Download pdf A course of modern analysis 5th edition e. t. whittaker full chapter pdf

Page 1


A Course of Modern Analysis 5th Edition E. T. Whittaker

Visit to download the full and correct content document: https://ebookmeta.com/product/a-course-of-modern-analysis-5th-edition-e-t-whittaker/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Numerical Analysis A Graduate Course 1st Edition David E Stewart

https://ebookmeta.com/product/numerical-analysis-a-graduatecourse-1st-edition-david-e-stewart/

A Beginner s Guide to Structural Equation Modeling 5th Edition Tiffany A. Whittaker

https://ebookmeta.com/product/a-beginner-s-guide-to-structuralequation-modeling-5th-edition-tiffany-a-whittaker/

A Course of Stochastic Analysis 1st Edition Alexander Melnikov

https://ebookmeta.com/product/a-course-of-stochasticanalysis-1st-edition-alexander-melnikov/

Criminal Profiling: An Introduction to Behavioral Evidence Analysis 5th Edition Brent E. Turvey

https://ebookmeta.com/product/criminal-profiling-an-introductionto-behavioral-evidence-analysis-5th-edition-brent-e-turvey/

Nonlinear Functional Analysis - A First Course 2nd Edition S. Kesavan

https://ebookmeta.com/product/nonlinear-functional-analysis-afirst-course-2nd-edition-s-kesavan/

Statistical Power Analysis: A Simple and General Model for Traditional and Modern Hypothesis Tests 5th Edition Brett Myors

https://ebookmeta.com/product/statistical-power-analysis-asimple-and-general-model-for-traditional-and-modern-hypothesistests-5th-edition-brett-myors/

Gene Cloning and DNA Analysis T.

A. Brown

https://ebookmeta.com/product/gene-cloning-and-dna-analysis-t-abrown/

A Second Course in Statistics: Regression Analysis 8th Edition William Mendenhall

https://ebookmeta.com/product/a-second-course-in-statisticsregression-analysis-8th-edition-william-mendenhall/

A First Course in Functional Analysis 1st Edition Orr Moshe Shalit

https://ebookmeta.com/product/a-first-course-in-functionalanalysis-1st-edition-orr-moshe-shalit/

ACOURSEOFMODERNANALYSIS

Thisclassicworkhasbeenauniqueresourceforthousandsofmathematicians,scientists andengineerssinceitsfirstappearancein1902.Neveroutofprint,itscontinuingvalue liesinitsthoroughandexhaustivetreatmentofspecialfunctionsofmathematicalphysics andtheanalysisofdifferentialequationsfromwhichtheyemerge.Thebookalsoisof historicalvalueasitwasthefirstbookinEnglishtointroducethethenmodernmethods ofcomplexanalysis.

Thisfiftheditionpreservesthestyleandcontentoftheoriginal,butithasbeen supplementedwithmorerecentresultsandreferenceswhereappropriate.Allthe formulashavebeencheckedandmanycorrectionsmade.Acompletebibliographical searchhasbeenconductedtopresentthereferencesinmodernformforeaseof use.AnewforewordbyProfessorS.J.Pattersonsketchesthecircumstancesofthe book’sgenesisandexplainsthereasonsforitslongevity.Awelcomeadditiontoany mathematician’sbookshelf,thiswillallowawholenewgenerationtoexperiencethe beautycontainedinthistext.

e.t.whittaker wasProfessorofMathematicsattheUniversityofEdinburgh.He wasawardedtheCopleyMedalin1954,‘forhisdistinguishedcontributionstobothpure andappliedmathematicsandtotheoreticalphysics’.

g.n.watson wasProfessorofPureMathematicsattheUniversityofBirmingham. Heisknown,amongstotherthings,forthe1918resultnowknownasWatson’slemma andwasawardedtheDeMorganMedalin1947.

victorh.moll isProfessorintheDepartmentofMathematicsatTulaneUniversity. Heco-authored EllipticCurves (Cambridge,1997)andwasawardedtheWeissPresidentialAwardin2017forhisGraduateTeaching.HefirstreceivedacopyofWhittakerand WatsonduringhisownundergraduatestudiesattheUniversidadSantaMariainChile.

