Practical wastewater treatment second edition russell

Page 1

Practical wastewater treatment Second Edition Russell

Visit to download the full and correct content document: https://textbookfull.com/product/practical-wastewater-treatment-second-edition-russell /

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Theory and practice of water and wastewater treatment

Second Edition. Edition Ronald L. Droste

https://textbookfull.com/product/theory-and-practice-of-waterand-wastewater-treatment-second-edition-edition-ronald-l-droste/

Application of Microalgae in Wastewater Treatment

Volume 1 Domestic and Industrial Wastewater Treatment

Sanjay Kumar Gupta

https://textbookfull.com/product/application-of-microalgae-inwastewater-treatment-volume-1-domestic-and-industrial-wastewatertreatment-sanjay-kumar-gupta/

Green Methods for Wastewater Treatment Mu. Naushad

https://textbookfull.com/product/green-methods-for-wastewatertreatment-mu-naushad/

Wastewater Engineering Treatment and Resource Recovery

Metcalf And Eddy

https://textbookfull.com/product/wastewater-engineeringtreatment-and-resource-recovery-metcalf-and-eddy/

Wastewater Engineering Treatment and Reuse SOLUTIONS

MANUAL George Tchobanoglous

https://textbookfull.com/product/wastewater-engineeringtreatment-and-reuse-solutions-manual-george-tchobanoglous/

Wastewater treatment plant operation and management First Edition Not Available

https://textbookfull.com/product/wastewater-treatment-plantoperation-and-management-first-edition-not-available/

Eco Engineered Bioreactors Advanced Natural Wastewater Treatment First Edition Higgins

https://textbookfull.com/product/eco-engineered-bioreactorsadvanced-natural-wastewater-treatment-first-edition-higgins/

Life Cycle Assessment of Wastewater Treatment First Edition Mu. Naushad

https://textbookfull.com/product/life-cycle-assessment-ofwastewater-treatment-first-edition-mu-naushad/

Dictionary of Environmental Engineering and Wastewater Treatment 1st Edition Alireza Bahadori

https://textbookfull.com/product/dictionary-of-environmentalengineering-and-wastewater-treatment-1st-edition-alirezabahadori/

PracticalWastewaterTreatment

PracticalWastewaterTreatment

SecondEdition

Lilburn,Georgia

GlobalEnvironmentalOperationsInc.

Thiseditionfirstpublished2019

©2019JohnWiley&SonsInc.

EditionHistory

JohnWiley&SonsInc.(1e,2006).

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted, inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptas permittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www .wiley.com/go/permissions.

TherightofDavidL.Russelltobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice

111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisit usatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstant flowofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedto reviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceof equipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusage andforaddedwarningsandprecautions.Whilethepublisherandauthorshaveusedtheirbesteffortsin preparingthiswork,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompleteness ofthecontentsofthisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby salesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatan organization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceoffurther informationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservicestheorganization, website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththeunderstanding thatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedherein maynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readers shouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwas writtenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Russell,DavidL.(DavidLloyd),1943-author.

Title:Practicalwastewatertreatment/DavidL.Russell,PE,Lilburn, Georgia,GlobalEnvironmentalOperationsInc.

Description:Secondedition.|Hoboken,NJ,USA:Wiley,2019.|Includes index.|

Identifiers:LCCN2018035677(print)|LCCN2018036545(ebook)|ISBN 9781119527053(AdobePDF)|ISBN9781119527121(ePub)|ISBN9781119100850 (hardcover)

Subjects:LCSH:Watertreatmentplants.|Sewage–Purification. Classification:LCCTD434(ebook)|LCCTD434.R872019(print)|DDC 628.1/683–dc23

LCrecordavailableathttps://lccn.loc.gov/2018035677

CoverdesignbyWiley

Coverimage:©DLR-GEOphoto

Setin10/12ptWarnockProbySPiGlobal,Chennai,India

PrintedintheUnitedStatesofAmerica 10987654321

Iwanttothankseveralpeoplefortheirinspiration.Asecondeditionofabook isharderthanwritingafirstedition,andalotmoreworktoensurethatone hassomethingtosay.

Thefollowingpeopleprovidedmotivationforthiseffort: ElizabethAnnEason MarianneRussell(1942–2007)

Mygirls:LauraRussellandJenniferRussell and theirgirls:Edda,ZolaandMiriam

AlsoaspecialnoteofthankstoDrBenitoJoseMarinas,Distinguished ProfessorandcurrentheadoftheCollegeofCivilandEnvironmental EngineeringattheUniversityofIllinois,Urbana,Illinois,forrecognition.

Andfinally,BobEspositoofWileyforpatiencewithanauthor.

