Engineering electromagnetics and waves 2nd edition inan solutions manual

Page 1

Engineering Electromagnetics and Waves 2nd Edition Inan Solutions Manual Visit to Download in Full: https://testbankdeal.com/download/engineering-electromagn etics-and-waves-2nd-edition-inan-solutions-manual/

SolutionstoAddendumC CylindricalWaveguides

C.1Frequencyrangeofthedominantmode.

ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

(a)ThecutofffrequencyofthedominantTE10 modeinanair-filledhollowWR-10rectangular waveguidewith a = 0 254cmand b = 0 127cmisgivenby

(b)Since a = 2b,thenexthigher-ordermodesareTE11,TE20,andTM11.Thecutofffrequencyof thesethreemodesis

(c)Therefore,thefrequencybandoverwhichonlythedominantTE10 modecanpropagateis fc20 fc10 ≃ 59 1GHz.

C.2AMwavesthroughatunnel?

Theminimumtunneldimension amin neededforthedominantTE10 modetopropagateat1MHz canbecalculatedas

As longas a > amin = 150m,TE10 willpropagateregardlessofthevalueoftheotherdimension b.Inpractice,sincethereisnotunnelwhichhassuchalargedimension,AMtransmissionthrough atunnelisnotfeasible.

fc10 = c 2π π a ≃ 3 × 1010 2(0 254) ≃ 59.1GHz
fc
fc20 = 2fc10 ≃
11 =
118GHz
fc10 ≃ 3 × 108 2amin = 106 → amin =
150m!
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Engineering Electromagnetics and Waves 2nd Edition Inan Solutions Manual Visit TestBankDeal.com to get complete for all chapters

AddendumC/ CylindricalWaveguides

C.3Propagationexperimentinaroadtunnel.

(a)Fortherectangularrailwaytunnelunderconsideration(a = 17mand b = 4.9m),thecutoff frequenciesoftheTE10 andTE01 modesaregivenby

(b)Using (C.17),thelowest-ordermodesthatdonotpropagateatthe100MHzFMfrequencyare TE92 andTM92 sincethecutofffrequencyofthesetwomodesisgivenby

C.4Radio-wavepropagationinrailwaytunnels.

Fortunnel1(a = 8mand b = 4m),thetotalnumberofpropagatingmodesat100MHzis26. ThesemodesareTE10,TE01,(TEandTM)02,(TEandTM)11,(TEandTM)12,(TEandTM)20, (TEandTM)21,(TEandTM)22,(TEandTM)30,(TEandTM)31,(TEandTM)32,(TEandTM)40, (TEandTM)41,and(TEandTM)50.Fortunnel2(a = 6mand b = 4m),thetotalnumberof propagatingmodesat100MHzis18.Unliketunnel1,(TEandTM)32,(TEandTM)40,(TEand TM)41,and(TEandTM)50 modesdonotpropagate.

C.5Rectangularwaveguidemodes.

(a)FortheWR-137rectangularairwaveguide(a = 3 484cm, b = 1 58cm),thecutofffrequencies ofthefourlowest-ordermodesTE10,TE20 (andTM20),TE01,andTE11 (andTM11)arerespectively calculatedfrom(C.17)as f

(b)ForthedominantTE10 mode,thephasevelocity vp andtheguidewavelength λ atthetwoend frequencies(i.e.,5.85GHzand8.20GHz)ofthespecifiedfrequencyrangecanbecalculatedusing (C.20)and(C.21)as

10
fc10 = c 2a ≃ 3 × 108 2(17) ≃ 8.82MHz fc01 = c 2b ≃ 3 × 108 2(4.9) ≃ 30 6MHz
fc92 ≃ 3 × 108 2π √( 2π 4.9)2 + (9π 17 )2 ≃ 100 3MHz
c10 ≃ 4.31GHz, fc20 ≃ 8.61GHz fc01 ≃ 9.49GHz,and fc11 ≃ 10.4 GHz.
vp10|f=5 85GHz ≃ 3 × 108 √1 (4 31 5.85)2 ≃ 4.43 × 108 m-s 1 vp10|f=8 20GHz ≃ 3 × 108 √1 (4 31 8 20)2 ≃ 3 52 × 108 m-s 1 λ10 f=5.85GHz ≃ 3 × 108/(5.85 × 109) √1 (4 31 5 85)2 ≃ 7 57cm λ10 f=8 20GHz ≃ 3 × 108/(8.20 × 109) √1 (4 31 8 20)2 ≃ 4 30cm
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

C.6Dominantmode inarectangularwaveguide.

(a)ThecutofffrequencyofthedominantTE10 modeintheWR-137rectangularairwaveguide (a = 3 484cm, b = 1 58cm)canbecalculatedfrom(C.17)as

(b)Repeatingthesamecalculationsasinpart(a)at7GHz,wehave

C.7Waveguidewavelength.

ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

10

(a)Using(C.21),theguidewavelengthofthedominantTE10 modepropagatinginarectangular airwaveguidewith a = 2b = 7 214cmcanbewrittenas

used.Notethattheexpression foundfor λ10 aboveisonlyvalidfor f >∼ 2 08GHz(i.e.,propagatingcase).Thisexpression(i.e., λ10)isplottedasafunctionoffrequency f asshowninFigureC.1.

(b)Ifthesamewaveguideisfilledwithwater(assume ϵr ≃ 81),then, fc10 ≃ 2 08/√81 ≃ 0 231 GHz.Therefore, theguidewavelengthforthiscaseisgivenby

11
fc10 = c 2a ≃ 3 × 1010 2(3.484) ≃ 4 31GHz
value,thepropagationconstant γ10 andwaveimpedance ZTE10 at3.5GHzcanbefound
γ10 =¯ α10 = β√(fc10 f )2 1 ≃ 2π(3.5 × 109) 3 × 108 √(4.31 3.5 )2 1 ≃ 52 5np-m 1 ZTE10 = ηair √1 (fc10/f)2 ≃ 377 √1 (4.31/3.5)2 ≃ j526.3Ω NotethatthedominantTE10 modeisnotpropagatingat3.5GHzasexpectedsincefc10 ≃ 4 31GHz > f = 3 5GHz.
Usingthis
using(C.16)and(C.28)as
γ10 = jβ√1 (fc10 f )2 ≃ j 2π(7 × 109) 3 × 108 √1 (4 31 7 )2 ≃ j115 6rad-m 1 ZTE10 ≃ 377 √1 (4.31/7)2 ≃ 478Ω Notethat thedominantTE
modeisapropagatingmodeat7GHzsince ∼ 4 31GHz < 7GHz.
λ10 = c/f √1 (fc10/f)2 ≃ 30 √[f(GHz)]2 (2 08)2 cm where c ≃ 3 × 1010 cm-s 1 and fc10 = c/(2a) ≃ 2.08GHzare
λ10 ≃ 30/√81 √[f(GHz)]2 (0.231)2 cm
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

whichisvalidfor f >∼ 0 231GHz.ThisexpressionisplottedinFigureC.1asafunctionofthe frequency f

(c)ForthepropagatingTE20 modeintheairwaveguideofpart(a),the λ20 expressionisthesameas the λ10 expressionexcept2.08shouldbereplacedby4.16(i.e., fc20 = 2fc10).Thisexpressionisvalid for f >∼ 4.16GHzandisplottedasafunctionof f inFigureC.1.ForthepropagatingTE20 mode inthewater-filledwaveguideofpart(b), λ20 expressionisthesameasthe λ10 expressionfound inpart(b)exceptthat0.231shouldbereplacedby0.462.Thisexpressionisvalidfor f >∼ 0 462 GHzandisplottedinFigureC.1.

C.8Rectangularwaveguidemodes.

(a)FortheWR-42rectangularairwaveguide(a = 1 067cm, b = 0 432cm),thecutofffrequencies oftheTE10,TE01,TE11,TE

NotethatallthesemodesexcepttheTE02 modearepropagatingat40GHz.Thepropagation constantsandthewaveimpedancesofthesemodescanbecalculatedusing(C.18)and(C.19)as

12 AddendumC/ CylindricalWaveguides 2 4 6 8 5 10 15 20 25 f (GHz) λ (cm) TE10 TE20 0.2 0.4 0.6 0.8 5 10 15 20 25 λ (cm) f (GHz) TE10 Air-filled waveguide Water-filled waveguide
FigureC.1 FigureforProblemC.7. Rightpanel: λ10 and λ20 versusfforair-filledwaveguide.Leftpanel: λ10 versus f forwater-filledwaveguide(i.e., ϵr ≃ 81).
20,andTE02 modesaregivenby fc10 ≃ 3 × 1010 2(1.067) ≃ 14 06GHz < 40GHz fc01 ≃ 3 × 1010 2(0.432) ≃ 34 72GHz < 40GHz fc11 ≃ 3 × 1010 2 √(1.067) 2 +(0.432) 2 ≃ 37.46GHz < 40GHz fc20 ≃ 3 × 1010 (1.607) ≃ 28 12GHz < 40GHz fc02 ≃ 3 × 1010 (0.432) ≃ 69 44GHz > 40GHz
γ10 ≃ j 2π(4 × 1010) 3 × 108 √1 (14 06 40 )2 ≃ j784 3rad-m 1
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

(b)For theTE10 mode,wehavefrom(C.20)and(C.21)

13 ZTE10 ≃ 377 √1 (14 06 40 )2 ≃ 402.7Ω γ01 ≃ j 2π(4 × 1010) 3 × 108 √1 (34.72 40 )2 ≃ j415 9rad-m 1 ZTE01 ≃ 377 √1 (34 72 40 )2 ≃ 759 4Ω γ11 ≃ j 2π(4 × 1010) 3 × 108 √1 (37 46 40 )2 ≃ j293.8rad-m 1 ZTE11 ≃ 377 √1 (37 46 40 )2 ≃ 1075Ω γ20 ≃ j 2π(4 × 1010) 3 × 108 √1 (28.1 40 )2 ≃ j595 9rad-m 1 ZTE20 ≃ 377 √1 (28 1 40 )2 ≃ 530Ω γ02 ≃ 2π(4 × 1010) 3 × 108 √(69 44 40 )2 1 ≃ 1189np-m 1 ZTE02 ≃ 377 √1 (69 44 40 )2 ≃ j265.65Ω
vp10 ≃ 3 × 108 √1 (14 06 40 )2 ≃ 3.20 × 108 m-s 1 λ10 ≃ 3×1010 4×1010 √1 (14 06 40 )2 ≃ 0.801cm Similarly,fortheTE01 mode,wehave vp01 ≃ 3 × 108 √1 (34 72 40 )2 ≃ 6.04 × 108 m-s 1 λ01 ≃ 3×1010 4×1010 √1 (34 72 40 )2 ≃ 1.51cm Ina similarfashion,fortheTE11 mode,weobtain vp11 ≃ 8.56 × 108 m-s 1 , λ11 ≃ 2.14cm,and fortheTE20 mode,weobtain vp20 ≃ 4.22 × 108 m-s 1,and λ11 ≃ 1.054cmrespectively. ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted. © 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

AddendumC/ CylindricalWaveguides

C.9Dielectric-filledwaveguide.