(Left):EdmundTaylorWhittaker(1873–1956);(Right):GeorgeNevilleWatson (1886–1965):UniversalHistoryArchive/Contributor/GettyImages.

ACOURSEOFMODERNANALYSIS

FifthEdition

Anintroductiontothegeneraltheoryofinfinite processesandofanalyticfunctionswithanaccount oftheprincipaltranscendentalfunctions

Fiftheditioneditedandpreparedforpublicationby VictorH.Moll TulaneUniversity,Louisiana

UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia

314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India

103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence.

www.cambridge.org

Informationonthistitle: www.cambridge.org/9781316518939

DOI: 10.1017/9781009004091

©CambridgeUniversityPress1902,1915,1920,1927,2021

Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress.

Firstedition1902

Secondedition1915

Thirdedition1920

Fourthedition1927

Reprinted1935,1940,1946,1950,1952,1958,1962,1963

ReissuedintheCambridgeMathematicalLibrarySeries1996

Sixthprinting2006

Fifthedition2021

PrintedintheUnitedKingdombyTJBooksLimited,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-316-51893-9Hardback

CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate.

2.35Cauchy’stestforabsoluteconvergence

3.62Arealfunction,ofarealvariable,continuousinaclosedinterval,attainsitsupper

3.63Arealfunction,ofarealvariable,continuousinaclosedinterval,attainsallvalues betweenitsupperandlowerbounds

4.13Ageneraltheoremonintegration

4.2Differentiationofintegralscontainingaparameter

4.4Infiniteintegrals

4.41Infiniteintegralsofcontinuousfunctions.Conditionsforconvergence

4.42Uniformityofconvergenceofaninfiniteintegral

4.43Testsfortheconvergenceofaninfiniteintegral

4.44Theoremsconcerninguniformlyconvergentinfiniteintegrals

4.51Theinversionoftheorderofintegrationofacertainrepeatedintegral

4.61Thefundamentaltheoremofcomplexintegration

4.62Anupperlimittothevalueofacomplexintegral

4.7Integrationofinfiniteseries

5.2Cauchy’stheoremontheintegralofafunctionroundacontour

5.21Thevalueofananalyticfunctionatapoint,expressedasanintegraltakenrounda contourenclosingthepoint

5.3Analyticfunctionsrepresentedbyuniformlyconvergentseries

5.32Analyticfunctionsrepresentedbyinfiniteintegrals

5.61Thenatureofthesingularitiesofone-valuedfunctions

5.62The‘pointatinfinity’

5.63Liouvillle’stheorem

5.64Functionswithnoessentialsingularities

5.7Many-valuedfunctions

5.8Miscellaneousexamples

6TheTheoryofResidues;ApplicationtotheEvaluationofDefiniteIntegrals

6.2Theevaluationofdefiniteintegrals

6.21Theevaluationoftheintegralsofcertainperiodicfunctionstakenbetweenthe limits 0 and 2π

