.0 mph is (4 hr)(28.0 mph) = 112 mi.

Applying the Pythagorean theorem we have 2222

The ships are 148 mi apart. (rounded to three significant digits)

26. Let C = the location of the transmitter;

a = the distance of the transmitter from B.

Because the bearing from A to B is N 84° E, the measure of angle ABD is 180° 84° = 96°. The bearing from B to C is 38°, so the measure of angle ABC = 180° (96° + 38°) = 46°. The bearing of A to C is 52°, so the measure of angle BAC is 180° (52° + 84°) = 44°. The measure of angle C is 180° (44° + 46°) = 90°, so triangle ABC is a right triangle. The distance from A to B, labeled c, is 2.4(250) = 600 miles.

28. The information in the example gives 64,82,mDACmEAB  and 26. mGBC The sum of the measures of angles EAB and FBA is 180º because they are interior angles on the same side of a transversal.

Copyright © 2017 Pearson Education, Inc.

80 Chapter 2 Acute Angles and
Right Triangles
5017 mBAC   
c
c 
 
c


xx xx  
2 96112921612,544 21,76021,760147.5127
Aaa a    
 
sin46 600 600sin46430 mi bb c b
(continuedonnextpage)

. Thus, angle C is a right angle. It takes 1.8 hours at 350 mph to fly from A to B, so 1.8350630 mi ABc . To find the distance from B to C, use cos B cos630cos56350 mi 630 a

29. Draw triangle WDG with W representing Winston-Salem, D representing Danville, and G representing Goldsboro. Name any point X on the line due south from D.

The line from Atlanta to Macon makes an angle of 27° + 63°90°,  with the line from Macon to Augusta. Because , drt  the distance from Atlanta to Macon is   1 4 60175mi.  The distance from Macon to Augusta is   3 4 601105mi. 

Use the Pythagorean theorem to find x: 2222 2 75105562511,025 16,650129.0349

The distance from Atlanta to Augusta is 130 mi. (rounded to two significant digits)

31. Let x = the distance from the closer point on the ground to the base of height h of the pyramid.

The bearing from W to D is 42° (equivalent to N 42 E), so angle WDX measures 42°. Because angle XDG measures 48°, the measure of angle D is 42° + 48° = 90°. Thus, triangle WDG is a right triangle. Using d = rt and the Pythagorean theorem, we have

In the larger right triangle, we have

In the smaller right triangle, we have tan3530'tan3530'. h hx

Substitute for h in this equation, and solve for x to obtain the following.

The distance from Winston-Salem to Goldsboro is approximately 140 mi. (rounded to two significant digits)

30. Let x = the distance from Atlanta to Augusta.

Substitute for x in the equation for the smaller triangle.

The height of the pyramid is 114 ft. (rounded to three significant digits)

Copyright © 2017 Pearson Education, Inc.

Section 2.5 Further Applications of Right Triangles 81
(continued) So 1801808298mFBAmEAB    180648234 mCAB
  180982656 mABC
ABCa 
and
  22 22 651.1651.8 WGWDDG    22 71.51175112.2513,689 18,801.25137 WG  
xx
 
x
 tan2110'135tan2110' 135 h hx x  
x 

135tan2110' tan3530'tan2110' xx xx xx x x       
135tan2110'tan3530' 135tan2110'tan2110'tan3530' 135tan2110'tan3530'tan2110' 135tan2110'tan3530'tan2110'
135tan2110' tan3530 tan3530'tan2110' 114.3427 h    
42°

32. Let x = the distance traveled by the whale as it approaches the tower; y = the distance from the tower to the whale as it turns.