(a)FortheWR-22rectangularwaveguide(a = 0 569cm, b = 0 284cm)filledwithadielectric materialhaving ϵr,thephaseshiftexperiencedbythedominantpropagatingTE10 modeovera lengthof1cmat13.2GHzcanbewrittenas

But, from(C.18),wehave

30√

/(2 × 0 569) inGHz.Substituting,wehave

fromwhich solving,wefind

(b)Notethat fc10 ≃ 8 78GHz.Since a ≃ 2b,thenexthighermodeisTE20 (orTE11)whichhasa cutofffrequency fc20 ≃ 17 6GHz > 13 2GHz.Therefore,nomodeotherthanTE10 propagatesat 13.2GHz.

(c)Ifthedielectricfillingisreplacedwithair,then, fc10 ≃ 3 × 1010/(2 × 0.569) ≃ 26.4GHz > 13.2GHz.Therefore,inthiscase,nopropagationoccursdowntheguide.

C.10Rectangularwaveguidemodes.

(a)FortheWR-1500airwaveguide(a = 2b = 38.1cm),thecutoffwavelengthofthedominant TE10 modecanbefoundfrom(C.19)as λc10 = 2a = 76.2cm.

(b)Thephasevelocity,guidewavelength,andthewaveimpedanceforthedominantTE10 modeat λair = 0 8λc10 canbecalculatedfrom(C.20),(C.21)and(C.28)as

(c)At λair = 40 cm,onlythedominantTE10 modepropagatessincethenexthighermodeTE20 (orTE11)has λc20 = λc10/2 = 38.1cm < 40cm.

(d)At λair = 30cm,thepropagatingmodesareTE10,TE20 andTM20 (λc20 = 38.1cm),TE01 (λc01 = 38.1cm),andTE11 andTM11 (λ

.1cm).

14
β10l = 354 6◦ × π 180◦ → β10 ≃ 618 9rad-m 1
β10 ≃ 2π(13 2 × 109 (3 × 108/√ϵr) √1 (fc10(GHz)/13 2)2 ≃ 618 9 where fc10
β10 ≃ 276.5√ϵr√1 3.99/ϵr ≃ 618.9
=
ϵr
ϵr ≃
9.
vp ≃ 3 × 108 √1 (0.8)2 ≃ 5 × 108 m-s 1 λ10 ≃ 0 8 × 76 2 √1 (0 8)2 ≃ 101 6cm ≃ 1 02 m ZTE10 ≃ 377 √1 (0 8)2 ≃ 628.3Ω
c
2ab/√a2
b2 ≃ 34
11 =
+
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

C.11Polyethylene-filledwaveguide.

(a)FortheWR-1500polyethylene-filledwaveguide(a = 2b = 38 1cm),thecutoffwavelengthof thedominantTE10 modecanbefoundfrom(C.19)as λc10 = 2a = 76 2cm.

(b)Thephasevelocity,guidewavelength,andthewaveimpedanceforthedominantTE10 modeat λair = 0 8λc10 canbecalculatedfrom(C.20),(C.21)and(C.28)as

(c)At

(d)At λair = 30cm,thepropagatingmodesareTE10,TE

C.12Unknownrectangularwaveguidemode.

(

c20 = 38 1cm),TE01 (λc01 = 38 1cm),andTE11 andTM11 (λc11 = 2ab/

+

34 1cm).

(a)Sincethe y componentoftheelectricfieldphasorisorientedintheguidingdirectionofthe rectangularwaveguide,thismodecanneitherbeTEMorTEmn,therefore,itmustbeaTMmn mode. Usingthewaveguidedimensions a = 4cm(inthe z direction)and b = 2cm(inthe x direction) andcomparingthe Ey expressiongivenintheproblemwiththe Ez expressiongivenby(C.15),we have

ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

Therefore,this isaTM11 mode.Itisanevanescentwavebecauseoftheattenuationterm e 41πy .

(b)Using(C.16),theoperatingfrequencycanbeevaluatedfromtheattenuationconstant α11 as

(c)Notethatthecutofffrequenciesofthetwolower-orderTE10 andTE01 modesare

15
vp ≃ 3 × 108/√2.25 √1 (0 8)2 ≃ 3 33 × 108 m-s 1 λ10 ≃ 0.8 × 76.2 √1 (0.8)2 ≃ 101 6cm ≃ 1 02 m ZTE10 ≃ 377/√2 25 √1 (0 8)2 ≃ 418 9Ω
modepropagatessincethenexthighermodeTE20
< 40cm.
λair = 40 cm,onlythedominantTE10
(orTE11)has λc20 = λc10/2 = 38.1cm
20 andTM20
λ
√a2
b2
mπ 0 04 = 25π → m = 1 nπ 0.02 = 50π → n = 1
γ11 =¯ α11 = β√(fc11 f )2 1 ≃ 2πf(GHz) 0 3 √[ 8 39 f(GHz) ]2 1 ≃ 41π np-m 1 → (8 39)2 [f(GHz)]2 = (0 3 × 41 2 )2 → f ≃ 5 70GHz wherewereplaced β = 2πf/c, c ≃ 3 × 108 m-s 1,and fc11 = 0.5c√a 2 + b 2 ≃ 8.39GHz.
fc10 = c
(2a) ≃ 3.75GHz <∼ 5.7GHzand fc01 = c/(2b) ≃ 7.5GHz >∼ 5.7GHz.Therefore,onlyTE10 mode propagatesat ∼ 5.7GHz.
/
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

AddendumC/ CylindricalWaveguides

C.13Alargewaveguidefordeephyperthermia.

(a)Forthelargewaveguide(a = 6m, b = 30cm)designedtobeusedfordeephyperthermia,since a >> b,thecutofffrequencyofthelower-ordermodesisdeterminedbythelargerdimension a. Assumingthewaveguidetobeair-filled,thecutofffrequenciesofthefivelowest-orderTEm0 are givenby

(where vp = c ≃ 3 × 108 m-s 1)yielding fcTE10 = 25MHz, fcTE20 = 50 MHz, fcTE30 = 75MHz, fcTE40 = 100MHz,and fcTE50 = 125MHzrespectively.Notethatthecutofffrequenciesofthe TMm0 modeswith m = 2, 3, 4, 5areexactlythesameasthecutofffrequenciesoftheirTEm0 mode counterpartswith m = 2, 3, 4, 5.

(b)Ifthewaveguideisfilledwithwater(assume ϵr ≃ 81),then vp = c/√ϵr = c/9.Therefore, The cutofffrequenciesforthewater-filledwaveguideare1/9timesthecutofffrequenciesoftheairfilledwaveguideyieldingthecutofffrequenciesforthefivelowest-orderTEm0 modesas fcTE10 ≃ 2.78MHz, fcTE20 ≃ 5.56MHz, fcTE30 ≃ 8.33MHz, fcTE40 ≃ 11.1MHz,and fcTE50 ≃ 13.9MHz respectively.

(c)Forthewater-filledwaveguidewithnewdimensions a = 70cmand b = 30cm,thecutoff frequenciesofthefivelowest-orderTEmn modesarefoundtobe f

,TM30,andTM11 modeshaveexactlythesamecutofffrequenciesastheirTEmn counterparts.

C.14Squarewaveguidemodes.

(a)Forthesquareairwaveguide(a = b = 3cm)at8GHz,thecutofffrequenciesofallthe propagatingTEmn andTMmn modesat8GHzaregivenby

where vp = c ≃ 3 × 108 m-s 1 is used.Notethatallofthesevaluescutofffrequencyvaluesare < 8GHzandthereforethesemodes(i.e.,TE10,TE01,TE11,andTM11)aretheonlypropagating modesat8GHz.

(b)Ifthesamesquarewaveguideisfilledwithpolystyrene(ϵr ≃ 2.56),then,werecalculatethe cutofffrequenciesofthepropagatingmodesas

waveguideat8GHz.

16
fcm0 = mvp 2a
cTE10 ≃ 3 × 108/[2(0 7)(√81)] ≃ 23 8MHz, fcTE20 = 2fcTE10 ≃ 47 6MHz, fcTE30 ≃ 71 4MHz, fcTE01 ≃ 3×108/[2(0 3)(√81)] ≃ 55 6 MHz,and fcTE11 ≃ 3 × 108√(0 7) 2 +(0 3) 2/ (2√81) ≃ 60 4MHzrespectively.Notethatthe TM
20
fcTE10 =fcTE01 = vp 2a ≃ 5GHz fcTE11 =fcTM11 = vp a√2 ≃ 7.07GHz
fc10 = fc01 = c/(2a√ϵr) ≃ 3.13GHz, fc11 = c/(a√2ϵr) ≃ 4.42GHz, fc20 = fc02 = 2fc10 ≃ 6.25GHz, fc21 = fc12 =[c/(2√ϵr)]√(2/3)2 +(1/3)2 ≃ 6 99GHz,and fc22 =[c/(2√ϵr)]√(2/3)2 +(2/3)2 ≃ 8 84GHzrespectively.Notethatthenext highermode(TE30 orTE03)hasacutofffrequencywhichis fc30 = 3fc10 ≃ 9.38GHz > 8GHzand sothisisnotapropagatingmode.Therefore,TE10,TE01,TE11.TM11,TE20,TM20,TE02,TM02, TE21,TM21,TE12,andTM
12 aretheonlypropagatingmodesonthepolystyrene-filledsquare
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

C.15SAR calibrationusingarectangularwaveguide.

(a)Forthespeciallydesignednonstandardair-filledwaveguidewithdimensions a = 19cmand

b = 14cm,theonlymodethatisexcitedat900MHzisthedominantTE10 modewhichhasa cutofffrequency fc10 ≃ 3 × 1010/[2(19)] ≃ 789.5MHz < 900MHz.

(b)ThecutofffrequencyofthenexthighermodewhichistheTE01 modeisgivenby fc01 ≃ 3 × 1010/[2(14)] ≃ 1 07GHz,so,thefrequencyrangeoverwhichonlythedominantmodecan propagatecanbefoundas fc01 fc10 ≃ 282MHz.

(c)IftheTE01 modedoesnotexist,then,thecutofffrequencyofthenexthighermodewhichisthe TE11 mode(andtheTM11 mode)iscalculatedas

Therefore,thefrequencyrangeinwhichonlythedominantmodepropagates(ignoringtheexistence oftheweakTE01 mode)isgivenby

C.16Millimeter-waverectangularwaveguide.

(a)FortheW-bandrectangularairwaveguidewithdimensions a = 2 54mmand b = 0 7mm,the cutofffrequenciesofthethreelowest-ordermodesaregivenby

(b)ThefrequencyrangeoverwhichonlythedominantTE

ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

C.17TE10 modeinarectangularwaveguide.