6.22Theevaluationofcertaintypesofintegralstakenbetweenthelimits −∞ and +∞

6.23Principalvaluesofintegrals

6.3Cauchy’sintegral

6.31Thenumberofrootsofanequationcontainedwithinacontour

6.4Connexionbetweenthezerosofafunctionandthezerosofitsderivative

6.5Miscellaneousexamples

7TheExpansionofFunctionsinInfiniteSeries

7.1AformuladuetoDarboux

7.2TheBernoulliannumbersandtheBernoullianpolynomials

7.21TheEuler–Maclaurinexpansion

7.3Bürmann’stheorem

7.31Teixeira’sextendedformofBürmann’stheorem

7.32Lagrange’stheorem

7.4Theexpansionofaclassoffunctionsinrationalfractions

7.5Theexpansionofaclassoffunctionsasinfiniteproducts

7.6ThefactortheoremofWeierstrass

7.7Expansioninaseriesofcotangents

7.8Borel’stheorem

7.81Borel’sintegralandanalyticcontinuation

7.9Miscellaneousexamples

8AsymptoticExpansionsandSummableSeries

8.1Simpleexampleofanasymptoticexpansion

8.2Definitionofanasymptoticexpansion

8.3Multiplicationofasymptoticexpansions

9.1DefinitionofFourierseries

9.11Natureoftheregionwithinwhichatrigonometricalseriesconverges

9.12Valuesofthecoefficientsintermsofthesumofatrigonometricalseries

9.2OnDirichlet’sconditionsandFourier’stheorem

9.21TherepresentationofafunctionbyFourierseriesforrangesotherthan (−π,π)

9.22Thecosineseriesandthesineseries

9.3ThenatureofthecoefficientsinaFourierseries

9.31DifferentiationofFourierseries

9.32Determinationofpointsofdiscontinuity

9.4Fejér’stheorem

9.41TheRiemann–Lebesguelemmas

9.43TheDirichlet–BonnetproofofFourier’stheorem

9.44TheuniformityoftheconvergenceofFourierseries

9.5TheHurwitz–LiapounofftheoremconcerningFourierconstants

9.6Riemann’stheoryoftrigonometricalseries

9.61Riemann’sassociatedfunction

9.62PropertiesofRiemann’sassociatedfunction;Riemann’sfirstlemma

9.7Fourier’srepresentationofafunctionbyanintegral

10.32Derivationofasecondsolutioninthecasewhenthedifferenceoftheexponentsis anintegerorzero

D(λ) = 0 hasat leastoneroot

12TheGamma-Function

12.1DefinitionsoftheGamma-function

12.11Euler’sformulafortheGamma-function

12.12ThedifferenceequationsatisfiedbytheGamma-function

12.13Theevaluationofageneralclassofinfiniteproducts

12.14ConnexionbetweentheGamma-functionandthecircularfunctions

12.15Themultiplication-theoremofGaussandLegendre

12.16ExpansionforthelogarithmicderivatesoftheGamma-function

12.2Euler’sexpressionof Γ(z) asaninfiniteintegral

12.21Extensionoftheinfiniteintegraltothecaseinwhichtheargumentofthe Gamma-functionisnegative

12.22Hankel’sexpressionof Γ(z) asacontourintegral

12.3Gauss’infiniteintegralfor Γ (z)/Γ(z)

12.31Binet’sfirstexpressionfor log Γ(z) intermsofaninfiniteintegral

12.32Binet’ssecondexpressionfor log Γ(z) intermsofaninfiniteintegral

12.33TheasymptoticexpansionofthelogarithmsoftheGamma-function

12.4TheEulerianintegralofthefirstkind

12.41ExpressionoftheEulerianintegralofthefirstkindintermsoftheGamma-function

12.42EvaluationoftrigonometricalintegralsintermsoftheGamma-function

12.43Pochhammer’sextensionoftheEulerianintegralofthefirstkind

12.5Dirichlet’sintegral

12.6Miscellaneousexamples

13TheZeta-FunctionofRiemann

13.1Definitionofthezeta-function

13.11Thegeneralisedzeta-function

13.12Theexpressionof ζ(s, a) asaninfiniteintegral

13.13Theexpressionof ζ(s, a) asacontourintegral

13.14Valuesof ζ(s, a) forspecialvaluesof s

13.15TheformulaofHurwitzfor ζ(s, a) when σ< 0

13.2Hermite’sformulafor ζ(s, a)

13.21DeductionsfromHermite’sformula

13.3Euler’sproductfor ζ(s)

13.31Riemann’shypothesisconcerningthezerosof ζ(s)