Contents

Acknowledgments xvii

Preface xix

1Composition,Chemistry,andRegulatoryFramework 1

1.1WaterComposition 1

1.2WaterCharacteristicsandPhysicalProperties 2

1.2.1SolubilityofGasesinWater 4

1.2.1.1Nitrogen 4

1.2.2Henry’sLaw 6

1.3SolutionChemistry:SaltsandIonsinWater 10

1.4DisassociationConstantsforWeakAcidandBases 12

1.4.1CommonMineralsDissolvedinFreshwaterandSeawater 15

1.5SourcesofWater 16

1.5.1Groundwater 16

1.5.2GroundwaterQuality 17

1.5.3OtherPrincipalContaminantsinGroundwater 18

1.5.4MovementofGroundwater 19

1.6AnalyticalMethods 19

1.7LaboratoryGuidance 22

1.8RegulatoryFrameworkofWaterRegulations 24

1.8.1WhatIsQualityWater? 24

1.8.2WaterQualityStandards 25

1.8.3WaterQualityStandardsintheUnitedStates 26

1.8.4EstablishingWaterQualityStandards 26

1.8.5EffluentStandardsandGuidance 26

1.8.6MixingZones 27

1.8.7DischargePermits 28

1.8.8USPenaltyPolicies–EnforcementofPermitConditions 28

1.8.9WaterQualityDischargeBasicsintheUS 29

1.8.10HowWaterQualityStandardsAreEstablished 32

1.8.11UKWaterEffluentQualityStandard 37

1.8.12EUWaterQualityStandardsandEffluentLimits 39

vii

1.8.13OtherWaterQualityRequirements 40

1.8.13.1USPrimaryandSecondaryDrinkingWaterStandards 40

1.8.13.2WHODrinkingWaterQualityGuidelines 43

1.8.13.3EUDrinkingWaterDirectives 43

1.8.13.4UKDrinkingWaterStandards 43

1.9WaterUseDataandSomeDischargeCharacteristics 43

1.9.1WaterUsebyMunicipalities 45

1.9.2AgriculturalWater 47

1.9.3CoolingWater 47

1.9.4BoilerWater 48

1.9.5OtherIndustrialWaterQualityRequirements 49

1.9.5.1SteelIndustry 50

1.9.5.2PaperIndustry 50

1.9.5.3PetrochemicalIndustry 50

1.9.5.4PetroleumExplorationandProductionOperations 51 Notes 52

2WhatisWaterPollution? 59

2.1PollutionDefined 59

2.2ChemicalIndustry 60

2.3CoolingTowers 63

2.4Boilers 64

2.5IronandSteelIndustry 66

2.6MiningIndustries 67

2.7FrackingforOilandGas 68

2.8PetroleumExploration 71

2.9PetroleumRefining 73

2.10AgriculturalandFoodProcessing 75

2.11CropWaterUse 75

2.12VegetableandFruitProcessing 76

2.13AnimalFarmingandConcentratedAnimalFeedingOperations 77

2.14LivestockandConcentratedAnimalFeedingOperations 78

2.15SlaughterhouseandMeatPackingandProcessingWastes 82

2.16DairyWastes 83

2.17MeasuringPollution 83

2.18TheSamplingPlan 85

2.19AnalyticalMethodsandtheRoleoftheLaboratory 87

2.19.1TheAnalyticalPlan 90

2.19.2TheEffectsofPollutionontheEnvironment 90

2.19.3OxygenDepletion–BiochemicalOxygenDemand 91

2.19.4OxygenUptakeinaStream—TheOxygenSagEquation 93

2.19.5BiologyofPollutedWater 95

2.19.6Nitrogen 96

viii Contents

2.19.7Phosphorus 97 Notes 98

3GroundwateranditsTreatment 103

3.1HydraulicsofGroundwater 104

3.2SoilParticlesandSurfaceAreas 106

3.3WellHydraulics 107

3.4WellPackingandScreens 109

3.5Trenches 109

3.5.1OrificesandPipeLosses 111

3.6CompressibleFlow 113

3.6.1CalculationofExpansionFactor 114

3.6.2GroundwaterHydraulics 115

3.7GroundwaterTreatment 117 Notes 123

4StatisticsofMeasurements 125

4.1IntroductiontoStatisticalMeasurements:Background 125

4.2SignificantFigures 126

4.3ProbableError 127

4.4RepeatMeasurements 128

4.5NetProcessMeasurements 129

4.5.1Calibration 129

4.5.2HowtoMeasureYourFlowAccurately 130

4.5.2.1GurleyCurrentMeter 130

4.6StatisticalDistributionsforEnvironmentalEvents 133

4.6.1WeibullDistributions 134

4.7BlackSwansandDataAnalysis 135

4.7.1BlackSwans 135

4.7.2DataAnalysis 136

4.7.3Outliers 136 Notes 137

5TheFlowofWaterandWastewater 139

5.1StatisticalBasisforErrorEstimation 139

5.2OpenChannelHydraulics 140

5.3FroudeNumber 147

5.4TypesofFlowmeters 150

5.5WeirPlates 155

5.6AlignmentErrors 156

5.7SamplesandSampling 158

5.8Conclusion 161 Notes 161

Contents ix

x Contents

6TroubleshootingandEmergencyPlanning 163

6.1FaultTreeAnalysis 163

6.2ReverseFaultTreeAnalysis 166

6.2.1BowTieAnalysis 166

6.3Analysis:TheFiveWhys 168