Setting equations 1 and 2 equal, we have

The whale traveled 147 m as it approached the lighthouse. (rounded to three significant digits)

33. Let x = the height of the antenna; h = the height of the house.

The height of the top of Mt. Whitney above road level is 2.47 km. (rounded to three significant digits)

35. Algebraic solution: Let x = the side adjacent to 49.2º in the smaller triangle.

In the smaller right triangle, we have tan181028tan1810. 28 h h 

In the larger right triangle, we have tan271028tan2710

In the larger right triangle, we have

392 h hx x 

In the smaller right triangle, we have tan49.2tan49.2 h hx x 

The height of the antenna is 5.18 m. (rounded to three significant digits)

34. Let x = the height of Mt. Whitney above the level of the road; y = the distance shown in the figure below.

Substituting, we have

Now substitute this expression for x in the equation for the smaller triangle to obtain

Copyright © 2017 Pearson Education, Inc.

ft (rounded to three

82 Chapter 2 Acute Angles and
Right Triangles
68.7 tan354068.7tan3540 68.768.7andtan1550 tan3540 y y y xy         68.7tan1550 68.768.7 tan1550tan1550 68.768.7 146.5190 tan1550tan3540 xy xyxy x      
28 28tan2710 28tan271028tan1810 5.1816 xh xh xh x       
In triangle ADC, tan2240'tan2240' .(1) tan2240' x yx y x y    In triangle ABC  tan1050' 7.00 7.00tan1050' tan1050'7.00tan1050' 7.00tan1050' (2) tan1050' x y yx yx x y       
     7.00tan1050 tan2240tan1050 tan1050tan2240 7.00tan1050tan2240
tan2240tan1050 7.00tan1050tan2240 tan2240'tan1050' 7.00tan1050tan2240 tan2240 xx xx xx x x               tan1050 2.4725 x   
7.00tan1050tan2240
 tan29.5392tan29.5
.
  
tan49.2tan29.5392tan29.5 392tan29.5
xx x x xx x x        
tan49.2392tan29.5 tan49.2392tan29.5 tan29.5 tan49.2tan29.5392tan29.5
tan49.2tan29.5
tan49.2
tan49.2
433.4762433
hx h     
(continuedonnextpage)
392tan29.5
tan49.2tan29.5
significant digits.

Graphing calculator solution: Graph   1 tan29.5 yx  and

 2 tan29.5392yx in the window [0, 1000] × [0, 500]. Then find the intersection.

Graphing calculator solution:

The height of the triangle is 433 ft (rounded to three significant digits.

36. Algebraic solution: Let x = the side adjacent to 52.5º in the smaller triangle.

The height of the triangle is 448 m (rounded to three significant digits.

37. Let x = the minimum distance that a plant needing full sun can be placed from the fence.

The minimum distance is 10.8 ft. (rounded to three significant digits)

In the larger right triangle, we have

tan41.2168tan41.2 168 h hx x 

In the smaller right triangle, we have tan52.5tan52.5. h hx x 

Substituting, we have

tan52.5168tan41.2

tan52.5168tan41.2 tan41.2

tan52.5tan41.2168tan41.2

tan52.5tan41.2168tan41.2 168tan41.2

tan52.5tan41.2

Now substitute this expression for x in the equation for the smaller triangle to obtain tan52.5 168tan41.2

tan52.5tan41.2

tan52.5

448.0432448 m (rounded to three

digits.

Copyright © 2017 Pearson Education, Inc.

Section 2.5 Further Applications of Right Triangles 83
(
)
continued
  

 .
  
xx x x xx x x        
hx h      significant
  1 tan41.2 yx  and     2 tan52.5168yx in the window [0, 800] × [0, 600]. Then find
Graph
the intersection.
4.65 tan2320tan23204.65 4.65 10.7799 tan2320 x x x    
38.   1 1 1.0837 tan0.7261944649 1.4923 tan0.726194464935.987 3559.2355910 1.4923 tan1.377041617 1.0837 tan1.37704161754.013 5400.8540050 A A B B      

39. Let h = the minimum height above the surface of Earth so a pilot at A can see an object on the horizon at C

Using the Pythagorean theorem, we have

4.00104.0010125

40004000125

400016,000,00015,625

400016,015,625

400016,015,62516,015,62540004001.952640001.9526

The minimum height above the surface of Earth would be 1.95 mi. (rounded to 3 significant digits)

40. Let y = the common hypotenuse of the two right triangles.

To find x, first find the angle opposite x in the right triangle: 52203050518030502130

sin2130sin2130231.0571948sin213084.6827 231.0571948

The length x is approximate 84.7 m. (rounded)

41. (a) cotcotcotcot 2222222

(b) Using the result of part (a), let 3748,4203, 

222

The distance between the two points P and Q is about 345.4 cm.