13.4Riemann’sintegralfor ζ(s)

13.5Inequalitiessatisfiedby ζ(s, a) when σ> 0

13.51Inequalitiessatisfiedby

13.6Theasymptoticexpansionof log

13.7Miscellaneousexamples

14TheHypergeometricFunction

14.1Thehypergeometricseries

14.11Thevalueof F(a, b; c;1) when Re(c a b) > 0

14.2Thedifferentialequationsatisfiedby F(a, b; c; z)

14.3SolutionsofRiemann’s P-equation

14.4Relationsbetweenparticularsolutions

14.5Barnes’contourintegrals

14.51Thecontinuationofthehypergeometricseries

14.52Barnes’lemma

14.53Theconnexionbetweenhypergeometricfunctionsof z andof 1 z

14.6SolutionofRiemann’sequationbyacontourintegral

14.61Determinationofanintegralwhichrepresents P(

)

14.7Relationsbetweencontiguoushypergeometricfunctions

14.8Miscellaneousexamples

15LegendreFunctions

15.1DefinitionofLegendrepolynomials

15.11Rodrigues’formulafortheLegendrepolynomials

15.12Schläfli’sintegralfor Pn(z)

15.13Legendre’sdifferentialequation

15.14TheintegralpropertiesoftheLegendrepolynomials

15.2Legendrefunctions

15.21Therecurrenceformulae

15.22Murphy’sexpressionof Pn(z) asahypergeometricfunction

15.23Laplace’sintegralsfor

)

15.3Legendrefunctionsofthesecondkind

15.31Expansionof Qn(z) asapowerseries

15.32Therecurrenceformulaefor Qn(z)

15.33TheLaplacianintegralforLegendrefunctionsofthesecondkind

15.34Neumann’sformulafor Qn(z),when n isaninteger

15.4Heine’sdevelopmentof (t z) 1

15.41Neumann’sexpansionofanarbitraryfunctioninaseriesofLegendrepolynomials

15.5Ferrers’associatedLegendrefunctions Pm n (z) and Qm n (z)

15.51TheintegralpropertiesoftheassociatedLegendrefunctions

15.6Hobson’sdefinitionoftheassociatedLegendrefunctions

15.61Expressionof Pm n (z) asanintegralofLaplace’stype

15.7Theaddition-theoremfortheLegendrepolynomials

15.71TheadditiontheoremfortheLegendrefunctions

Cν n (z)

15.9Miscellaneousexamples

16TheConfluentHypergeometricFunction

16.1TheconfluenceoftwosingularitiesofRiemann’sequation

16.12Definitionofthefunction Wk ,m(z)

16.2Expressionofvariousfunctionsbyfunctionsofthetype Wk ,m(z)

16.3Theasymptoticexpansionof Wk ,m(z),when |z| islarge

16.31Thesecondsolutionoftheequationfor W

16.4ContourintegralsoftheMellin–Barnestypefor

16.41Relationsbetween W

16.5Theparaboliccylinderfunctions.Weber’sequation

16.51ThesecondsolutionofWeber’sequation

16.52Thegeneralasymptoticexpansionof Dn(z)

16.6Acontourintegralfor Dn(z)

16.61Recurrenceformulaefor D

(z)

16.7Propertiesof Dn(z) when n isaninteger

17.2Bessel’sequationwhen n isnotnecessarilyaninteger

17.21TherecurrenceformulaefortheBesselfunctions

17.22ThezerosofBesselfunctionswhoseorder n isreal

17.23Bessel’sintegralfortheBesselcoefficients

17.24Besselfunctionswhoseorderishalfanoddinteger

17.3Hankel’scontourintegralfor Jn(z)

17.4ConnexionbetweenBesselcoefficientsandLegendrefunctions

17.5Asymptoticseriesfor Jn(z) when |z| islarge

17.6ThesecondsolutionofBessel’sequation

17.61Theascendingseriesfor Yn(z)