17
fc11 = c 2√a 2 + b 2 ≃ 3 × 1010 2 √(19) 2 +(14) 2 ≃ 1.33GHz
fc11 fc10 ≃ 541MHz.
fcTE10 = c 2a ≃ 3 × 1011 mm-s 1 2(2.54mm) ≃ 59.1GHz fcTE20 = fcTM20 = 2fcTE10 ≃ 118GHz fcTE30 = fcTM30 = 3fcTE10 ≃ 177GHz
modecanpropagateisgivenby fcTE20 fcTE10 ≃ 59 1GHz
10
(a)Using(C.25),wehave π rad a ≃ 29rad-m 1 → a ≃ 0 1083m = 10 83cm andsince a = 2b isgiven, b = a/2 ≃ 5.4165cm.Theoperatingfrequencycanbefoundfrom β10 ≃ 42 3rad-m 1 valueas (β)2(2π c )2 (f2 f2 c10) ≃ (42 3)2 wheresubstituting thevalueofthecutofffrequency fc10 = c/(2a) ≃ 3×1010/(2×10.83) ≃ 1.385 GHzyields f ≃ 2.449GHz.
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

AddendumC/ CylindricalWaveguides

(b)Note thatthetime-averagepowercarriedbythedominantTE10 modealongtherectangular waveguideisgivenby

0.1083m,and b ≃ 0.054165malongwiththevalueof C intheaboveexpression,wefind Pav ≃ 964 4W.

C.18Dominantmodeinarectangularwaveguidedesign.

(a)Thethreedesigncriteriafortherectangularwaveguideunderconsiderationare

1 25fc10 ≤ 15GHz

1 25 × 18 5GHz ≤ fcnexthigher and Pav ofthedominantTE10 modeistobemaximized.Assuming a = 2b andusing fc10 = c/(2a) where c ≃ 3 × 1010 cm-s 1,thefirstdesigncriteriayields amin = 1.25cm.Next,using fcnexthigher = fc20 = 2fc10 = c/a,theseconddesigncriteriayields amax ≃ 1.2973cm.Therefore, thelongertransversedimension a mustlieintherange1.25 ≤ a ≤∼ 1.2973cm.However,since thethirddesigncriteriaistomaximizepowertransfer,wechoosethelargestpossiblevalueof a = amax ≃ 1.2973cm.Forthisvalueof a,thecutofffrequencyofthedominantTE10 modecan becalculatedas fc10 ≃ 3 × 1010/(2 × 1 2973) ≃ 11 56GHz.

(b)ThecutofffrequencyofthenexthigherTE20 (orTE01)modeis fc20 = 2fc10 ≃ 23 13GHz > 22GHz.

(c)Using(C.30)at15GHz,thetime-averagepowercarriedbythedominantTE10 modewithpeak electricfieldvalue E0 = 1.5 × 106 V-m 1 canbecalculatedas

C.19Rectangularwaveguidedesign.

(a)Usingthecutofffrequencyofthedominantmode,wehave

TomaximizethefrequencyrangeoverwhichnoothermodebutthedominantTE10 modecan propagate,wechoose

(b)ThenexthighermodesareTE01 andTE20 (andTM20).Forthesemodes,thecutofffrequency is5.16GHz.

18
P
=
π
2
2 where C
Hx givenby C ≃ 26A-m 1 . Substituting β10 ≃ 42
3rad-m 1 , ω = 2π(2.449 × 109) rad-s 1 , µ0 = 4π × 10 7 H-m 1 , a
av
β10ωµ0C2 2 ( a
)
ab
istheamplitude oftheaxialmagneticfieldcomponent
.
Pav ≃ (1 5 × 106)2 377 (1 297 × 10 2)(0 64865 × 10 2) 4 √1 [ (3 × 1010/(15 × 109) 2(1 2973) ]2 ≃ 80kW
fc10 = c 2a = 2.58GHz → a ≃ 5.814 cm
b = 0.5a ≃ 2.907cmsothat fc01 = fc20 = 2fc10 = 5.16GHz.
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

(c)Using(C.25), thepeakelectricfieldvalueintheairwaveguidewith a ≃ 5 814cmat4GHz canbewrittenas

fromwhich wecansolveforthemaximumpeakvalue C oftheaxialcomponentofthemagnetic fieldcorrespondingtothebreakdownstrengthofairwithasafetyfactorof2atsealevelas

2 57kA-m 1.Substitutingthisvalue,themaximumtime-averagepowercarryingcapacityofthe waveguidecanbecalculatedas

C.20 Maximumfieldinarectangularwaveguide.

(a)FortheWR-650rectangularairwaveguide(a = 2b = 16 51cm),thecutofffrequencyofthe dominantTE10 modeisgivenby

Therefore, sincethenexthigherTE20 mode(ortheTE01 mode)hasacutofffrequencyof fc20 = 2fc10 ≃ 1 82GHz > 1 1GHz,onlythedominantTE10 modepropagatesontheWR-650waveguide at1.1GHz.FortheWR-975rectangularairwaveguide(a = 2b = 24 765cm),thecutofffrequency ofthedominantTE10 modeisgivenby

Therefore, sincethenexthigherTE20 mode(ortheTE01 mode)hasacutofffrequencyof fc20 = 2fc10 ≃ 1 21GHz > 1 1GHz,similartothecaseofWR-650waveguide,onlythedominantTE10 modepropagatesontheWR-975waveguideat1.1GHz.

(b)FortheWR-650waveguide,thepeakelectricfieldcorrespondingtothepeakpowerof2GW canbecalculatedfrom

19
|Ey|max = 2πfµ0aC π = 2(4 × 109)(4π × 10 7)(0.05814)C = 1.5 × 106
C ≃
Pavmax ≃ (64.02)(2π × 4 × 109)(4π × 10 7)(2, 566)2(0.05814)3(0.02907) 4π2 ≃ 1 927MW where β10 ≃ 2π(4 × 109) 3 × 108 √1 (2.58 4 )2 ≃ 64 02rad-m 1
isused.
fc10 = c 2a ≃ 3 × 1010 2(16.51) ≃ 9 085 × 108 Hz = 908 5MHz
fc10 = c 2a ≃ 3 × 1010 2(24.765) ≃ 6 057 × 108 Hz = 605 7MHz
Ppeak ≃ E2 0 377 (16.51 × 10 2)(8.255 × 10 2) 2 √1 ( 27.27 2 × 16.51)2 ≃ 2 × 109 as E0 ≃ 14MV-m 1 whereweused λ = c/f ≃ 3 × 1010/(1 1 × 109) ≃ 27 27cm.Similarly,for theWR-975waveguide,wehave Ppeak ≃ E2 0 377 (24.765 × 10 2)(12.383 × 10 2) 2 √1 ( 27.27 2 × 24.765)2 ≃ 2 × 109 yielding E0 ≃ 7.675MV-m 1
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning.
Dissemination
orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

AddendumC/ CylindricalWaveguides

(c)WR-975 waveguideshouldbechosenforhigherpowercapacitysinceithasawidercrosssectionalareaandasaresultcanhandlemorepowerthantheWR-650waveguidebeforedielectric breakdownoccurs.

C.21Powercapacityofarectangularwaveguide.

(a)FortheWR-284rectangularairwaveguide(a = 7 214cm, b = 3 404cm),thecutofffrequency ofthedominantTE10 modeisgivenby fc10 = c/(2a) ≃ 2 079GHz.>From(C.25),themaximum allowablepeakelectricfieldcanbewrittenas

Substituting f = 2 45GHz, a = 7 214cm,and µ0 = 4π × 10 7 H-m 1,wecansolveforthe allowablepeakvalueoftheaxialmagneticfieldcomponentas C ≃ 3, 377A-m 1.Thephase constant β10 correspondingtothedominantTE10 modecanbefoundfrom(C.25)as

Usingthe valuesof C and β10,wecancalculatethemaximumtime-averagepowerthatcanbe carriedbythedominantTE10 modealongtheWR-284rectangularairwaveguideas

(b)Repeatingthesamecalculationsinpart(a)fortheWR-430rectangularairwaveguide(

parts(a)and(b),onecanconcludethatthemaximumpowercapacityoftheWR-430waveguideis about4timeshigherthanthemaximumpowercapacityoftheWR-284waveguide.

C.22TE11 modeinarectangularwaveguide.

(a)Comparingthegiven Hz expressionforTE11 with(C.23),thewaveguidedimensioncanbe foundas

Theoperating frequencycanbeobtainedusingthephaseconstantgivenby(C.18)as

20
|Ey|max = 2πfµ0aC π = 1 5 × 106 V-m 1
β10 = 2πf c √1 (fc10 f )2 ≃ 2π(2 45 × 109 3 × 108 √1 (2 079 2 45 )2 ≃ 27.14rad-m 1
Pavmax = (27.14)(2π × 2.45 × 109)(4π × 10 7)(3, 377)2(7.214 × 10 2)3(3.404 × 10 2) 4π ≃ 1.938MW
a
10.922cm, b = 5.461cm),wefind fc10 ≃ 1.37GHz, C ≃ 2.23 × 103 A-m 1 , β10 ≃ 42.49 rad-m 1,and Pavmax ≃ 7.37MW.Therefore,comparingthemaximumpowervaluesobtainedin
=
50π = mπ a = π a → a = 1 50 = 2cmand 100π = nπ b = π b → b = 1 100 = 1cm
β11 = 2πf c √1 (fc11 f )2 = 2π c √f2 f2 c11 = 100π → f = √(cβ11 2π )2 + f2 c11 = √(3 × 108 × 100π 2π )2 +(16 7 × 109)2 ≃ 22 5GHz wherethevalueofthecutofffrequency fc11 iscalculatedfrom(C.17)as fc11 = c 2√ 1 a2 + 1 b2 ≃ 3 × 1010 2 √ 1 22 + 1 12 ≃ 16 77GHz
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

(b)Usingthefieldcomponentsgivenin(C.23),thetime-averagePoyntingvectorfortheTE11 mode canbewrittenas

(c)TheothernonzerocomponentsoftheTE

(d)Usingthebreakdownvalueoftheelectricfield,wecancalculatethenewvalueof C as

The maximumtime-averagepowercorrespondingtothisnewvalueof C isfoundtobe

kW.

C.23NoTM01 orTM10 modesinarectangularwaveguide.

Tohaveoneoftheindiceszeromeansthatthefieldquantitydoesnotvaryinthecorresponding directionacrossthecrosssectionoftheguide.ForaTMmode,themagneticfieldlinesareby definitionentirelytransverse,andbothcomponents(*x and *y)mustbenonzerosincethemagnetic fieldlinesmustalwayscloseonthemselves.However,eachcomponentmustthenvaryinitsown direction(i.e., *x mustvaryin x and *y mustvaryin y)inordertonotbeperpendiculartothe wallsasrequiredbytheboundarycondition.Thus,neither m nor n canbezero.

21
Sav = 1 2 5e{E × H∗} = ˆ z 1 2 [ExH∗ y EyH∗ x] = ˆ z 1 2 ωµβ11C2 h4 11 [( π b )2 cos2 ( πx a ) sin2 ( πy b ) + ( π a ) sin2 ( πx a ) cos2 ( πy b )] where h1 = π√a 2 + b 2.Thetotal time-averagepowercarriedbytheTE11modecanbefound byintegrating Sav overthecross-sectionalareaofthewaveguideas Pav = ∫ b 0 ∫ a 0 Sav · (ˆ zdxdy)= ωµβ11C2 2h2 11 ab 4 Usingthegivenparametervalues, Pav = 10kW, β11 = 100π rad-m 1 , ω ≃ 2π(22.5 × 109) rad-s 1,and h11 = π√(0.02) 1 +(0.01) 2,wecansolvefor C as 104 ≃ 2π(22.5 × 109)(4π × 10 7)(100π)C2(0.02)(0.01) 8(351 2)2 → C ≃ 940A-m 1
11 modecanbewrittenfrom(C.23)as Hx ≃ j376sin(50πx) cos(100πy) e j100πz A-m 1 Hy ≃ j752cos(50πx) sin(100πy) e j100πz A-m 1 Ex ≃ j4 25 × 105 cos(50πx) sin(100πy) e j100πz V-m 1 Ey ≃−j2 13 × 105 sin(50πx) cos(100πy) e j100πz V-m 1
ωµ h2 11 C π b = 2π(22.56 × 109)(4π 7) (351 2)2 C π 0 01 = EBR = 1.5 × 106 → C ≃ 3, 316A-m 1
Pav ≃ 124
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

AddendumC/ CylindricalWaveguides

C.24No TEMwaveinasingle-conductorwaveguide.

