. . . . . . . .
5 5 6 7 11 15 17 22 24
. . . .
27 28 33 37 41
3 Fourier Series 3.1 Eigenfunctions of an LTI System . . . . . . . . . . . . . . . . . . . . 3.2 Fourier Series Representation . . . . . . . . . . . . . . . . . . . . . . 3.3 Properties of Fourier Series Coefficients . . . . . . . . . . . . . . . . .
43 43 47 54
4 Continuous-time Fourier Transform 4.1 Insight from Fourier Series . . . . . . . 4.2 Fourier Transform . . . . . . . . . . . . . 4.3 Relation to Fourier Series . . . . . . . . 4.4 Examples . . . . . . . . . . . . . . . . . 4.5 Properties of Fourier Transform . . . . . 4.6 System Analysis using Fourier Transform
57 57 59 61 64 66 69
. . . . . . . .
. . . . . . . .
or
ld
fo
ru
m
1 Fundamentals of Signals 1.1 What is a Signal? . . . . . . . . . . . . . . . . . . 1.2 Review on Complex Numbers . . . . . . . . . . . 1.3 Basic Operations of Signals . . . . . . . . . . . . 1.4 Periodicity . . . . . . . . . . . . . . . . . . . . . . 1.5 Even and Odd Signals . . . . . . . . . . . . . . . 1.6 Impulse and Step Functions . . . . . . . . . . . . 1.7 Continuous-time Complex Exponential Functions 1.8 Discrete-time Complex Exponentials . . . . . . .
.c om
Contents
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . . . . . .
. . . .
. . . . . . . .
. . . .
. . . . . . . .
. . . .
. . . . . . . .
. . . .
. . . . . . . .
. . . .
. . . . . . . .
. . . .
. . . . . . . .
. . . .
w w
w .jn
tu
w
2 Fundamentals of Systems 2.1 System Properties . . . . . . . . . . . . . 2.2 Convolution . . . . . . . . . . . . . . . . 2.3 System Properties and Impulse Response 2.4 Continuous-time Convolution . . . . . .
. . . . . . . .
3
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .