Casing design

Page 1

Chapter 2: Casing Design Open Hole Completions

The first decision on casing the pay zone is not of size or weight but whether or not to run casing at all. Open hole completions represent the simplest type of completions and have some very useful traits. They also present some problems. An open hole or barefoot completion is usually made by drilling to the top of the pay, then running and cementing casing. After these operations, the pay is drilled with a nondamaging fluid. Since the other formations are behind pipe, the drilling fluid overbalance is only that needed to control the reservoir pressure. This creates less damage. Open hole completions have the largest possible formation contact with the wellbore, allowing injection or production with every part of the contacted interval. The effect of the open hole on stimulated operations depends on the type of job. Fracturing operations are often easier in the open hole than through perforations by less possibility of perforation screenouts, but the perforations may make the zone easier to break down since a crack (the perforation) has already been placed. Matrix acidizing can more evenly contact the entire zone in an open hole but is more difficult to direct by straddle packer than in a cased hole. Hydraulic jetting is most effective in the open hole. Productivity of open hole gravel packs, especially the underreamed open holes are usually much higher than cased hole gravel packs. Why then, are casing strings even used? Part of the answer is in formation (wellbore) stability concerns and part is unfamiliarity with completing and producing the open hole completions. A decision must be reached on the merits of the completions on the pay in question. If the pay is prone to brittle failures during production that leads to fill, most operators choose to case and cement. In areas of water coning or zone conformance problems, casing may make isolation of middle or top zones possible. With the advent of improved inflatable packers and matrix sealants, however, isolation is also possible in open holes, although wellbore diameter may be severely restricted. Cased Hole Completions A casing string is run to prevent the collapse of the wellbore and to act in concert with the cement sheath to isolate and separate the productive formations. The size of the casing is optimized on the expected productivity of the well and must be designed to withstand the internal and external pressures associated with completion, any corrosive influences, and the forces associated with running the casing.

An optimum design for a casing string is one designed from "the inside out", a design that is based on supplying a stable casing string of a size to optimize total fluid production over the life of the well (including possibility of secondary or tertiary floods). The effective design of a casing string for any well consists of four principal steps. 1. Determine the length and size of all casing strings that are needed to produce the well to its

maximum potential. 2. Calculate the pressure and loads from predicted production and operations such as stimulation,

thermal application and secondary recovery. 3. Determine any corrosive atmosphere that the casing string will be subjected to and either select alloys which can resist corrosion or design an alternate corrosion control system.

2- 1


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Casing design by ji ang - Issuu