HavingaTEMmodewouldmeanthatthereisneitheran %z or *z component.However,since themagneticfieldlinesmustalwayscloseonthemselves, *x and *y mustbothbenonzero,and theirclosedloopsmustthengenerate(through(7.21c))displacementcurrent(i.e., ∂

)inthe z direction,contradictingouroriginalpremiseofno %z component.

C.25Powercapacityofarectangularwaveguide.

(a)Usingthetime-averagepowerexpressionofthedominantTE10 modeas

/∂

wherethe cutofffrequencyofthedominantmodeisreplacedby

wesolvefortheamplitude C oftheaxialmagneticfieldcomponenttobe

(b) Sincepowerisproportionaltothesquareofthepeakvalueoftheelectricfield,themaximum time-averagepowercarryingcapacityoftheTE10 modeunderthe |Ey|max = 1500kV-m 1 criteria canbecalculatedfrombasicratioas

C.26Cutoff frequencyforacircularwaveguide.

11 modeina7cmdiametercircularairwaveguideisgiven by

∼2.51GHz.Therefore,nowavescanbetransmittedalongthiswaveguidebelow ∼ 2 51GHz.

C.27TE11 modeinacircularwaveguide.

(a)UsingthecutofffrequencyofthedominantTE11 modeas

wefind thesmallestdiameterofthecircularairwaveguidethatwillallowthepropagationofthe dominantmodeat40MHztobe2amin ≃ 4.396m.

22
D
t
Pav = β102πfµ0C2 2 ( a π )2 ab 2 = 100kW where a = 2.591 cm, b = 1.295cm, µ0 = 4π × 10 7 H-m 1 , f = 9GHz,and β10 = β√1 (fc10 f )2 ≃ 2π(9 × 109) 3 × 108 √1 (5 79 9 )2 ≃ 144.3rad-m 1
fc10 = c/(2a) ≃ 5 79GHz,
C ≃ 1, 307A-m 1 .
|Ey|max = 2πfµ0aC π ≃ 2π(9 × 109)(4π × 10 7)(0 02591)(1, 307) π ≃ 766kV-m 1
Therefore,using(C.25),thepeakvalueoftheelectricfieldinthewaveguidecanbecalculatedas
Pavmax ≃ (105)(1500)2 (766)2 ≃ 3.83 × 105 W = 383kW
ThecutofffrequencyofthedominantTE
fc11 ≃ 1 8412c 2πa ≃ 1 8412 × 3 × 1010 2π(3 5) ≃ 2.51 × 109 Hz
or
fc11max ≃ 1.8412c 2πamin = 40 × 106 Hz
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

(b)Repeating part(a)for40GHzyields2amin ≃ 4 396mm.Inotherwords,whenthefrequency increasesbyafactorof1000,thediameterofthewaveguideisreducedbyafactorof1000forthe samemodeoperationtohold.

C.28Square-to-circularwaveguide.

(a)Forthesquareairwaveguidewithdimensions a = b = 2.4cm,thecutofffrequencyofthe dominantTE10 andTE01 modesisgivenby

Therefore, onlythedominantTE10 andTE01 modescanpropagateat7GHz.

(b)Conservingtheperimeter,wehave2πa = 4 × 2 4cmfromwhichwefindtheradius a ofthe circularairwaveguideas a ≃ 1 528cm.Usingthisvalue,thecutofffrequencyofthedominant TE11 modeisgivenby

The cutofffrequencyofthenexthigherTM01 modecanbecalculatedas

Therefore,onlythedominantTE11 modepropagatesat7GHz.

C.29Southworth'sexperiments.

(a)Foranair-filledwaveguide,theminimumdiameter dmin requiredtoallowanypropagationat

air = 1mcanbecalculatedfromthecutoffwavelengthofthelowest-orderTE11 modeas

Similarly,forawater-filledwaveguide(ϵr ≃ 81),wehave

(b)Repeatingpart(a)foranair-filledwaveguideat λair = 15cm,wefind dmin ≃ 8 79cm.

(c)Using2a = 12 7cmand λair = 15cm,thecutoffwavelengthisgivenby

=

) ≤ 2 660.Therefore,usingTablesC.2andC.3,onlyTE11 andTM01 modes propagateat

resultingin (

23
fc10 = fc01 = c 2a ≃ 3 × 1010 2 × 2.4 = 6 25 × 109 Hz = 6 25GHz
fc11 ≃ 1.8412c 2πa ≃ 1.8412 × 3 × 1010 9.6 ≃ 5 75 × 109 Hz = 5 75GHz < 7GHz
fc01 ≃ 2.4049c 9.6 ≃ 7 515 × 109 Hz = 7 515GHz > 7GHz
λcTE11 ≃ πdmin 1 8412 = λair = 1m → dmin ≃ 58.6 cm
λcTE11 ≃ πdmin 1 8412 = λwater = λair √ϵr ≃ 1 9 m → dmin ≃ 6.51cm
λ
λcnl
2πa (snl or tnl) = (12.7cm)π (snl or tnl) ≥ λair = 15cm
s
or
nl
tnl
λair = 15cm.
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

AddendumC/ CylindricalWaveguides

C.30Barrow'sexperiments.

Fora λair = 50cmsignalsource, f = c/λair ≃ 600MHz.ProfessorBarrowusedahollow cylindricalwaveguidewithradius a = 2.25cm.Thecutofffrequencyofthelowest-orderTE11 modeforthiswaveguideisgivenby

Therefore,theexperimentwasunsuccessfulbecausenopropagationmodeexistsonthiswaveguide at600MHz.

(b) λair = 40cm → f ≃ 750MHz.Using a = 22 85cm,thecutofffrequencyofthelowest-order TE11 modeinthisguideisgivenby

Therefore,TE11 modepropagatesat750MHzandasaresult,theexperimentinthiscasewas successful.DidProfessorBarrowobserveanyotherpropagatingmodesinthisexperiment?

C.31TheChannelTunnel.

(a)EquatingthecutofffrequencyofamodetothehighestAMfrequency,wehave

Therefore,AM radiowavesdonotpropagatealongthe7.6mdiametertunnel.

(b)Using108MHzandfollowingasimilarapproachasinpart(a),wefind (snl or (tnl) ≃ 8.595. Therefore,usingasourcesuchasBeattie(seefootnote22inChapter5),themaximumnumberof propagatingmodesat108MHzFMfrequencyisfoundtobe21.

(c)Followingasimilarapproachasinpart(a),again,wefindoutthatAMdoesnotpropagate. Using108MHz,wefind (snl or (tnl) ≃ 5 429andasaresult,maximumof9differentmodescan propagate.

C.32Unknowncircularwaveguidemode.

(a)Comparingthe Hϕ expressionwith(C.48)and(C.50),weconcludethatthismodeisaTMnl modeandthat n = 0.Tofindthevalueof l ,weuse

Comparingwith therootsprovidedinTableC.2,thismodeisidentifiedastheTM02 mode.This isapropagatingmode,asisevidentfromthe ej48πz term.

(b)Using(C.46),wecanwrite

24
fcTE11 ≃ 1 8412c 2πa ≃ 1 8412(3 × 1010) 2π(2 25) ≃ 3.91 × 109 Hz = 3.91GHz > 600MHz
fcTE11 ≃ 1.8412(3 × 1010) 2π(22.85) ≃ 3 85 × 108 Hz = 385MHz > 750MHz
fcnl = (snl or tnl)c 2πa = 1 605 × 106 Hz → (snl or tnl) ≃ 0 128!
tnl a = tnl 0.04 ≃ 138 → t nl ≃ 5 520
βTM02 ≃ (2πf)2 c2 (138)2 ≃ (48π)2 → f ≃ c 2π √(48π)2 +(138)2 ≃ 9 760GHz
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

(c)From(C.48), wehave

Therefore,the othernonzerofieldcomponentsofthisTM02 modecanbewrittenas

(d)Fromthecutofffrequencyexpressionwehave

UsingTablesC.2andC.3,thetotalnumberofpropagatingmodespossibleat ∼9.760GHzisfound tobe18(i.e.,7TMnl and11TEnl)modes.

C.33Unknowncircularwaveguidemode.

(a)TofindtheunknownTEnl modepropagatinginthecircularairwaveguidewith a = 3.5cm,we use(C.50)whichyields n = 3and snl/(0.035m)= 120 → s3l ≃ 4.200andfromTableC.3,we

l = 1.Therefore,thisistheTE31 mode.Itisapropagatingmodebecauseofthe e j116 9z terminthe Hz phasorexpression.

(b)Theoperationfrequencycanbecalculatedfromthephaseconstantexpressiongivenby

f

(c)Tofindthehighest-orderpropagatingmodeat ∼ 8GHz,wehave

Therefore,the highest-orderpropagatingmodeat ∼ 8GHzistheTM02 mode.

(d)FortheTM02 modepropagatinginthe z direction,

5201fromTable C.2,the

25
jωϵ a tnl C0 ≃ C1 → C0 ≃ j254 3C1
Ez ≃ j254 3C1 J0(138r) ej48πz Er = 277.9C1 J′ 0(138r) ej48πz
fcnl = (tnl or snl) c 2πa ≤∼ 9.760GHz → (tnl or snl) ≤∼ 8.176
findthat
β2 31 ≃ (2π)2f2 (3 × 108)2 [1 (5.73 × 109)2 f2 ] ≃ (116 9)2 wherewe
fc31 = 4 201c/(2πa) ≃ 5 73GHz.Solvingtheoperatingfrequency
used
fromthe aboveequation,wefind f ≃ 8 00GHz.
fcnl = (snl or tnl)c 2πa ≃ 8 × 109 → (snl or tnl) ≃ 5 864
Ez phasorexpressioncanbewrittenas Ez ≃ C2J0 (5 5201 0.035 r) e jβ02z ≃ C2J0(158r)e j18πz where β02 = 2πf c √1 (fc02/f )2 ≃ 2π(8 × 109 3 × 108 √1 (7 53/8)2 ≃ 18π and fc02 ≃ 5 5201c π(0 07) ≃ 7.53GHz areused.
Hz = 0.Using t02 ≃ 5
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning.
willdestroytheintegrityoftheworkandisnotpermitted. © 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb)

C.34Smallestcircularwaveguidedimension.

(a)FromTableC.2,thecutofffrequencyoftheTM 21modeinacircularair-filledwaveguideis givenby

(b)ThecutofffrequencyoftheTM12

C.35Circularwaveguidemodes.