6.4RegulatoryRequirements 169

6.5SoftwareSolutions 169

6.6EmergencyResponsePlanning 170

Notes 170

7ChemistryandAnalyses 173

7.1AquaticTesting 173

7.2BacterialTesting 174

7.3DissolvedOrganicMaterials–BOD,COD,andTOC 175

7.3.1BODvsThOD 179

7.3.2ChemicalOxygenDemand 181

7.3.3TOC 183

7.4CommonIonSpecies 183

7.4.1MostImportantChemicalsintheWaterEnvironment 185

7.4.2pH 185

7.4.3CarbonateChemistry 186

7.4.4Alkalinity 186

7.5Hardness 189

7.6ChemicalWaterSoftening 192

7.6.1ExcessLimeProcess 193

7.7Nitrogen 194

7.8Phosphorus 197

7.9Sulfur 198

7.10Chlorine 198

7.11OtherHalogens 199

7.12Metals 199

7.13Solids 201

7.14OrganicChemicals 205 Notes 206

8BasicWaterandWastewaterTreatmentTechniques 209

8.1RemovalofMetals 209

8.2Chromium 211

8.2.1OtherChromiumReductionReactions 212

8.3Arsenic 213

8.4Cadmium 213

8.5Iron 214

8.6Zinc 214

8.7Mercury 214

8.8Radium 215

8.9Anions 218

8.9.1Cyanide 218

8.9.2NitratesandNitrites 219

8.10SolventsandOils 220

8.11ChlorinatedOrganics 221

8.11.1PCBs 222

8.11.2DDT 223 Notes 225

9BiologicalWastewaterTreatment 227

9.1TheMicrobialWorld 227

9.2OrderofTreatment 233

9.3TypesofOrganisms 234

9.4ChemistryandActivatedSludge 238

9.5GrowthConditionsandNitrification 239

9.6DenitrificationandPhosphateRemoval 240

9.7BiologicalGrowthEquation 241

9.7.1TheMonodEquation 242

9.7.2MicrobialDecay 243

9.7.3EffectofTemperatureandpHonRateofReactions 245

9.8PrinciplesofBiologicalTreatmentSystems 245

9.9ActivatedSludgeanditsVariations 248

9.10SubstrateRemovalDefinitions 250

9.11TricklingFiltersandVariations 252

9.12ClarificationforBiologicalRemovals 254

9.13OtherSolidsRemovals 255

9.14BiologicalSynthesisandOxidation 255

9.15BiologicalTreatmentofToxicWastes 257

9.16ModelingtheBiologicalProcess 257

9.16.1ModelingNotesBeforeOneStarts 258

9.16.2FreeWastewaterTreatmentModelingPlatforms 261

9.16.2.1SSSP 261

9.16.2.2STEADY 261

9.16.2.3JASS 262

9.16.2.4Stoat 262

9.16.3CommerciallyAvailableModelingTools 263

9.16.3.1GPSX 263

9.16.3.2SUMO 264

9.16.3.3SIMBA 265

Contents xi

9.16.3.4Biowin 267

9.16.3.5WEST 268

9.16.4ModelingSummary 268 Notes 270

10AnaerobicTreatment 273

10.1BasicAnaerobicProcessesforWastewater 273

10.2PhosphorusRemoval 275

10.3BasicAnaerobicProcessesforDigestionandTreatment 276

10.4AnaerobicPretreatment 278

10.5UpflowAnaerobicSludgeBlanketReactors 281

10.6OtherDigesterConfigurations 283

10.7SiloxaneRemovals 283

10.8SludgeDigestion 284

10.9GasProductionEmphasis 286

10.10NewTechnologies 287

10.11SludgeTreatment 288

10.12AnaerobicDigesterModelADM1 288

10.13StruviteandAnaerobicProcesses 289 Notes 290

11PrecipitationandSedimentation 293

11.1TheoryofSedimentation 293

11.2ClarifiersandtheirDesign 294

11.2.1BulkVelocity–SurfaceLoadingRate 294

11.2.2HydraulicDetentionTime 296

11.3LamellasandSpecialtyDevices 298

11.3.1Lamellas 298

11.3.2MembraneFilters 299 Note 301

12GranularFiltrationTheoryandPractice 303

12.1GranularMediaFiltration 303

12.1.1SizingofFiltersbyFlowRate 303

12.1.2UniformityCoefficientandEffectiveGrainSize 306

12.2FiltrationHydraulics 306

12.3ParticleSizeRemovals 307

12.4BackwashHydraulics 307

12.4.1UseofAirintheBackwashofGranularFiltrationSystems 310 Notes 312

13SkinFiltration 313

13.1Introduction 313

13.2MicrostrainersandScreens 313

xii Contents

13.3BeltFilters 316

13.4PlateandFrameFilters 316

13.5Clothvs.PaperFilters 319

13.6Precoat 320

13.7HeadLossThroughClothFilters 322

13.8BagFilters 323 Notes 324

14MembraneFiltersandReverseOsmosis 325

14.1Introduction 325

14.2DesignValues 330

14.3ProcessSelection 330

14.3.1UltrafiltrationMembraneSelection 330

14.3.2CelluloseAcetateMembranes 331

14.3.3PolysulfoneMembranes 331

14.3.4PolyamideMembranes 331

14.3.5PolyacrylonitrileMembranes 331

14.3.6UltrafiltrationModules 332

14.4ReverseOsmosis 333

14.5MassTransferTheory 333

