
6.1 Check Points
1. a. 32 22 1836 1535 xxx xx
TheGCFis23. x
b. 22 422 32
204(5) 1243 40410
xx xxx xxx
TheGCFis24. x
xyxyx xyxyxy xyxy
TheGCFis2xy
2. 222 6186636(3) xxx
3. 23222 253555575(57) xxxxxxx
4. 5433233 32 151227353439 3(549) xxxxxxxx xxx
5. 3222 2 8142242721 2(471) xyxyxyxyxyxyxxy xyxyx
6. 453452332222 23322 162420444(6)45 4(465) abababababababab ababab
7. a. GCFGCF 22 (1)7(1)(1)(7) xxxxx
b. GCFGCF (4)7(4)(4)(7) xyyyx
8. 3232
2 2
xxxxxx xxx xx
5210(5)(210) (5)2(5) (5)(2)
9. 3515(3)5(3) (3)(5) xyxyxyy yx
270Copyright©2013PearsonEducation,Inc.
6.1 Concept and Vocabulary Check
1. factoring
2. greatestcommonfactor;smallest/least
3. false
4. false
6.1 Exercise Set
2. TheGCFof5and15x is5.
4. TheGCFof2 20 x and15 x is5. x
6. TheGCFof4 3 x and3 6 x is33. x
8. TheGCFof5 10 y , 2 20, y and5 y is5. y
10. TheGCFof23 ,3 xyxy ,and2 6 x is2 x
12. TheLCDof5463 18,6, xyxy and45 12 xy is436. xy
14. 9991 xx
16. 5551 yy
18. 1030103 xx
20. 3224843 xx
22. 266 xxxx
24. 22 2015543 yy
26. 322 615325 xxxx
28. 2 11301130 yyyy
30.
46421015523 yyyy
32.
34.
22 1539353 yyyy
Copyright©2013PearsonEducation,Inc.271
36. 43222 32282164 xxxxxx
38. 53223 2613391323 yyyyyy
40. 232642232 xxxxxx
42. 2 1225 x cannotbefactoredbecausethetwoterms havenocommonfactorotherthan1.
44. 232 2
70.
72.
462223 223
xyxyxyxyxy xyxy
46. 2322271845xyxyxy
939295 9325
xyxyxyyxyx xyxyyx
2 2
48. 3232 2 181224 6324 xyxyxy xyxyx
50. 22 15205(34) xx
52. 43222 18963(632) xxxxxx
54. 232 9123(34) abababab
56. 32322 2432168(342) xyxyxyxyxyx
58. 7107710xxxxx
60. 38338xxxxx
62. 9119911xyyyx
64. 771 71 xxyxyxxyxy xyx
84.
66. 52121521121 2151 xxxxxx xx
68. 2 97272 xxx
86.
2 2 972172 7291
xxx xx
272Copyright©2013PearsonEducation,Inc.
88.
90.
92.
94
96. Theareaofthesquareis2 4416. xxx Thearea ofeachcircleis2 x .Theareaofbothcirclesis
2 2. x Sotheshadedareaistheareaofthesquare minustheareaofthetwocircles,whichis
222 16228. xxx
98. a. Usetheformula,2 7216, xx fortheheightof thedebrisabovetheground.Substitute4for. x
227216724164
288161628825632
Therefore,theheightofthedebrisafter4 secondsis32feet.
b. 2 7216892 xxxx
c. Substitute4for x inthefactoredpolynomial.
84924329832132
Youdogetthesameanswerasinpart(a)but thisdoesnotproveyourfactorizationiscorrect.
100. Usetheformulafortheareaofa rectangle, A lw .Substitute4714xx for A and7 x for w
Thelength, l,is 32 x units.
102. – 106. Answerswillvary.
108. doesnotmakesense;Explanationswillvary. Sampleexplanation:Youcanalwayscheckyour factoringbymultiplying.
110. makessense
112. true
114. true
116. Answerswillvary.Oneexampleis 432 48216 yyyy
118. Thegraphsdonotcoincide.
FactorouttheGCFfromtheleftside.
3632. xx Changetheexpressiononthe rightsideto 32. x
120. Thegraphsdonotcoincide.
Factorbygrouping. 222212 21 xxxxxx xx
Changetheexpressionontherightsideto 21.xx
121. 2 2 71010770 1770 xxxxx xx
Graphbothequationsonthesameaxes.
24: xy x-intercept:−2; y-intercept:4
Thelinesintersectas 3,2.
Thesolutionsetis 3,2.