(a)SincetheWC-80(a = 1.012cm)circularairwaveguide(i.e., vp = c ≃ 3 × 108 m-s 1)is operatedat16GHz,thecutofffrequenciesofallthepropagatingmodesmustsatisfytheinequality

≃ 3 054),wefindthatthe onlymodesthatwillpropagateinthiswaveguideat16GHzareTE11,TM01 andTE21 respectively.

(b)Thecutofffrequenciesofthepropagatingmodesaregivenby

Usingthese values,thephasevelocity,guidewavelength,andthewaveimpedanceofthesepropagatingmodesat16GHzcanbecalculatedas

26
AddendumC/ CylindricalWaveguides
fcTM21 ≃ 5.135c 2πa ≃ 5.136 × 3 × 1010 πd =
fromwhichthesmallestdiameter dmin canbeobtainedas dmin = 2amin ≃ 0 510cm
25GHz
fcTM21 ≃ 7.016c 2πa = 25GHz
d
a
≃ 0
modeisgivenby
fromwhich
min = 2
min
373cm.
fcTEorTM = (snl or tnl)c 2πa < 16GHz → (snl or tnl) <∼ 3.391
t01 ≃ 2 405, s11 ≃ 1 841and s21
Therefore,usingTablesC.2andC.3(
fcTE11 ≃ 1 8412c 2πa ≃ 8 69GHz fcTM01 ≃ 2.4048c 2πa ≃ 11.35GHz fcTE21 ≃ 3 054c 2πa ≃ 14 4GHz
vp11 = vp √1 (fc11/f)2 ≃ c √1 (8 69/16)2 ≃ 1 19c v01 ≃ 1.42c, v21 ≃ 2.30c, λ11 = vp/f √1 (fc11/f)2 ≃ 3 × 108/(16 × 109) √1 (8 69/16)2 ≃ 0 0223m = 2 23cm λ01 ≃ 2.66cm, λ21 ≃ 4.31cm, ZTE11 = ηair √1 (fc11/f)2 ≃ 377 √1 (8.69/16)2 ≃ 1 19(377Ω) ≃ 449Ω ThisworkisprotectedbyUnitedStatescopyrightlaws
Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted. © 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning.

C.36Low-lossTE01 modeinacircularwaveguide.

(a)Foranair-filledcircularwaveguidewithradius a = 5cm,thecutofffrequencyofthelow-loss TE01 modeisgivenby

(b)If thesamecircularwaveguideisfilledwithwater(assume ϵr ≃ 81),then,thenewcutoff

01 modeis

C.37Low-lossTE01 modeinahighlyovermodedwaveguide.

(a)Usingthe Eϕ expressionin(C.50)alongwiththeroot s01 ≃ 3 8317fromTableC.3,wecan calculatethediameter d oftheair-filledwaveguideas

(b)Usingthecutofffrequencyexpression

footnote21inAddendumC),thetotalnumberofpropagatingmodesinthiswaveguideoperating at ∼ 108GHzisfoundtobe339!

27 ZTE21 ≃ 867Ω,and ZTM01 = ηair√1 (fc11/f)2 respectively
fcTE01 = s01c 2πa ≃ 3 832(3 × 1010) 2π(5) ≃ 3 66 × 109 Hz = 3 66GHz
frequencyoftheTE
fcTE01 ≃ 3 832(3 × 1010) 2π(5)√81 ≃ 4.07 × 108 Hz = 407MHz
s01 a ≃ 3.8317 a ≃ 238 → d = 2a ≃ 3 22cm Usingthe phaseconstantexpressiongivenby β01 = 2πf c √1 (fc01/f)2 ≃ 716π → (716π)2 ≃ (2π c )2 [f2 f2 c01] where fc01 = s01c/(2πa) ≃ 11 36GHzand c ≃ 3 × 1010 cm-s 1 , wecancalculatetheoperating frequencytobe f ≃
108GHz.
fcnl = (snl or tnl)c 2πa ≃
108 × 109 Hz fromwhich wefind (snl or tnl)max ≃ 36 42.Therefore,usingareferencesuchasBeattie(see
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

AddendumC/ CylindricalWaveguides

C.38Ahighlyovermodedcircularwaveguide.

(a)Theradiiofthetwocircularwaveguidesare a1 = 3 175cmand a2 = 1 39cm.Assumingairfilledwaveguide,thecutofffrequenciesofthepropagatingmodesinthe6.35cmdiameterguide mustsatisfytheinequality

Therefore,usingareferencesuchasBeattie(seefootnote21inAddendumC),thetotalnumberof modespropagatinginthe6.35cmdiameterairwaveguideat60GHzisfoundtobe409.

(b)Repeatingpart(a)forthe2.78cmdiameterwaveguide,wehave

Therefore,usingBeattie,thetotalnumberofpropagatingmodesinthe2.78cmdiameterairwaveguideat60GHzis80.

C.39TE11 toTM11 modeconverter.

(a)Fortheinputairwaveguidewithradius a1 ≃ 1 19cm,thecutofffrequencyofanypropagating modeat9.94GHzmustsatisfy

94

yielding (snl or tnl) <∼ 2 477.Therefore, usingthevaluesof snl and tnl providedinTablesC.2and C.3,theonlymodesthatcanpropagateontheinnerwaveguideat9.94GHzareTE11 andTM01 respectively.

(b)Repeatingpart(a)fortheoutputairwaveguidewithradius a2 ≃ 2 06cm,wefind (snl or tnl) <∼ 4.289

fromwhichwedeterminethepropagatingmodesontheouterwaveguideat9.94GHzasTE11, TM01,TE21,TM11,TE01,andTE31 respectively.

C.40Circularwaveguidemodes.

(a)UsingTablesC.2andC.3,thecutofffrequenciesofthedominantTE11 modeandthenexthigher TM01 modeona1cminnerdiametercircularairwaveguidearegivenby

Therefore, thefrequencyrangeoverwhichonlythedominantTE11 modecanpropagatecanbe foundas fcTM01 fcTE11 ≃ 5.383GHz.

28
fcnl = (snl or tnl)c 2πa1 < 60GHz → (snl or tnl)max <∼ 39 90
fcnl = (snl or tnl)c 2πa2 < 60GHz → (snl or tnl)max <∼ 17 46
fcnl = (snl or tnl)c 2πa1 <
9
× 109
fcTE11 = s11c 2πa ≃ (1.8412)(3 × 1010) π(1) ≃ 17 58GHz fcTM01 = t01c 2πa ≃ (2.4049)(3 × 1010) π(1) ≃ 22.97GHz
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

(b)Thecutoff frequencyoftheTE01 andTE31 modeare

Therefore, excludingthepossibilityoftheTM01 andTE21 modes,thefrequencyrangeoverwhich onlytheTE11 andTE01 (andTM11)modescanpropagatecanbefoundas

C.41Circularwaveguidedesign.

(a)Usingthefirstdesigncriteria,wehave

1 isused.Usingtheseconddesigncriteria,wehave

Therefore,thewaveguideradiusmustlieintherange ∼ 1.717 ≤ a ≤∼ 2.599cm.But,sincethe thirddesigncriteriaistomaximizethepowerdeliveringcapabilityofthewaveguide,wechoose

2 599cm.

(b)Thethreepossiblemodesthatcanpropagateat6.4GHzareTE11,TM01,andTE21,sincethe cutofffrequenciesofthesethreemodesare

(c)Similartopart(b),thepossiblepropagatingmodesat9.6GHzcanbefoundasTE11,TM01,

.44GHz).

29
fcTE01 = s01c 2πa ≃ (3 832)(3 × 1010) π(1) ≃ 36.59GHz fcTE31 = s31c 2πa ≃ (4.201)(3 × 1010) π(1) ≃ 40 12GHz
fcTE31 fcTE01 ≃ 3.52GHz.
fcTE11 ≃ 1.8412c 2πa ≤ 0 8(6 4GHz) → amin ≃ 1 717cm where c ≃
cm-s
fcTE01 ≃ 3 832c 2πa ≥ 1.1(6.4GHz) → amax ≃ 2.599cm
3 × 1010
a = amax
fcTE11 ≃ 1 8412c 2π(2 599) ≃ 3.38GHz fcTM01 ≃ 2 4049c 2π(2.599) ≃ 4 42GHz fcTE21 ≃ 3 0542c 2π(2.599) ≃ 5 61GHz
01 andTM11,bothofwhichhavethesamecutofffrequenciesgiven
fcTE01 = fcTM11 ≃ 3.832c 2π(2.599) ≃ 7 04GHz > 6 4 GHz andtherefore,thesetwomodesdonotpropagateat6.4GHz.
ThenexthighermodesareTE
by
TE21,TE01,TM11,TE31 (with fcTE31 ≃ 7.72GHz),andTM21 (with fc
TM21
9
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

AddendumC/ CylindricalWaveguides

C.42Circular waveguidemodes.

(a)FortheWC-109circularpolystyrene-filledwaveguidewithdiameter2a = 2.779cm,themodes thatcanpropagateat10GHzcanbeareTE11,TM01,TE

11,andTE31 whichhavecutoff frequenciesgivenby

Note thatthenexthighermode(inthiscaseTM21)doesnotpropagatesinceitscutofffrequencyis ∼ 11.03GHz >∼ 10GHz.

(b)Thephasevelocity,theguidewavelength,andthewaveimpedanceofthedominantTE11 mode at10GHzcanbecalculatedas

ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

C.43Acircularwaveguideusedformicrowavetelecommunications.

At4GHz,thecutofffrequenciesofallpropagatingmodesontheWC--281circularairwaveguide (d = 2a ≃ 7.14cm)mustsatisfy

UsingTablesC.2andC.3,wefindthatonlyTE11andTM01 modescanpropagateat4GHz.

At6GHz,wefind (tnl or snl) <∼ 4 486,whichmeansthatonlysixmodes(TE11,TM01,TE21, TE01,TM11,andTE31)canpropagate.

At8GHz,wefind (tnl or snl) <∼ 5.982,whichmeansthatonlytenmodes(TE11,TM01,TE21, TE01,TM11,TE31,TM21,TE41,TE12 andTM02)canpropagate.

30
21
01,TM
fcTE11 ≃ 1 8412(3 × 1010) π(2 779)√2 56 ≃ 3.954GHz fcTM01 ≃ 2.4049(3 × 1010) π(2 779)√2 56 ≃ 5 165GHz fcTE21 ≃ 3.0542(3 × 1010) π(2 779)√2 56 ≃ 6 559GHz fcTE01 = fcTM11 ≃ 3 832(3 × 1010) π(2.779)√2.56 ≃ 8 23GHz fcTE31 ≃ 4 201(3 × 1010) π(2.779)√2.56 ≃ 9.022GHz
,TE
vp11 ≃ (3 × 108 m-s 1)/√2.56 √1 (3.954/10)2 ≃ 2.04 × 108 m-s 1 λ11 ≃ (3cm)/√2.56 √1 (3.954/10)2 ≃ 2.04cm ZTE11 ≃ (377Ω)/√2 56 √1 (3 954/10)2 ≃ 256 5Ω
(tnl or snl) π(7 14) < 4GHz → (tnl or snl) <∼ 2.991
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

At11 GHz,wefind (tnl or snl) <∼ 8 225,whichmeansthatonly18modes(uptotheTE32 mode) canpropagate.

C.44OrthogonallypolarizedTE11 modes.