14.6MembraneDesignSoftware 334

14.7MembraneMaterials 336

14.8MembraneConfigurations 337

14.9RODesignConsiderations 338

14.9.1FeedwaterSupplyConsiderations 338

14.9.2PressurePumping 338

14.9.3MembraneConsiderations 341

14.9.4Post-treatment 341

14.10DesignParameters 341 Notes 344

15Disinfection 347

15.1Introduction 347

15.2RateofKill–DisinfectionParameters 347

15.2.1Chick’sLaw 347

15.2.2HarmfulOrganisms 348

15.3Chlorine 353

15.3.1Ammonia,Chlorine,andChloramines 354

15.3.2OtherTypesofChlorine 355

15.3.3OtherReactionswithChlorine 355

15.3.4ChlorineSafety 355

15.3.5ChlorineDioxide 356

15.4Ozone 357

Contents xiii

15.5UltravioletLight 358

15.5.1LEDLighting 360

15.6OtherDisinfectingCompounds 360

15.6.1PotassiumPermanganate 360

15.6.2HydrogenPeroxideandOzone 361

15.6.3PAA:PeraceticAcid 362

15.6.4Bromine 364

15.6.5Iodine 365

15.6.5.1TypesofIodinators 365

15.6.5.2CarefulUseofIodine 365

15.7DisinfectionbyUltraFiltration 366 Notes 367

16PhosphorusandNitrogenRemoval 369

16.1General 369

16.2BardenPho©Processes 373

16.3ChemicalPhosphorusRemoval 375

16.4NitrogenRemoval 378

16.4.1NitrogenChemistryandForms 378

16.4.2Ammonia 378

16.4.3Nitrate 379

16.4.4Nitrification 379

16.4.4.1AmmoniaStripping 388

16.4.4.2IonExchange 390

16.5Conclusions 392 Notes 392

17CarbonAdsorption 395

17.1Introduction 395

17.2TheFreundlichandLangmuirEquations 396

17.3CarbonAdsorptionPhysicalCoefficientsandEconomics 397

17.4OtherConsiderations 397

17.4.1CarbonRegeneration 397

17.4.2ThePACTTM Process 397

17.4.3WetAirRegenerationforPACTSystems 398 Note 401

18IonExchange 403

18.1Resins 403

18.2PhysicalCharacteristics 403

18.3ChemicalStructure 404

18.3.1Selectivity 404

18.3.2SelectivityCoefficient 405

xiv
Contents

18.4DesignConsiderations 406

18.4.1Pretreatment 406

19DissolvedAirFlotationandTechniques 409

19.1DesignBasicsforDAF 409

19.2OperatingParameters 410

19.3TheoryandDesign 411

19.4RangesofData 412

19.5Electroflotation 413

19.5.1ElectroflotationTheoryandDesign 414

19.6Electrocoagulation 415 Notes 416

20Coagulation,FlocculationandChemicalTreatment 419

20.1Introduction 419

20.2Sols 421

20.3FlocculationandMixing 422

20.4Practice 423

20.5Modeling 424 Notes 424

21HeatTransferProcesses:Boilers,HeatExchangersand CoolingTowers 425

21.1Boilers 425

21.2BoilerClassifications 426

21.2.1FireTubeBoilers 426

21.2.2WaterTubeBoilers 426

21.3BoilerWaterQualityRequirements 427

21.4CoolingTowers 430 Notes 431

22EvaluatinganExistingWastewaterTreatmentPlantDesign usingModelingSoftware 433

22.1Step1:InformationGathering 433

22.2Step2:ModelSelection 435

22.3Step3:LaboratoryandOtherDataOrganization 438

22.3.1GeneratingtheFlowsWithouttheData 439

22.3.2GettingtheHydraulicsandtheTankageCorrect 440

22.3.2.1WhenYouCannotDye-testYourTanks–aProcedure 441

22.4Step4:FlowSheetSetupandModelOrganization 443

22.5Step5:ModelCompilationandSetup 444

22.5.1InitialValuesversusDerivedValues 445

22.5.2IntegratorSettings 445

Contents xv

22.6Step6:InputandOutputFilePreparation 445

22.7Step7:InitializationoftheModelParametersandFirstRuns 445

22.7.1WhattoBalanceorAdjust 446

22.7.2WhattoKeyinonDuringYourModeling 446

22.8Step8:ParameterAdjustments 446

Notes 447

Index 449

xvi Contents

Acknowledgments

Ihavebeenprivilegedtohaveknownseveralgiantsintheenvironmentalfield. Manyofthemhavealreadypassedon,buttheircontributionoftimeandeffort tothefieldofenvironmentalengineeringcannotbeoverlooked.Standingon theshouldersofthesegiantshasgivenmeaplatformtobeabletolookoutatthe fieldandwriteaseriesofenvironmentalbooksonvarioustopics,includingthis work.Iwishtoacknowledgetheircontributionstothefieldofenvironmental engineeringatthispoint:

ProfessorRichardS.Englebrecht ,formerheadoftheEnvironmentalEngineeringDepartmentattheUniversityofIllinois,Urbana,forencouragementto followmydreams.