Copyright © 2017 Pearson Education, Inc.

84 Chapter 2 Acute Angles and Right
Triangles
      
2
2 2
22 332
22
h h h h hh     
y   
198.4198.4 cos3050231.0571948 cos3050 y


xx x y  
bbb PQd     
and
cotcot
b d d          
b = 2.000
222 2.00037484203 cotcotcot0.315cot0.3504166667345.3951

All answers are rounded to four significant digits.

As v increases, D increases.

(c) The velocity affects the distance more. The shot-putter should concentrate on achieving as large a value of v as possible.

(b) We are dealing with a circle, so the distance between M and C is R. If we let x be the distance from N to M, then the distance from C to N will be Rx

d d

The distance between P and Q, is 320 ft. (rounded to two significant digits)

coscos 22 cos1cos 22 Rx RRx R xRRxR      

Section 2.5 Further Applications of Right Triangles 85
42. 2 2 sincoscossin64 32 vvvh D  
(a) 44ft per sec and 7ft, vh  so 2 2 44sincos44cos44sin647 32 D   If 40,   2 1936sin40cos4044cos4044sin40448 67.00 ft. 32 D   If 42,   2 1936sin42cos4244cos4244sin42448 67.14 ft 32 D   If 45,   2 1936sin45cos4544cos4544sin45448 66.84 ft 32 D   As  increases, D increases and then decreases. (b) 7ftand 42, h   so 2 2 sin42cos42cos42sin42647 32 vvv D   If 43, v  2 2 43sin42cos4243cos4243sin42448 64.40 ft 32 D   If 44, v  2 2 44sin42cos4244cos4244sin42448 67.14 ft 32 D   If 45, v  
2
32 D  
Copyright © 2017 Pearson Education, Inc.
2
45sin42cos4245cos4245sin42448 69.93 ft
43. (a) If 37,  
37 18.5. 22   
then
To find the distance between P and Q, d, we first note that angle QPC is a right angle. Hence, triangle QPC is a right triangle and we can solve tan18.5 965 965tan18.5322.8845  
Triangle CNP is a right triangle, so we can set up the following equation.

The distance is 23 ft. (rounded to two significant digits)

49. All points whose bearing from the origin is 240º lie in quadrant III.

The distance is 48 ft. (rounded to two significant digits)

(c) The faster the speed, the more land needs to be cleared on the inside of the curve.

45.  

tantan3525yxayx  

46. 

47.

 tantan155yxayx  

The reference angle,  , is 30º. For any point, (x, y) on the ray cos x r    and sin, y r 

 where r is the distance from the point to the origin. Let r = 2, so

48.

The line that bisects quadrants I and III passes through the origin, so a = 0. In addition, 45   because the line bisects the angle formed by the axes. tan451,  so an equation of the line is   tan45 yx  or y = x

The line that bisects quadrants II and IV passes through the origin, so a = 0. In addition, 135   because the line bisects the angle formed by the axes and the reference angle  is 45° tan1351,  so an equation of the line is   tan135 yx  or y = –x

Thus, a point on the ray is

3,1 . The ray contains the origin, the equation is of the form y = mx. Substituting the point

3,1 , we have

Thus, an equation of the ray is 3 3 ,0yxx (because the ray lies in quadrant III).

50. All points whose bearing from the origin is 150º lie in quadrant IV.

The reference angle,  , is 60º. For any point, (x, y) on the ray cos x r    and sin, y r    where r is the distance from the point to the origin. Let r = 2, so

Copyright © 2017 Pearson Education, Inc.

86 Chapter 2 Acute Angles and Right Triangles
44. (a)    57.3336 57.3 32.088 600 1cos
S R dR       
2 6001cos16.04423.3702ft
(b)    57.3485
46.3175 600 1cos
S R dR       
57.3
2 6001cos23.1587548.3488
 

3 2 cos cos2cos3023 x r xr      1 2 sin sin2sin3021 y r yr      
 
 
  13 m  33 11 3 333 m  .
1 2 coscos2cos6021 x xr r   

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.