(a)Wehave

(b)NextlowestcutoffforTMmodesisTM01,with

5GHz,whileforTEmodesisTE21,with fc ≃ 6 3GHz.Thus,theTE11 modeat4.43GHzisindeeddominant.

(c)From(C.8)wehave

31
s11 a = 80 → a = s11 80 = 1.841 80 = 2 3cm β11 = 47 =]ω 2 µϵ (s11/a)2] → f = c 2π [(47)2 +(80)2]1/2 ≃ 4 43GHz
c ≃
f
Htr = Hr + Hϕ = γ γ2 + ω2µϵ ∇trHz (C.6a) Etr = Er + Eϕ = jωµ γ Htr × ˆ z (C.6b) where β =[ω2µϵ (snl/a)2]1/2,and γ = jβ.Since ˆ ϕ ϕ ϕ × ˆ z = ˆ r,wehavefromtheabove Hϕ = β ωµ Er = β ωµ C1 r J1(80r)[sin ϕ + cos ϕ]e j47z =(1.34 × 10 3) C1 r J1(80r)[sin ϕ + cos ϕ]e j47z
Hz
γ 2 + ω 2 µϵ = (snl a )2 ∇tr = ˆ r ∂ ∂r + ˆ ϕ ϕ ϕ 1 r ∂ ∂ϕ andintegrating(C.8a):
z = (snl/a)2 jβ ∫ Hϕrdϕ = j (snl/a)2 ωµ C1J1(80r) e j47z ∫ [sin ϕ + cos ϕ]dϕ = j (snl/a)2 ωµ C1J1(80r) e j47z[cos ϕ sin ϕ]= j(0.183)C1 J1(80r) e j47z[cos ϕ sin ϕ] andfrom(C.6a)wehave Hr = jβ (s nl/a)2 ∂Hz ∂r = βωµ C1 J′ 1(80r) e j47z(80)[cos ϕ sin ϕ] = 0.107C1 J′ 1(80r) e j47z[cos ϕ sin ϕ] whereasfrom(C.6a)wehave Eϕ = jωµ jβ = 80C1 J′ 1(80r)e j47z[cos ϕ sin ϕ]
Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted. © 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
The
componentcanbe foundbynotingthat
H
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning.

AddendumC/ CylindricalWaveguides

(d)Theformachoiceofsinesandcosinesintherectangularcaseareduetotheboundaryconditions, whileinthecircularcasetheyareduetoanarbitraryselectionoftheoriginof ϕ

C.45Circularwaveguide-to-microstriptransition.

Thecutofffrequencyofallthepropagatingmodesonthe2.1cmdiametercircularairwaveguide mustsatisfy

UsingTables C.2andC.3,wefindthatonlytheTE11 modecanpropagateinthiswaveguide,for thefrequencyrangespecified.

C.46Circularversusrectangularwaveguides.

Weseparatelyconsiderparallel-plate,rectangular,andcircularwaveguides.Forparallel-plate, examinationofFigure10.11indicatesthatpossiblelowlossmodesareTEMandTE1.ForTEM, wehave fc = 0,and αcTEM = Rs/(ηa).Fromthegivensheetsizewecanchoose

andselect avalueof a smallenoughsothatfringingfieldscanbenegligible,e.g.,

0.315cm.Theattenuationconstantisthen

ForTE1, wehave

10

sincewemusthave a ≤ 0.315cmtominimizefringingfields,itappearsthatanyparallel-plate guidewecanmakefromthegivenmaterialwouldnotbesuitableforpropagatingtheTE1 mode. Forrectangularwaveguide,weseefromFigureC.8thatthebestmodetoconsideristheTE10 mode.

32
(tnl or snl)c 2πa < 10.66GHz → (tnl or snl) < π(2 1)(10 66 × 109) 3 × 1010 ≃ 2.344
b = 6 3 2 = 3.
a ≤ b
αcTEM = 1 0.315 × 10 2 317 46 Rs ηa = 317 46 Rs ηa
15cm,
/(
)=
fc1 = c (2a) ≤ 25GHz → a ≥ c 2.25 × 109 = 0 6cm
fc10 = c 2a ≤ 25GHz → a ≥ 0 6cm Also a ≥ b and a + b = 6 3 2 = 3.15cm → a ≥ 3 15 2 = 1.5757cm and a < 3 15 cmwhereas b = 3 15 a cm Theattenuationconstantis αcTE10 = Rs [1 +(2b/a)(fc10/f)2] ηb√1 (fc10/f)2 = Rs η 1 +[(6.3 2a)/a][c/(2πf)]2 (3.15 a) × 10 2√1 [c/(2πf)]2 ≃ 372 91 Rs η for f = 25GHz, and a = b = 1.575cm.
Wehave
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

Forcircular waveguide,wenotefromFigureC.13thatpossiblemodesareTE11 andTE01.We considertheseseparately:

for f = 25GHz and a = 1cm.

Comparisonof the αc valuesforthethreedifferentwaveguidesindicatesthatcircularwaveguide isthebestfromthepointofviewofminimizingattenuationduetoconductivelosses.

C.47Attenuationinacoaxialline.

Theexpressionfortheattenuationconstantforacoaxiallineis

where Rs = √ωµ0/(2σ) istheonlyfrequencydependentterm,foranonmagneticconductorsuch ascopper,andassumingthat η = √µ/ϵ isnotfrequencydependent,whichforanair-filledlineis simply ηair = √µ0/ϵ0.We aretoldthatthelineismadeof`thick'walls,whichat300MHzmust definitelybemuchlargerthantheskindepth (δ ≃ 3 82 µmforcopperat300MHz).Thus,thewall thicknessdoesnotexplicitlyappearintheexpressionfor αc,anddoublingitdoesnotsignificantly changetheattenuationconstant.

(a)At600MHz,thevalueof Rs ishigherbyafactorof √2,thuswehave αc ≃ 0.003√2 ≃ 0.0042np-m 1 .

(b) Asmentionedabove,doublingthethicknessofthecopperwallshasnosignificanteffect.When theconductorradiiare2a and2b,wehave

33
TE01 : fcTE01 = s01 2πa√µϵ = 3.832c 2πa ≤ 25GHz → a ≥ 3.8232c 2π(25 × 109) = 0 73cm Also2πa ≤ 6 3cm → a ≤ 1 00cm αcTE01 = Rs η 1 a [1 (fcTE01 f )2]1/2 [(fcTE01 f )2 + 1 (3.832)2 1] ≃ 89 34 Rs η
TE11 : fcTE01 = s11 2πa√µϵ = 1.841c 2πa ≤ 25GHz → a ≥ 3.8232c 2π(25 × 109) = 0 35cm Also2πa ≤ 6 3cm → a ≤ 1 00cm αcTE11 = Rs η 1 a [1 (fcTE11 f )2]1/2 [(fcTE11 f )2 + 1 (1.841)2 1] ≃ 57 91 Rs η
αc = Rs 2η ln(b/a) [1 a + 1 b] = 0.003np-m 1 at300 MHz
αc = Rs 2η ln[2b/(2a)] [ 1 2a + 1 2b] = 1 2 { Rs 2η ln(b/a) [1 a + 1 b]} αc at300MHz = 0.0015np-m 1
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

(c)Theattenuation rateduetodielectriclossesfortheTEMmodeinacoaxiallinefilledwith nonmagneticmaterialisgivenby(C.57),namely

(d)At600MHz, αd istwiceaslarge,sinceitisproportionaltofrequency.Thuswehave

C.48Optimumcoaxiallines.

Thereisatypointhestatementofthisproblem.Asshouldbeobviousfromthewording,the conditionforminimum αc foragivenouterconductorradius b is b = 3 6a,ratherthan

(a)Theexpressionfor αc forTEMmodeinacoaxiallineisgivenby(C.56),namely

34
AddendumC/ CylindricalWaveguides
αd ≃ ωϵ′′√µ0 2√ϵ′ where ϵ′′ = ϵ′ tan δc.Usingthe valuesgivenfor300MHzwefind αd ≃ (2π)(300 × 106)(2ϵ0)[(15/π) × 10 4] 2√2ϵ0 ≃ 6 36 × 105√ϵ0 ≃ 1 89np-m 1 sothat thetotalattenuationrateis αtotal = αc + αd = 0.003 + 1.89 ≃ 1.90np-m 1
Itthusappearsthatthedielectriclossesareclearlydominant.
αtotal = 0 0042 +(2)(1 89)=
78np-m 1
3
a = 3 6b
αc = Rs 2η ln(b/a) [1 a + 1 b] Fora givenvalueof b,wecandifferentiate αc withrespectto a andequatetozero ∂αc ∂a = Rs 2η        [1 a + 1 b] a[ln(b/a)]2 1 a2 ln(b/a)        = 0 whichreduces to a [1 a + 1 b] = ln(b/a) → 1 + 1 b/a = ln(b/a) → ζ = e 1+ζ 1 → ζ = b a ≃ 3.591
Z0 ≃ 60ln b a ≃ 60ln 3.6a a ≃ 76 7Ω
(b)Thecharacteristicimpedanceisgivenby(C.58)
Dissemination
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning.
orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

(c)Theanswerisno.Ifwestartwithafixedvalueoftheinnerconductorradius a,thenthelarger thevalueof b thebetter,sincetheaveragepowertransmitted(Pav)goesupproportionaltothe cross-sectionalareawhilethewalllosses(Ploss)aredeterminedbytheperimeter,thus αc,which isdeterminedbytheratioof Ploss to Pav canbemadearbitrarilysmallbychoosinganarbitrarily largevalueof b.

C.49Powercapacityofacoaxialline.

OuranswermustbebasedontheexpressionsfromSectionC.2.2fortheelectricandmagnetic fieldsandtheaveragepowertransmittedforacoaxialline.Wehave

fieldandsurfacecurrentconditionsdictatethefollowing:

Thus,itappears thatthesurfacecurrentcriteriaistheonethatlimitsthemaximumpowerhandling capacity.For H0 = 5wehave

C.50Higher-ordermodesonacoaxialline.

(a)Fortheair-filledcoaxiallinewith

nonzerocutofffrequencyistheTE11 modewithcutofffrequencyapproximatelygivenby(C.59) as

Thus,TE11 mode canpropagateonthecoaxiallineonlyatfrequenciesabove1.941GHz.

(b)Repeatingpart(a)forthesamecoaxiallinefilledwithNorylEN265material(ϵ′ r ≃ 2.65),we

(c)Based onthecutofffrequencycalculatedinpart(b),itisclearthattheTEMapproximationis notvalidforfrequenciesabove ∼1.2GHz,sincethehigher-ordermodessuchastheTE11 canalso propagateonthelineandcancontributetotheresultsobtainedinthemeasurements.