DrJohnAustin (UofI),forassistanceatadifficulttimeinmyacademiccareer.

DrBenjaminEwing (UofI),forinvaluableadviceoncareerselection.

DrV.T.Chow (UofI),forhisbodyofworkonopenchannelflowandhydrology.

Andsomereallygreatbossesovertheyears:

LeonMattioli and RichardSobel ofAlliedChemicalSpecialtyChemicals Division,Claymont,DE,andMorristown,NJ.

J.S.Lagarias,and DrLouisMcCabe ofResourcesResearch,Inc.(Divisionof HazeltonLaboratories,Reston,VA).

DrRobertIrvine,PhD,rediscovereroftheSequencingBatchReactor.

DrPieterVanRolleghem,mathematician,engineer,andcreatorofWEST software.

Andsomeverydearfriendsandprofessionalassociates:

DrCharlesCalmbacher,PhD,CIH

DavidR.Vaughn,PE

DrJeremyDudley,PEng

ThomasMcGowan,PE

DrDonaldRay,PE

LeroyStaska

Thankyouall.

xvii
GlobalEnvironmentalOperationsInc.

Preface

ThefirsteditionofthisbookwasdevelopedfromacourseItaughtforthe AmericanInstituteofChemicalEngineers.Itwasafirstattempttointroduce industrialwastewatertreatmenttheory,practices,andissuesintotheChemical Engineeringcommunityasastand-alonediscipline.Itultimatelyledtothefirst editionofthisbook.

Thereisanaturalseparationbetweenindustryandacademia,andconsequentlytheacademicsteachthebasicsofengineering,butmoreandmorethe separationbetweenthewaythesubjectmaterialistaughtandthewayitispracticedisgrowing.Historically,muchofthewastewatertreatmentfieldhasbeen theprovenanceofthecivilengineeringcommunitybecauseofitsassociation withsanitaryengineering.MuchofthetimeIspentinconsulting,designing, andsupervisingtheconstructionofmunicipalwastewatertreatmentplantswas profoundlyformulaic,andalargelymechanicalexerciserequiringlittleimaginationandpresentingfewnewchallenges.Thetreatmentofindustrialwastes wasfarmoreinterestingbecausethewastesvariedsogreatly,andtheirtreatmentrequiredimaginationandresearch.

Myintroductiontoindustrialwastewatertreatmentcamethrougha Philadelphia-basedconsultingcompany,andthensubsequentworkassignmentsforcompaniesspecializinginindustrialwastewatertreatment,and ultimatelyintothechemicalindustry.Atonepoint,alongtheway,Irealized thatIwasmuchmoreathomewiththechemicalengineersthanwiththecivil engineers,andIstillam.

Thisbookwasdevelopedtogivethestudentandtheexperiencedpractitioner someinformationandbalancewithregardtoindustrialpracticesandgoals,and todescribehowthewaterindustryworks,andwhatisimportantinit.Ihave triedtocoverawiderangeoftopicstodumpthemorethan40yearsofmy experienceintothisbriefvolumetohelpthereaderinvestigatethetopics,and pointoutusefultoolsforfurtherstudyandmasteryofthesubjects.Idonottry tosolveproblemsforthereader,buthaveprovidedafewproblemsontopicsof interest.

xix

xx Preface

Mistakesinthisvolumeareminealone.Incompilingthiswork,Ihave amassedawidelistofreferencematerials,andhaveattemptedtodownloada copyofthereferencesformyownuse,andtomakethemavailabletoothers. TheInternetisfullofbothpermanentandtemporaryinformation.Someofthe informationIhaveprovidedthroughlinkswillundoubtedlybeobsoletebythe timethisbookispublishedorhasafewyearsofageonit.So,ifinresearching thetopicsinthebook,onefindsthatakeytopicorpaperismissing,contact me,andIwillsendyouacopyoftheindividualpaper,ortheentiresetof referencesforyourdigitallibrary.

Composition,Chemistry,andRegulatoryFramework

Muchwatergoethbythemill

Thatthemillerknowethnotof.

1.1WaterComposition

JohnHeywood(1497–1580)

Wateriscomposedoftwopartshydrogenandonepartoxygen.Itisnotthe materialsofthewaterbutthecontaminantsinitthatmakeitimportant.If welookatachemicalreaction,wewouldbeextremelysatisfiedwithareactionyieldof99%purity,asmanyreactionsareinthe70–90%range.However, forwater,evena1%levelofimpurityisunacceptable.Thelevelsofcontaminantsthatweoftenconsiderinsignificantinmanyproductsandfoodscan preventusfromusingwater.Impuritiesinwateratthe1%levelareequivalent to10000ppmormgl 1 .Atthatlevel,eventhingslikesodiumchloride,table salt,inthewaterwillrenderitundrinkableorharmfulifconsumed.Inother instances,evenafewmilligramsoftherightcompoundcanrenderthewater unpalatableorunusableformanyaquaticpurposes.