123. First,findtheslope 523 1 473 m
Writethepoint-slopeequationusing 111and,7,2.mxy
yymxx yx yx
Note:If 4,5isusedas 11xy ,thepoint-slope equationwillbe 514 54 yx yx
Thisalsoleadstotheslope-interceptequation 9. yx
124. 248and246
125. (3)(2)6and(3)(2)5
126. (5)(7)35and(5)72
6.2 Check Points
1. 256xx
Factorsof66,16,12,32,3 SumofFactors7755
Thefactorsof6whosesumis5,are2and3. Thus,256(2)(3). xxxx
Check:
2 2 (2)(3)326 56 xxxxx xx
2. 268xx
Factorsof88,18,12,42,4 SumofFactors9966
Thefactorsof8whosesumis–6,are–2and–4. Thus,268(2)(4). xxxx
Check:
2 2 (2)(4)428 68 xxxxx xx
3. 2310xx
11 217 217
Factorsof1010,110,15,25,2 SumofFactors9933
Nowrewritethisequationinslope-interceptform. 27 9 yx yx
Thefactorsof–10whosesumis3,are5and–2. Thus,2310(5)(2). xxxx
Check: 2 2 (5)(2)2510 310 xxxxx xx
274Copyright©2013PearsonEducation,Inc.
4. Thefactorsof–27whosesumis–6,are–9and3. Thus,2627(9)(3). yyyy
5. Nofactorpairof–7hasasumof1. Thus,27 xx isprime.
6. Thefactorsof3whosesumis–4,are–3and–1. Thus,2243(3)(). xxyyxyxy
7. Firstfactoroutthecommonfactorof2. x 322 26562(628) xxxxxx
Continuebyfactoringthetrinomial. 322 26562(628) 2(4)(7) xxxxxx xxx
8. Firstfactoroutthecommonfactorof2. 22 210282(514) yyyy
Continuebyfactoringthetrinomial. 22 210282(514) 2(2)(7) yyyy yy
6.2 Concept and Vocabulary Check
1. 20;12
2. completely
3. +10
4. 6
5. +5
6. 7
7. 2y
6.2 Exercise Set
2. 298xx
Factorsof88,18,1
SumofFactors99
Thefactorsof8whosesumis9are8and1. Thus, 29881. xxxx
Check: 2 2 81188 98 xxxxx xx
4. 291472 2714;279 xxxx
6. 21312112 11212;11213 xxxx
8. 2134058 5840;5813 xxxx
10. 281644 4416;448 xxxx
12. 28771 717;718 yyyy
14. 232874 7428;743 xxxx
16. 252483 8324;835 yyyy
18. 24551 515;514 xxxx
20. 25661 516;615 xxxx
22. 245xx isprimebecausethereisnopairof integerswhoseproductis5andwhosesumis4.
24. 2102173 7321;7310 yyyy
Copyright©2013PearsonEducation,Inc.275
26. 2410xx isprimebecausethereisnopairof integerswhoseproductis−10andwhosesumis4.
21264164 16464;16412 wwww
28.
30.
22272184 18472;18422 yyyy
32.
21516161 16116;16115 rrrr
34. 2155yy isprimebecausethereisnopairof integerswhoseproductis5andwhosesumis−15.
36.
226824 248;246 xxyyxyxy
38.
2291427 2714;279 xxyyxyxy
223065 6530;651 xxyyxyxy
40.
42.
221880108 10880;10818 aabbabab
44. 2 32136 xx
FirstfactorouttheGCF,3.Thenfactorthe remainingtrinomial.
22 321363712 334
xxxx xx
46.
22 331836 332 yyyy yy
48.
xxxx xx
22 210482524 283
50.
rrrrrr rrr
54. 322 31518356 332
xxxxxx xxx
56. 322 39543318 363
rrrrrr rrr
58.
43222 2
yyyyyy yyy
12351235 57
60.
43222 2
xxxxxx xxx
2212022120 1210
62.
43222 2
wwwwww www
64. 22 201001202056 2032 xyxyyyxx yxx
35413531845 3315
66. 322322 2323 3 xyxyxyxyxxyy xyxyxy
22 16809616(56) 16(6)(1) tttt tt 70. 22 336333(1211) 3(11)(1) xxxx xx 72. 22445(445) (9)(5) xxxx xx 74. 322 36243(28) 3(4)(2) xxxxxx xxx 76.
68. 23028 21514 214
22222 222 2
xyxyzxz xyyzz xyzyz
276Copyright©2013PearsonEducation,Inc.
2 2
abxabxab abxx abxx
1336 1336 94
78.
98. Inorderfor24xxb tobefactorable, b mustbe anintegerwithtwopositivefactorswhosesumis4. Theonlysuchpairsare3and1,or2and2.