35
H = ˆ ϕ ϕ ϕ H0 r e jβz ; E = ˆ r H0η r e jβz ; Pav = πηH2 0 ln (b a)
Js = ˆ n × H,sothat |Js| = |H|.Wenotethatboththeelectricfieldand
a
a
|Js|≤ 10A-mm 1 → H0 0.5 × 10 3 ≤ 10 × 103 → H0 ≤ 5 |E|≤ 10kV-mm 1 → H0(377) 0 5 × 10 3 ≤ 10 × 106 → H0 ≤ 13.26
Thesurfacecurrentdensity
thesurfacecurrentdensityaremaximumatthelowestradius,i.e.,at r =
.Thus,weonlyneedto payattentiontotheirvaluesat r =
.Forthegivenvalueof a = 0.5mm,themaximumelectric
Pav = πηH2 0 ln (b a) = π(377)(5) ln (2.5 0.5) = 9 53kW
a ≃ 1.49cmand b ≃ 3.
fc11 ≃ c π(a + b) ≃ 3 × 1010 π(1.49 + 3.429) ≃ 1 941GHz
429cm,themodewiththelowest
find fc11 ≃ 3 × 1010/√2 65 π(1.49 + 3.429) ≃ 1
193GHz
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseofinstructorsinteaching theircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

C.51Group velocityfortheTE10 mode.

ThefieldexpressionsfortheTE10 modeinarectangularwaveguideare:

Following ananalysissimilartothatinSection10.3.3,wecanconsideraunitlength(1m)of waveguide.Thetimeaverageenergystoredinavolume

36 AddendumC/
CylindricalWaveguides
Ho z = Ccos
πx a ) Ho x = jβaC π sin ( πx a ) Eo y = jωµaC π sin ( πx a ) Eo x = Ho y = 0 β10 = √ω2µϵ ( π a )2 = [(2π λ )2 ( π a )2]1/2
(
V =(a)(b)(1)
Wstr = 1 4 ∫ a 0 ∫ b 0 ∫ 1 0 [ϵE · E∗ + µH · H∗]dzdydx = µω2µϵab 4(π/a)2 Thetimeaveragepowertransmittedcanbefoundas Pav = ∫ b 0 ∫ a 0 1 2 5e{E × H∗}dxdy = ωµβ10ab a(π/a)2 sothat thevelocityofenergytravelisgivenby ven = Sav W = ωβ10 ω2µϵ = v2 p vp = 1 √µϵ √1 (fc10 f )2 → ven = vg Thuswe seethatthegroupvelocityisindeedthevelocityofenergytransportfortheTE10 mode. ThisworkisprotectedbyUnitedStatescopyrightlaws
theircoursesandassessingstudentlearning.
willdestroytheintegrityoftheworkandisnotpermitted. © 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
,includingbothelectricand magneticparts,is
andisprovidedsolelyfortheuseofinstructorsinteaching
Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb)

TransientResponseofTransmissionLines

2.1Lumpedordistributedcircuitelement?

ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

2.2Lumped-ordistributed-circuitelement?

2
(a)Using(2.9), Z0 = √ L C = √ 4 × 10 9 H-cm 1 1 6 × 10 12 F-cm 1 = 50Ω Using(2.7), vp = 1 √LC = 1 √(4 × 10 9 H-cm 1)(1 6 × 10 12 F-cm 1) = 1 25 × 1010 cm-s 1 = 12.5cm-(ns) 1 Hencetheone-waytimedelay td isgivenby td = l vp = 5cm 12.5cm-(ns) 1 = 0 4ns (b)Theratiobetweenthestepsourcerise-timeandtheone-waytimedelayis tr td = 0.1ns 0 4ns = 0 25 < 2 5 From(1.1),itisnotappropriatetomodelthetransmissionlineinthiscircuitasalumpedelement.
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
2 Chapter2/TransientResponseofTransmissionLines (a)Using(2.7) and(2.9),wehave vp = 1 √LC = 2c 3 ≃ 2×108 m-s 1 Z0 = √ L C = 50Ω Multiplyingthe abovetwoequationsyields vpZ0 = 1 C ≃ (2×108 m-s 1)(50Ω) → C ≃ 10 10 F-m 1 = 1pF-(cm) 1 Dividingtheabovetwoequationsintooneanotherresultsin vp Z0 = 1 L ≃ 2×108 m-s 1 50Ω → L ≃ 2 5 × 10 7 H-m 1 = 2 5nH-(cm) 1 (b) td = l 2c/3 ≃ 1m 2×108 m-s 1 ≃ 5ns (c) λ = 2c/3 f ≃ 2×108 m-s 1 109 Hz = 0 2m Using(1.6), wehave l = 1m > 0 01λ = 0 002m Therefore,thistransmissionlineshouldnotbetreatedasalumpedelement. 2.3Open-circuitedline. Sincewehaveanidealunitstepsource, Rs = 0.Asaresult,thesource-endreflectioncoefficient is Γs = Rs Z0 Rs + Z0 = 0 Z0 0 + Z0 = 1 Atthe loadend(opencircuit,i.e., RL = ∞),thereflectioncoefficientis ΓL = RL Z0 RL + Z0 = ∞− Z0 ∞ + Z0 =+1 © 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

At t = 0,anincidentvoltageofamplitude

9+ 1 = Z0 Rs + Z0 V0 = 50 0 + 50 (1V) = 1V

islaunchedatthesourceendoftheline.Usingthesevalues,wehavethebouncediagramshown. Theloadendvoltage 9L(t) shownissketchedinFigure2.1usingthebouncediagram.

2.4Stepandpulseexcitationofalosslessline.

(a)Wefirstcalculatethereflectioncoefficientsatthesourceandload,andtheamplitudeofthe 9+ 1 voltagewavethatislaunchedat t = 0+:

Usingthese values,wecansketchthebouncediagraminFigure2.2a.Thesuccessive 9 and 9+ stepamplitudesarecalculatedusingtheloadandsourcereflectioncoefficients.Forexample, 91 and 9+ 2 arefoundfrom 9+ 1 as:

Thebouncediagramcanbeusedtosketchtheload-andsource-endvoltages,asshownin Figure2.2b.

3 0 (V)
Figure2.1 FigureforProblem2.3
Γs = Rs Z0 Rs + Z0 = 10 90 10 + 90 = 0 8 ΓL = RL Z0 RL + Z0 = 630 90 630 + 90 = 0.75 9+ 1 = V0Z0 Rs + Z0 = (10)(90) 10 + 90 = 9V
91 =ΓL9+ 1 =(0.75)(9)= 6.75V 9+ 2 =Γs91 =( 0.8)(6.75)= 5.4V
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

(b)Wecanderivethesketchesfor 9s and 9L fromthesketchesinpart(a)bydelayingtheplotsby 0.3nsandsubtractingtheresult.TheresultingsketchesareshowninFigure2.3.

2.5Resistiveloads.

Since Rs = 0, Γs = 1.

(a)For RL = 25Ω,wehave

islaunchedatthesourceendoftheline.Usingthesevalues,thebouncediagramandtheload voltage 9L(t) versus t areasshowninFigure2.4.

(b)For RL = 50Ω, ΓL = 0.Thebouncediagramandthesketchoftheloadvoltageforthiscase areasshowninFigure2.5.

(c)For RL = 100Ω,theloadreflectioncoefficientis

ΓL = 100 50 100 + 50 =+ 1 3

Again, thebouncediagramand 9L(t) versus t areasshowninFigure2.6.

4 Chapter2/TransientResponseofTransmissionLines 0 0 0 1.8 3.65.4 7.29.0 0 1.83.65.47.29.0 9 10.35 9.54 15.75 6.3 11.97 t (ns) t (ns) s(t) (V) L(t) (V) (b) (a) Γs= 0.8 0 3.6 91 = 9 V ΓL= 0.75 + 91 = 6.75 V 92 = −5.4 V + 92 = −4.05 V 93 = 3.24 V + 93 = 2.43 V 7.2 1.8 5.4 9.0 9L = 0 9L = 15.75 V 9L = 6.3 V 9L = 11.97 V 9s = 9 V 9s = 10.35 V 9s = 9.54 V t (ns)
L
t
Figure2.2 FigureforProblem2.4(a). (a)Bouncediagram.(b) 9
s and 9
versustime
ΓL = RL Z0 RL + Z0 = 25 50 25 + 50 = 1 3 At t
9+ 1 = Z0 RL + Z0 V0 = 50 0 + 50 (3V)= 3 V
= 0,an incidentvoltageofamplitudegivenby
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

5 0 1.8 3.65.4 7.2 9.0 1.8 3.6 5.4 7.29.0 9 1.35 -0.81 15.75 5.67 -9.45 0 t (ns) t (ns) s(t) (V) L(t) (V)
Figure2.3 FigureforProblem2.4(b). 9s and 9L versustime t. Figure2.4 FigureforProblem2.5a. RL = 25 Ω Figure2.5
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
FigureforProblem2.5b. RL = 50 Ω

2.6Ringing. Using(2.7)and(2.9),wehave

Theone-waytimedelaycanbefoundas

Theincident voltagewavelaunchedatthesource-endat t = 0canbefoundusingthevoltage dividerprincipleas

Theload-end andsource-endreflectioncoefficientscanbefoundusing(2.12)and(2.14):

Next, wedrawabouncediagramupto t = 10ns,showninFigure2.7a.Usingtheload-end voltagevaluesonthebouncediagram,wecansketchtheload-endvoltage 9L(t) versustime,as showninFigure2.7b.

6 Chapter2/TransientResponseofTransmissionLines
Figure2.6 FigureforProblem2.5c. RL = 100 Ω
vp = 1 √LC = 1 √0 5×10 6 H-m 1 × 0 2×10 9 F-m 1 = 108 m-s 1 Z0 = √ L C = √0 5×10 6 H-m 1 0 2×10 9 F-m 1 = 50Ω
td = l vp = 15cm 1010 cm-s 1 = 1 5ns
9+ 1 = V0Z0 Rs + Z0 = (50)(3.6) 10 + 50 = 3V
ΓL = RL Z0 RL + Z0 RL→∞ =+1 Γs = Rs Z0 Rs + Z0 = 10 50 10 + 50 = 2 3
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

2.7Dischargingofachargedline.

At t = 0 (i.e.,immediatelybeforetheswitchopenswhensteady-stateconditionsareineffect), thesourceendcurrent )s isgivenby )

theswitchopens),thesourceendcurrentissuddenlyforcedtogotozero,i.e., )s(0+)= 0.Wecan representthischangein )s asanewdisturbancelaunchedfromthesourceendofthelinestarting at t = 0.Theamplitudeofthisnewcurrentwaveanditsaccompanyingvoltagewavearegiven respectivelyby )+ 1 = )s(0+) )

willnotaffectthevalueoftheloadendvoltageuntil

t < td, 9L(t)= 3V, regardlessofthevalueof RL.UsingthereflectioncoefficientvaluescalculatedinProblem2.5, wedrawthebouncediagramandsketch 9L(t) asafunctionof t foreachvalueof RL,asshownin Figures2.8,2.9,and2.10.

2.8Twostepvoltagesources.