Fromanotherstandpoint,thechallengesthatarepresentedtoawastewatertreatmentplantcanbeformidable.Fromaprocessstandpoint,thereactionyieldswelookforproduceatreatedeffluentwithcontaminationlevelsof lessthan10mgl 1 ,andinanumberofinstancesunder2mgl 1 ofparticular contaminants.Thatisprettygoodforawastestreamwhichmaystartoutat 500mgl 1 ormore–itrepresentsa99.6%removalefficiency.

Theusabilityofthewaterdependsuponthecompoundseitherdissolvedin itorsuspendedinit.Contaminantscanbeorganicorinorganic,solidsorliquids.Theusabilityofthewateralsodependsuponthepurposeoftheuse.For example,waterusedforcoolingdoesnotnecessarilyneedtobeofthesame quality(purity)asthatusedfordrinkingorfoodpreparation.Fecalandbacterialcontaminationofcoolingwaterisoftenunavoidableincoolingtowers,and

1 1
PracticalWastewaterTreatment, SecondEdition.DavidL.Russell. ©2019JohnWiley&Sons,Inc.Published2019byJohnWiley&Sons,Inc.

towerwateristreatedwithchemicalstoreducecorrosionandinhibitexcessive bacterialgrowth.Inallcases,thiswaterqualityisnotsuitableforfoodpreparation,norfordrinking.Thesterility,turbidity,anddissolvedconstituentsinthe waterareimportantqualitycontrolissues,butnotallthreearenecessaryfora specificuse.

Watercanalsobetoopureforaspecificuse.Asanexample,therearea numberoflocationsworldwidethathavetheirdrinkingwaterfromthermal desalinationsources.AtonespecificfacilityintheMiddleEast,thewateris slightlyabove43 ∘ C,whichisabituncomfortablefordrinking,butbecauseitis fromathermaldesalinationplant,itis distilled .Hencethewaterisaggressive becauseitissolowincarbonatesandmineralsthatithastheeffectofleachingthecalciumfromtheasbestos-cementpiping,thusweakeningit.Similarly, distilledwaterwillcorrodeironandsteelpiping,anddrinkingdistilledwater canalsocausehealthproblemssuchasdiuresis,andachangeintheelectrolyte concentrationinthebody1 .

1.2WaterCharacteristicsandPhysicalProperties

Water(H2 O)isdense,weighinginat999.972kgm 3 ,boilingat99.98 ∘ C (212.96 ∘ F),andmeltingat0.0 ∘ C.Itisthestandardforviscosity,at1centipoise (cp)at20 ∘ C,andhasavaporpressurewhichistemperature-dependent,from 611Pa(0.180in.ofHg)at0 ∘ Cto101901.3548Paat100 ∘ C.Theformulafor vaporpressureofwaterinthatrangeis

Pw = 10A B∕(C+T )

whereA = 8.07131,B = 1730.63,andC = 233.426andthetemperature T isin Celsiusbetween0 ∘ Cand100 ∘ C. P w isinpascals;forreference,1atmosphere is101325Pa,or764.2602mmofHg,and1mmofHgisequalto133.333Pa.

Purewaterisanexcellentinsulator,butwaterisseldom,ifever,pure,andcontainssmallquantitiesofdissolvedsaltsandmanymaterials.Theknownmaximumresistivityofpurewateris182KΩ m 1 at25 ∘ C,(or5.4945 × 10 6 Sm 1 or 0.054945 μScm 1 ).2 Verysmalllevelsofcontaminants,sometimesintheparts pertrillion(ppt)range(10 12 gl 1 ),cancauselargeincreasesinitsconductivity. Theconductivityofwaterisdependentnotonlyonthequantityofcontaminant, butonthetypeofcontaminant.Ifthecontaminanthasaninteractionwiththe water,andasecondaryand/ortertiaryionizationconstant,itismuchharderto relateconductivitytoconcentration.

Whenwaterhassalts(ionicmaterial)init,itcanbecomeanexcellentconductor.Theelectricalconductivityofwatercanbeusedtoestimatethedissolved

2 PracticalWastewaterTreatment

Table1.1 Approximateconductivityofvariouschemicalsinwaterwherethe substanceistheprincipalcontaminant.

SaltConductivityequivalentTDS/conductivity

Sodiumchloride1.00ppmTDS

solidsconcentrationinwaterifthatvalueislessthanabout1500mgl 1 .Above thatpoint,theconductivitytodissolvedsolidscurveflattensoutandbecomes unreliable.Mostconductivitymetersuseaformulaof:

Totaldissolvedsolids, TDS (mg∕l)= C × 1000 × conductivityin microsiemens∕cm

Dependinguponthewatersourceandcomponents,thevalueofCcanvary anywherefrom0.51to0.83.3 Athigherlevelsofdissolvedsolids,thecoefficient changes.Table1.1illustratesthedifferenceinconductivityofcertainsoluble materialsinwater.Itshouldbenotedthattheconductivityisafunctionofthe molecularstructureofthesolidorgas,andinsomecases,substancesthathave secondionizationconstantsorwhichreactwithwaterhavesubstantiallydifferentvaluesforconductivitywhichwillnotfollowtheformulashownabove. Multipleionsinsolutionwillhaveanonlinearrelationshiptothevaluesgiven inthetable.

Conductivitycanalsobeusedtomeasuretheamountofcalciumcarbonatein water,ifthatistheprincipaldissolvedsalt.Calciumcarbonateanditsformsare referredtoashardness,andrepresenttheabilityofthewatertoleaveCaCO3 depositsinpiping,onheatexchangers,coolingtowers,andsoon.Wewillcover hardnessinlaterchapters.

Ifanelectriccurrentispassedthroughwater,itwillgeneratehydrogenand oxygenintheratioof2:1byvolume.Iftherearesaltssuchassodiumchloride inthewater,aquantityofchlorinegas(Cl2 )willbegeneratedalongwiththe hydrogenandoxygen.Iflargeconcentrationsofhighpuritysaltaredissolved inthewater,andthepositiveandnegativeelectrodesareseparatedbyamembrane,theelectriccurrentbecomesthebasisforanelectrolyticcellusedinthe chemicalindustryforthegenerationofchlorinegasandcausticsoda(NaOH). Withwaterhavingaconductivitylessthan1200 μ℧,thevoltagerequirements increaseasthesaltconcentrationbecomesproportionallyless.

Composition,Chemistry,andRegulatoryFramework 3
= 2.04 μScm 1 0.49
Sodiumsulfate1.00ppmTDS = 1.49 μScm 1 0.67 Calciumsulfate1.00ppmTDS = 1.36 μScm 1 0.74
Sodiumbicarbonate1.00ppmTDS = 1.06 μScm 1 0.91

1.2.1SolubilityofGasesinWater

Themostimportantdissolvedgasisoxygen,andthesecondmostimportantgas isnitrogen,becauseitcomprisesapproximately79%ofouratmosphere,andis apotentialsourceofnutrientsforcertainaquaticplants.

Thesolubilityofvariousgasesinwaterisgiveninmanytablesfoundinchemicalandanalyticalhandbooks,andonmanycommercialwebsites,including www.engineeringtoolbox.com,andinhandbooksandanalyticalreference materials.4

Table1.2isalistingofthesolubilityofoxygeninwaterattemperatures between0 ∘ Cand30 ∘ C,forvariousvaluesofsaltsinthewater.Table1.2shows thesolubilityofselectedgasesinwater.

L.E.Geventmanpublishedaresearchpaperonthesolubilityofselectedgases inwater.5 Geventman’spaperstatesthatthesolubilityoftheselectedgasescan becalculatedbythefollowingformula: ln X1 = A + B∕T ∗ + Cln T ∗

where T * = T /100K,and X 1 isthesolubilityofthegas.A,B,andCaredeterminedexperimentallyfromchemicaldata.Hispaperprovidesalistofthecoefficients.Allvaluesrefertoapartialpressureofthegasof101.325kPa(1atm).

Theconcentrationofoxygeninwateratanytemperatureisgivenbythefollowingequationfoundin StandardMethods:6

=−139.34411 +(1.575701 × 105 ∕T2 )−(6.642308 × 107 ∕T2 ) +(1.243800 × 1010 ∕T3 )−(8.621949 × 1011 ∕T4 )

((3.1929 × 102 )−(1.9428 × 10∕T)+(3.8673 × 103 ∕T2 ))

whereChlisthechlorinitymeasuredingrams/kilogramandisdefinedaschlorinity = salinity/1.80655,andsalinityisapproximatelyequaltototalsolidsin wateraftercarbonateshavebeenconvertedtooxidesandafterallbromideand iodidehavebeenreplacedbychloride.

Figure1.1illustratesthesolubilityofoxygeninwateratvaryingtemperatures andvaluesofchlorinityofzeroand1000mgl 1 .

1.2.1.1Nitrogen

Nitrogenissolubleinwater,butinthegaseousorN2 formisessentiallyinert. Principalformsofnitrogeninwaterareammonia,nitrate,andnitrite.Theonly timeonehastoworryaboutthesolubilityofnitrogenisinitsionizedforms, asammonianitrite,ornitrate(tobediscussedlater)orwhenoneisdesigning apressureflotationsystem.

Figure1.2illustratesthesolubilityofnitrogengas(N2 )inwaterattemperaturesbetween0 ∘ Cand60 ∘ C.

4 PracticalWastewaterTreatment
LnO2
Chl

Table1.2 Solubilityofoxygeninmgl 1 inwaterexposedto water-saturatedairatatmosphericpressure(101.3kPa).

TemperatureChlorinity 0510152025

014.62113.72812.88812.09711.35510.657 114.21613.35612.54511.78311.06610.392 213.82913.00012.21811.48310.79010.139 313.46012.66011.90611.19510.5269.897 413.10712.33511.60710.92010.2739.664 512.77012.02411.32010.65610.0319.441 612.44711.72711.04610.4049.7999.228 712.13911.44210.78310.1629.5769.023 811.84311.16910.5319.9309.3628.826 911.55910.90710.2909.7079.1568.636 1011.28810.65610.0589.4938.9598.454 1111.02710.4159.8359.2878.7698.279 1210.77710.1839.6219.0898.5868.111 1310.5379.9619.4168.8998.4117.949 1410.3069.7479.2188.7168.2427.792 1510.0849.5419.0278.5408.0797.642 169.8709.3448.8448.3707.9227.496 179.6659.1538.6678.2077.7707.356 189.4678.9698.4978.0497.6247.221 199.2768.7928.3337.8967.4837.090 209.0928.6218.1747.7497.3466.964 218.9158.4568.0217.6077.2146.842 228.7438.2977.8737.4707.0876.723 238.5788.1437.7307.3376.9636.609 248.4187.9947.5917.2086.8446.498 258.2637.8507.4577.0836.7286.390 268.1137.7117.3276.9626.6156.285 277.9687.5757.2016.8456.5066.184 287.8277.4447.0796.7316.4006.085 297.6917.3176.9616.6216.2975.990 307.5597.1946.8456.5136.1975.896

Composition,Chemistry,andRegulatoryFramework 5

Figure1.1 Solubilityofoxygeninwateratvaryingtemperatures,andvaluesofchlorinityof zeroand1000mgl 1 .

Figure1.2 Solubilityofnitrogengas(N2 )inwaterattemperaturesbetween0 ∘ Cand60 ∘ C (litersperkgofwater).

OthercommongasessolubleinwaterareshowninTable1.3intermsofmillimols.Thisenablescalculationofthevolumeofthelistedgasesasafunction ofpressure.Thereisanexamplebelow.

1.2.2Henry’sLaw

Henry’slawgivesussomeideaofthesolubilityofothergases.In1803,William Henrystated:“Ataconstanttemperature,theamountofagivengasthatdissolvesinagiventypeandvolumeofliquidisdirectlyproportionaltothepartial pressureofthatgasinequilibriumwiththatliquid.” P = K′ C C

6 PracticalWastewaterTreatment 0 2 4 6 8 10 12 14 16 0510152025 DO in mg/L TemperatureDegreesCentigrade DOatzeroChlorinityDOat1000mg/LChlorinity
0.012 0.014 0.016 0.018 0.02 0.022 0.024 010203040506070
0.01

Table1.3 MolarHenry’slawconstantsforaqueoussolutions at25 ∘ C.

3 ) 1 )

where P isthepartialpressureofthegas, C isitsmolarconcentration,and K′ C istheHenry’slawconstant.Thisisuniversallytrueforalmostallliquids. However,astheconcentrationsandpartialpressuresincrease,deviationsfrom Henry’slawbecomenoticeable.Thisbehaviorisverysimilartothebehavior ofgases,whichdeviatefromtheidealgaslawaspressuresincreaseandtemperaturesdecrease.SolutionsthatobeyHenry’slawaresometimescalledideal dilutesolutions.ValuesoftheHenry’slawconstantsformanygasesinmany differentorganiccompoundsandgaseshavebeenmeasured.Theinverseof theHenry’slawconstant,multipliedbythepartialpressureofthegasabove thesolution,isthemolarsolubilityofthegas.

Henry’slawdoesnotholdforgasesthatreactwithwaterandwhichhavesecondaryandtertiaryionizationconstants.Someofthosegasesincludehydrogen sulfide,chlorine,andcarbondioxide.Thereactionsofthesegasesareoften pH-dependent,andthefreemolarformofthegasisdirectlyrelatedtothe inverseofthepHatwhichitismostsoluble.Forexample,ammoniatendsto formNH3 OHinwater,whichisammoniumhydroxide,andisastronglyionized base.AsthepHofthewaterincreases,theequilibriumreactionof:

shiftsleftward,releasingmorefreeammoniaintothesolution.AtavalueofpH 12,thereactionisessentiallycompleteandthereisessentiallynoionicammonialeftinaqueoussolution.ThisrelationshipisshowninFigure1.3.

ThevalueoftheHenry’slawconstantistemperature-dependent.Thevalue generallyincreaseswithincreasingtemperature.Asaconsequence,thesolubilityofgasesgenerallydecreaseswithincreasingtemperature.Oneexample ofthiscanbeseenwhenwaterisheatedonastove.Thegasbubblesappearingonthesidesofthepanwellbelowtheboilingpointofwaterarebubblesof air,whichevolveduetotheloweredsolubilityfromhotwater.Theadditionof boiledordistilledwatertoafishtankwillcausethefishtodieofsuffocation unlessthewaterhasbeenallowedtore-aeratebeforeaddition.

Composition,Chemistry,andRegulatoryFramework 7
Gas Constant (Pa(moldm
Constant (atm(moldm
He282.7
106 2865.0 O2 74.68
106 756.7 N2 155
106 1600.0 H2 121.2 × 106 1228.0 CO2 2.937 × 106 29.76 NH3 5.69 × 106 56.9
3 ) 1 )
×
×
×
NH3 + H2 O ↔ NH4 + + OH

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Practical wastewater treatment second edition russell by john.patel484 - Issuu