2 2 3143 2244 xxxx xxxx
80.
20.50.060.60.1 0.60.10.06;0.60.10.5 xxxx
82. 22111 3933 111112 ; 339333
xxxx
84. a.
22 1632481623
b. Substitute3for t intheoriginalpolynomial:
22 16324816332348
1699648
144144
Substitute3for t inthefactoredpolynomial:
1631163331
Theanswersarethesame. Thisanswermeansthatafter3secondsyouhit thewater.
86. – 88. Answerswillvary.
90. doesnotmakesense;Explanationswillvary. Sampleexplanation:Thereareaninfinitenumberof suchpairs.
92. makessense
94. false;Changestomakethestatementtruewillvary. Asamplechangeis:Sometrinomialshavetwo identicalfactors.Forexample 269(3)(3). xxxx
96. false;Changestomakethestatementtruewillvary. Asamplechangeis:24 x isprime.
Therefore,thepossiblevaluesof b are3and4.
100. 22099 nn xx
Noticethat 22 nn xx
xxxx xx
2220992099 911
nnnn nn
102.
Theboxhasthefollowingdimensions:
height=. x
Therefore,thevolumeis
whichisequivalenttothefactorizationabove.
104. Thegraphsdonotcoincide.
Changethepolynomialontherightto
Copyright©2013PearsonEducation,Inc.277
106. Thegraphsdonotcoincide.
Step 1 2 5148(5)() xxxx
xxxx xx
Changethepolynomialontherightto 231. xx
107. 4235 4835 85 13
Thesolutionsetis{13}.
108. Graph6530 xy withasolidline.Sincethetest point(0,0)makestheinequalitytrue,shadethehalfplanethatcontainsthetestpoint.

109 1 2 2 yx
The y-interceptis2.Findanadditionalpointby usingtheslope.Fromthe y-intercept,movedown oneunitandtotheright2units. Drawthelinethroughthesepoints.

110. 2 2 2322436 26 xxxxx xx
111.
2 2
9154 xxxxx xx
112. 2 822052(41)5(41) (41)(25) xxxxxx xx
Step 2 Thenumber8haspairsoffactorsthatare eitherbothpositiveorbothnegative.Becausethe middleterm,14 x ,isnegative,bothfactorsmust benegative.
Step 3
PossibleFactorsofSumofOutsideand 5148InsideProducts (54)(2)10414 (52)(4)20222 (51)(8)4041 (58)(1)5813 xxxxx xxxxx
Check:
2 requiredmiddleterm
xxxxx xxxxx
xx
2 2 (54)(2)51048 5148 xxxxx xx
Step 1 FindtwoFirsttermswhoseproductis26. x
2 6197(6)() xxxx
2 6197(3)(2) xxxx
Step 2 Thelastterm,–7,haspossiblefactorizations of1(7)and1(7).
Step 3
2 PossibleFactorsofSumofOutsideand 6197InsideProducts (61)(7)4241 (67)(1)67 (61)(7)4241 (67)(1)67 (31)(27)21219 (37)(21)31411 (31)(27)
xx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xx
requiredmiddleterm 21219 (37)(21)31411 xxx xxxxx
Check: 2 2 (31)(27)62127 6197 xxxxx xx
Thus,26197(31)(27) xxxx .
278Copyright©2013PearsonEducation,Inc.
3. Factor22 3134 xxyy bytrialanderror.
Step 1 FindtwoFirsttermswhoseproductis22. x 22 3134(3)() xxyyxx
Step 2 Thelastterm,24, y haspairsoffactorsthat areeitherbothpositiveorbothnegative.Because themiddleterm,13, xy isnegative,bothfactors mustbenegative.Thusthelasttermhaspossible factorizationsof2(2)or(4). yyyy
Step 3 22 requiredmiddleterm
6.3 Concept and Vocabulary Check
1. greatestcommonfactor
2. 3
3. 4
4. 2x 3
5. 3x+4
6. 2 xy
xxyy xyxyxyxyxy xyxyxyxyxy xyxyxyxyxy
Check:
22 22 (3)(4)3124 3134 xyxyxxyxyy xxyy
Thus,223134(3)(4) xxyyxyxy
4. Factor2310 xx bygrouping. 3and10,so3(10)30.acac
Thefactorsof–30whosesumis–1are5and–6.
22 31035610
xxxxx xxx xx
(35)2(35) (35)(2)
5. Factor28103 xx bygrouping. 8and3,so8324.acac
Thefactorsof24whosesumis–10are–6and–4. 22 81038463
xxxxx xxx xx
4(21)3(21) (21)(43)
6. FirstfactorouttheGCF. 43222 5136(5136) yyyyyy
Thenfactortheresultingtrinomial. 43222 2 5136(5136) (53)(2) yyyyyy yyy
6.3 Exercise Set
2. Factor2352 xx bytrialanderror.
Step 1 2 3523 xxxx
Step 2 Thenumber2haspairsoffactorsthatare eitherbothpositiveorbothnegative.Becausethe middleterm,5 x ,ispositive,bothfactorsmustbe positive.Theonlypositivefactorizationis 12.
Step 3
2 PossibleFactorsofSumofOutsideand 352InsideProducts
321325
31267
xx xxxxx xxxxx
Check:
2 2 3213322 352 xxxxx xx
Thus, 2 352321. xxxx
4. Factor2273 xx bytrialanderror. Theonlypossibilityforthefirsttermsis 2 22. xxx
Becausethemiddletermispositiveandthelast termisalsopositive,theonlypossiblefactorization of3is 13.
2 PossibleFactorsofSumofOutsideand 273InsideProducts 21367 231235
xx xxxxx xxxxx
Thus, 2 273213 xxxx
Copyright©2013PearsonEducation,Inc.279
6. Factor221935 xx bygrouping. 2and35,so23570.acac
Thefactorsof70whosesumis19are14and5.
22 21935214535 2757 725
18. Factor232528 xx bygrouping. 3and28,so84.acac
Thefactorsof−84whosesumis−25are3and−28.
xxxxx xxx xx
8. Factor25176 yy bytrialanderror.Thefirst termsmustbe5and. yy Becausethemiddletermis negative,thefactorsof6mustbe−3and−2or 1and6.
20. Factor261712 ww bygrouping. 6and12,so72.acac
Thefactorsof72whosesumis−17are−8and−9.
5325136
yyyy yyyy yyyy yyyy
5235176
2 2 2 2
5165316 5615116
Thus, 2 5176523 yyyy
10. Factor234 yy bygrouping. 3and4,so12.acac
Thefactorsof12whosesumis1are4and3.
22 343434 34134 341
yyyyy yyy yy
12. Factor23145 xx bygrouping. 3and5,so15.acac
Thefactorsof15whosesumis14are15and1.
22 31453155 3515 531
22. Factor27436 xx bygrouping. 7and6,so42.acac
Thefactorsof42whosesumis43are42and1.
24. Factor232216 xx bytrialanderror.
Becausethecorrectfactorizationhasbeenfound, thereisnoneedtotryadditionalpossibilities. Thus, 2 32216328 xxxx .
xxxxx xxx xx
14. Factor23107 xx bytrialanderror.
2 2 3173227 3713107 xxxx xxxx
Thus, 2 3107371 xxxx .
16. Factor2583 yy bytrialanderror.Thesignsof bothfactorsmustbenegative.
2 2 5135163 531583 yyyy yyyy
Thus, 2 583531. yyyy
26. Factor26724 yy bytrialanderror.Tryvarious combinationsuntilthecorrectoneisobtained.
342661024 342661024 38236724 38236724
2 2 2 2
yyyy yyyy yyyy yyyx
Thus, 2 67243823 yyyy .
28. Factor2932 xx bygrouping. 9and2,so18.acac Therearenofactorsof18whosesumis3. Therefore,2932 xx isprime.
280Copyright©2013PearsonEducation,Inc.
30. 2 9124 zz
Usetrialanderroruntilthecorrectfactorizationis obtained.Thesignsinbothfactorsmustbepositive.
2 2 34319154 32329124 zzzz zzzz
Thus, 2 91243232 zzzz
32. Factor215132 yy bygrouping. 15and2,so30.acac
Thefactorsof−30whosesumis13are15and−2.
22 15132151522
40. 2 954 yy
Usetrialanderroruntilthecorrectfactorizationis obtained.Thesignmustbenegativeinonefactor andpositiveintheother.
yyyyy yyy yy
34. 2 351 xx
15121 1152
Usetrialanderror.Thesignsinbothfactorsmust benegative.
2 311341 xxxx
Therearenootherpossiblecombinationstotry, so 2 351 xx isprime.
36. 2 164615 yy
Usetrialanderror.Thesignsofbothfactorsmust benegative.Tryvariouscombinationsuntiltheone withthecorrectmiddletermisfound.
41415166415
852383415
832584615
Thus, 2 1646158325. yyyy
38. Factor28225 xx bygrouping. 8and5,so40acac
Thefactorsof40whosesumis−22are−2and−20.
xxxxx xxx xx
241541 4125
3134994 3431994 9149354 941954
2 2 2 2
yyyy yyyy yyyy yyyy
Thus, 2 954941. yyyy
42. Factor215196 xx bygrouping. 15and6,so90.acac
Thefactorsof90whosesumis−19are−10and−9.
22 15196151096 532332 3253
xxxxx xxx xx
44. 22 343 xxyyxyxy
46. Factor22 3116 xxyy bytrialanderror.
22 22 363196 3233116 xyxyxxyy xyxyxxyy
Thus, 22 3116323 xxyyxyxy .
48. Factor22 352xxyy bygrouping. 3and2,so6.acac
Thefactorsof6whosesumis5are1and6.
2222 352362 323 32
xxyyxxyxyy xxyyxy xyxy
50. Factor22 675xxyy bygrouping. 6and5,so30.acac
Theonlyfactorsof30whosesumis7are 10and3.
2222 67561035 23535 352
xxyyxxyxyy xxyyxy xyxy
Copyright©2013PearsonEducation,Inc.281
52. Factor22 153110 xxyy bytrialanderroruntil thecorrectfactorizationisobtained.Thesignmust benegativeinbothfactors.Tryvarious combinationsuntiltheonewiththecorrectmiddle termisfound.
5310155310 5235153110 xyxyxxyy xyxyxxyy
22 22
Thus, 22 1531105235. xxyyxyxy
54. Factor22 252 aabb bygrouping. 2and2,so4.acac
Theonlyfactorsof4whosesumis5are1and4.
22 36612662 62132 yyyy
22 1616124443 42321 yyyy yy
2222 252242 222 22
aabbaababb aabbab abab
56. Factor22 314 aabb bytrialanderror.Thesign mustbepositiveinonefactorandnegativeinthe other.Tryvariouscombinationsuntiltheonewith thecorrectmiddletermisfound.
22 22 372314 372314
ababaabb ababaabb
Thus, 22 314372 aabbabab
58. Factor22 12712 xxyy bygrouping. 12and12,so144.acac
Theonlyfactorsof144whosesumis7are16 and9.
2222 127121216912
xxyyxxyxyy xxyyxy xyxy
60. 2 41810 xx
434334 3443
FirstfactorouttheGCF,2.Thenfactortheresulting trinomialbytrialanderrororgrouping.
22 418102295 2215
xxxx xx
62. 2 123321 xx
FirstfactorouttheGCF,3.Thenfactortheresulting trinomialbytrialanderrororgrouping.
xxxx
xx
322 31483148 324 xxxxxx xxx 70. 322 64102325 2351 xxxxxx xxx 72. 322 101222561 2511 yyyyyy yyy 74. 322 80806020443 202123 zzzzzz zzz 76. 43222 2 2410421252 24132 xxxxxx xxx 78. 54332 3 1521521 5131 xxxxxx xxx 80. 2222 414102275 225 xxyyxxyy xyxy 82. 2222 24327389 389 xxyyxxyy xyxy 84. 22 62602330 23103 xyxyyyxx yxx 86. 22322 12341426177 2372 ababbbaabb babab
282Copyright©2013PearsonEducation,Inc.
88. 2444 42 4
101412 2(576) 2(53)(2)
xyxyy yxx yxx
90.
92. a. 2 352312 xxxx
104. doesnotmakesense;Explanationswillvary. Sampleexplanation:Thepolynomialcanbe factoredfurtherbecause 256(2)(3). xxxx
106. false;Changestomakethestatementtruewillvary. Asamplechangeis:Thefactorizationof 2 12133 xx is(43)(31). xx
108. false;Changestomakethestatementtruewillvary. Asamplechangeis:2321 xx isprime.
110. 2 23 xbx
2 32 32
2 2 253 22136
0 xx xxxx xx xx xx
96. 2 231211. xxxx

98. – 100. Answerswillvary.
102. makessense
2 2 2 2 231253 213273 231253 213273 xxxx xxxx xxxx xxxx
Thepossiblemiddletermsare 5,7,5and7, xxxx so 2 23 xbx canbe factoredif b is5,7,−5,or−7.
112. 2 274 nn xx
Since2 nnnnn xxxx
,thefirsttermsofthe factorswillbe2 n x and. n x Usetrialanderroror groupingtoobtainthecorrectfactorization.
2 274(21)(4) nnnn xxxx
113. 4105 710 xy xy
Multiplythesecondequationby–4andthenaddthe equations.
4105 42840 29145 29145 2929 5
Back-substitutetofind x 710 7(5)10 3510 25
xy x x x
Copyright©2013PearsonEducation,Inc.283