Thereflectioncoefficientsatsource1andsource2endsare,respectively,

7 (b) (a) Γs= − 2/3 0 3.0 91 = 3 V ΓL= +1 + 91 = 3 V 92 = −2 V + 92 = −2 V 93 = (4/3) V + 93 = (4/3) V 6.0 1.5 4.5 7.5 9.0 9L = 0 9L = 3 + 3 = 6 V 9L = 6 − 2 − 2 = 2 V 6 4.67 2 3.6 1.50 0 4.5 7.59.0 t (ns) t (ns) L(t) (V) 94 = −(8/9) V + 9L = 2 + 4/3 + 4/3 = ∼4.67 V
Figure2.7 FigureforProblem2.6. (a)Bouncediagram.(b) 9L versustime t
s(0 )= V0/RL = 3/RL.At t = 0+ (i.e.,immediatelyafter
0 )= 3/RL and 9+ 1 = Z0)+ 1 = 3Z0/RL.Thisdisturbance
0 5ns.So,for
s(
t = td =
Γ1 = Rs1 Z0 Rs1 + Z0 = Z0 3 Z0 Z0 3 + Z0 = 0 5 Γ2 = Rs2 Z0 Rs2 + Z0 = Z0 Z0 Z0 + Z0 = 0 At t = 0 ,the systemisatasteadystate,andso © 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.
8 Chapter2/TransientResponseofTransmissionLines
Γs= +1 ΓL = 0 1 3 V 3 2 1 0.5 ns 2 3 t (ns) L(t) (V) L=3 V L=0 t (ns)
Figure2.8 FigureforProblem2.7a. Bouncediagramand 9L(t) versus t for RL = 25 Ω.
Γs= +1 ΓL = +1/3 1 3 2 1 0.5 ns 1.5 ns −1.5 V −0.5 V −0.5 V −0.5/3 V −0.5/3 V −0.5/9 V 2.5 ns 1 V 1/3 V 1/9 V 2.0 ns 3.0 ns 1.0 ns 2 3 t (ns) L(t) (V) L=3 V L=1 V L=1/3 V L=1/9 V t (ns)
Figure2.9 FigureforProblem2.7b. Bouncediagramand 9L(t) versus t for RL = 50 Ω.
100 Ω © 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
Figure2.10 FigureforProblem2.7c. Bouncediagramand 9L(t) versus t for RL =
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.
9 91(0 )= 92(0 ) = Rs2 Rs1 + Rs2 V0 = Z0 Z0 3 + Z0 V0 = 0.75V0 At t = 0, V0u( t) turnsoffand2V0u(t) turnson.Asaresult,wehavethebouncediagramshown inFigure2.11a.Notethat 9+ 1A isavoltagewavelaunchedduetosource V0u( t) turningoffat t = 0.Similarly, 91A isavoltagewavelauncheddueto2V0u(t) turningonat t = 0. Calculatingthevoltagewaveamplitudes,wehave 9+ 1A = Z0 Rs1 + Z0 V0 = 0.75V0 91A = Z0 Rs2 + Z0 (2V0)= V0 9+ 2A =Γ191A = ( 0 5)(V0)= 0 5V0 Usingthesevalues,wehave 91(t)=          0 75V0, t < 0 0, 0 < t < td 0.5V0, t > td and 92(t)=                0.75V0, t < 0 1 75V0, 0 < t < td V0, td < t < 2td 0.5V0, t > 2td ThevoltagesketchesareshowninFigure2.11b. 2.9Pulseexcitation. Theone-waytimedelayandthereflectioncoefficientsattheendsofthelineare td = l/vp = (10cm)/(20cm-ns 1)= 0 5ns, Γs = Rs Z0 Rs + Z0 = 25 75 25 + 75 = 0.5 ΓL = RL Z0 RL + Z0 = 0 75 0 + 75 = 1 respectively.At t = 0,anincidentvoltageislaunchedatthesourceendofthelinegivenby 9+ 1 = 75 25 + 75 (1V) = 0 75V © 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.
ThisworkisprotectedbyUnitedStatescopyrightlaws

(a)Theinputvoltagehasapulsewidthof tw = 10ns,thatistheinputvoltageturnsoffat t = tw = 10ns.Werepresentthischangeintheinputvoltageasanewincidentvoltageofamplitude 9+∗ 1 = 9+ 1 = 0.75Vlaunchedatthesourceendofthelineat tw = 10ns.Thebouncediagram andthevariationofthesourcevoltage 9s(t) versus t areasshowninFigure2.12a.

(b)Forthecaseof tw = 1ns,thesourceendvoltage 9s(t) caneasilybeobtainedbyshiftingthe second-halfofthe 9s(t) sketchedinpart(a)by9nstotheleftandaddingitwiththefirsthalf.The finalplotfor 9s(t) versus t isasshowninFigure2.12b.

2.10Pulseexcitation.

Thereflectioncoefficientsatthetwoendsofthelineare(using(2.12)and(2.14))

At t = 0,an incidentvoltageofamplitude

10 Chapter2/TransientResponseofTransmissionLines (b) (a) Γ1= − 0.5 91A Γ2 = 0 + 91A td 92A + td 2td 0.75 0.5 0.75 0 1 2 1.75 1.0 0.5 0 1 2 t / td t / td 1(t) /V0 2(t) /V0
Figure2.11 FigureforProblem2.8. (a)Bouncediagram.(b) 91 and 92 versustime t
Γs = Rs Z0 Rs + Z0 = Z0 Z0 Z0 + Z0 = 0 ΓL = RL Z0 RL + Z0 = 100Z0 Z0 100Z0 + Z0 ≃ +1
9+ 1 = Z0 Rs + Z0 A = Z0 Z0 + Z0 A = A 2 islaunched atthesourceendoftheline.Whentheinputpulseturnsoffat t = tw
berepresentedasanewvoltagedisturbance 9+∗ 1 = 9+ 1 = A 2 launchedat thesourceendofthelineat t = tw.Onebyone,thenewvoltagecancelsoutthe existingvoltagedisturbances 9+ 1 , 91 , 9+ 2 , 92 ,etc.alongtheline.Thebouncediagramandthe
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
,thischangecan
loadvoltage 9L(t) versustareprovidedinFigures2.13,2.14,and2.15.foreachcasecorresponding toadifferentinputpulselengths.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

11
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
Figure2.12 FigureforProblem2.9. (a)Bouncediagramand 9s(t) versus t.(b) 9s(t) versus t,obtainedviasuperposition.

ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

12 Chapter2/TransientResponseofTransmissionLines
Figure2.13 FigureforProblem2.10a. (a)Bouncediagramand 9L(t) versus t for tω = 2td,where td istheone-waytimedelayalongtheline. Figure2.14 FigureforProblem2.10b. (a)Bouncediagramand 9L(t) versustfortω = td.
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
Figure2.15 FigureforProblem2.10c. (a)Bouncediagramand 9L(t) versus t.for tω =
t
d/2.

2.11Observerontheline.

(a)Usingthesketchof 9ctr versus t provided,theinitialvoltagelaunchedonthelineisgivenby

(b)Superimposingthedirectandreflectedpulses,thevoltage 9ctr(t) isasdrawninFigure2.16.

2.12Cascadedtransmissionlines.

Thereflectioncoefficientsare

and ΓL = +1(since RL = ∞)respectively.Thebouncediagramandthesketchesofvoltages 9s(t) and 9L(t) areasshowninFigure2.17.

2.13Time-domainreflectometry(TDR).

Theinitialvoltage 9+ 1 launchedfromthesourceendofthelineisgivenby

Thesourceendvoltage 9s(t) changesfrom0 5Vto0 375Vwhenthevoltagewavereflected fromthejunctionpointbetweenthetwolinesreachesthesourceendoftheline,i.e.,attime 2td1 = 1nsor td1 = 0.5ns.Thelengthofthefirstline l1 canthenbefoundas l1 = vptd1 = (20cm-(ns) 1)(0.5ns)= 10cm.Thevoltage 91 reflectedfromthejunctionpointcanbeexpressedintermsof 9+ 1 as

13 9ctr (V) t/td 0.3 0.5 0.8 0.5 1 1.5 2 2.5 3 3.5 Figure2.16
FigureforProblem2.11.
9+ 1 = Z0 Rs + Z0 V0 = Z0 100 + Z0 (1V) = 0 5V → Z0 = 100 Ω Thereflectedvoltageisgivenby 91 =ΓL9+ 1 = RL Z0 RL + Z0 9+ 1 = RL 100 RL + 100 (0.5V) = 0.3V
RL
RL = 400Ω
Solvingfor
,wehave
.
Γs
Rs = 50Ω), Γ12 = Γ21 = Z02 Z01 Z02 + Z01 = 75 50 75 + 50 =+0.2
= 0(since
9+ 1 = Z01 Rs + Z01 V0 = Z01 50 + Z01 (1V)= 0.5V → Z01 = Rs = 50 Ω
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

L

t

Figure2.18

91 = (R1 || Z02) Z01 (R1 || Z02)+ Z01 9+ 1 where R1 || Z02 = R1Z02 R1 + Z02

Whenthereflected voltage 91 reachesthesourceendoftheline,noreflectiontakesplacessince Γs = 0.Thus,wehave 9+ 1 + 91 = 0.375V → 91 = 0.125V.Usingthisvalueintheabove expressionwith 9+ 1 = 0.5Vand Z01 = 50Ω,wefind R1 || Z02 = 30Ω.Since Z02 = 75Ω,wehave R1 = 50Ω.Thevoltage 9R1(t) versus t isplottedasshowninFigure2.18.

2.14Time-domainreflectometry(TDR).

(a)Theinitialvoltagelaunchedatthesourceendofthetransmissionlinesystemisgivenby 9+ 1 = Z01 Rs + Z01 V0 = Z01 100 + Z01 (3V)= 1 5V → Z01 = Rs = 100 Ω

Theone-waytimedelayofthetwotransmissionlinescanbefoundas td1 = 3ns/2 = 1.5nsand td2 =(7.5ns 3ns)/2 = 2.25ns.Since Γs = 0,thesourceendvoltage 9s at t = 2t+ d1 canbe

14 Chapter2/TransientResponseofTransmissionLines
Figure2.17 FigureforProblem2.12. (a)Bouncediagramforthecascadedlines.(b) 9s and 9 versus FigureforProblem2.13. 9R1 versus t.
writtenas © 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination orsaleofanypartofthiswork(includingontheWorldWideWeb) willdestroytheintegrityoftheworkandisnotpermitted.

2.15Time-domainreflectometry(TDR).

15 =0.0156V
9s(2t+ d1)= 9+ 1 (1 +Γ12)=(1.5V)(1 +Γ12)= 1V → Γ12 = 1 3 where Γ12 = Z02 Z01 Z02 + Z01 = Z02 100 Z02 + 100 → Z02 = 50 Ω At t = 7.5+ ns, thesourceendvoltage 9s isgivenby 9s(t = 7.5+)= 9+ 1 (1 +Γ12)[1 +ΓL(1 +Γ21)]= 1.25V where Γ21 = Γ12 = Z01 Z02 Z01 + Z02 =+ 1 3 and ΓL = RL Z02 RL + Z02 Substituting 9+ 1 = 1.5V, Z01 = 100Ω and Z02 = 50Ω,wefind ΓL = RL 50 RL + 50 = 0.1875 → RL ≃ 73.1 Ω
bouncediagramshownwenotethatthesourceendvoltage 9s changesagainat t = 12 ns,increasingbyanamountofabout ∼ 15.6mV.
Figure2.19 FigureforProblem2.14. Bouncediagram.
(b)Fromthe
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
willdestroytheintegrityoftheworkandisnotpermitted.
ThisworkisprotectedbyUnitedStatescopyrightlaws andisprovidedsolelyfortheuseof instructorsinteachingtheircoursesandassessingstudentlearning. Dissemination
orsaleofanypartofthiswork(includingontheWorldWideWeb)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.