17.7Besselfunctionswithpurelyimaginaryargument

17.71ModifiedBesselfunctionsofthesecondkind

17.82Schlömilch’sexpansionofanarbitraryfunctioninaseriesofBesselcoefficients oforderzero

18.5Laplace’sequationandBesselcoefficients

18.61SolutionsoftheequationofwavemotionswhichinvolveBesselfunctions

19.12Hill’sequation

19.21AnintegralequationsatisfiedbyevenMathieufunctions

19.22ProofthattheevenMathieufunctionssatisfytheintegralequation

19.3TheconstructionofMathieufunctions

19.31TheintegralformulaefortheMathieufunctions

19.42TheevaluationofHill’sdeterminant

19.5TheLindemann–StieltjestheoryofMathieu’sgeneralequation

19.51Lindemann’sformofFloquet’stheorem

19.53ThesolutionofMathieu’sequationintermsof F(

19.6AsecondmethodofconstructingtheMathieufunction

19.61TheconvergenceoftheseriesdefiningMathieufunctions

19.7Themethodofchangeofparameter

19.8TheasymptoticsolutionofMathieu’sequation

20EllipticFunctions.GeneralTheoremsandtheWeierstrassianFunctions

20.11Period-parallelograms

20.12Simplepropertiesofellipticfunctions

20.13Theorderofanellipticfunction

20.14Relationbetweenthezerosandpolesofanellipticfunction

20.2Theconstructionofanellipticfunction.Definitionof

20.33Theadditionofahalf-periodtotheargumentof

20.52Theexpressionofanyellipticfunctionasalinearcombinationofzeta-functions andtheirderivatives

20.53Theexpressionofanyellipticfunctionasaquotientofsigma-functions

20.6Ontheintegrationof

21.21Theaddition-formulaeforthetheta-functions

21.22Jacobi’sfundamentalformulae

21.3Theta-functionsasinfiniteproducts

21.4Thedifferentialequationsatisfiedbythetheta-functions

21.41Arelationbetweentheta-functionsofzeroargument

21.42Thevalueoftheconstant G

21.43Connexionofthesigma-functionwiththetheta-functions

21.5Ellipticfunctionsintermsoftheta-functions

21.51Jacobi’simaginarytransformation

21.52Landen’stypeoftransformation

21.6Differentialequationsofthetaquotients

21.61ThegenesisoftheJacobianellipticfunction sn u

21.62Jacobi’searliernotation.Thetheta-function Θ(u) andtheeta-function H(u)

21.7Theproblemofinversion

21.71Theproblemofinversionforcomplexvaluesof c.Themodularfunctions f (τ), g(τ), h(

21.72Theperiods,regardedasfunctionsofthemodulus

21.73Theinversion-problemassociatedwithWeierstrassianellipticfunctions

21.8Thenumericalcomputationofellipticfunctions

21.9Thenotationsemployedforthetheta-functions

21.10Miscellaneousexamples

22TheJacobianEllipticFunctions

22.1Ellipticfunctionswithtwosimplepoles

22.11TheJacobianellipticfunctions, sn

22.12Simplepropertiesof sn

, cn u, dn u

22.2Theaddition-theoremforthefunction

22.3Theconstant K

22.31Theperiodicproperties(associatedwith K)oftheJacobianellipticfunctions

22.33Theperiodicproperties(associatedwith K + iK )oftheJacobianellipticfunctions

iK )oftheJacobianellipticfunctions

22.4Jacobi’simaginarytransformation

22.41ProofofJacobi’simaginarytransformationbytheaidoftheta-functions

22.5InfiniteproductsfortheJacobianellipticfunctions

22.6FourierseriesfortheJacobianellipticfunctions

22.61FourierseriesforreciprocalsofJacobianellipticfunctions

22.7Ellipticintegrals

22.71Theexpressionofaquarticastheproductofsumsofsquares

22.72Thethreekindsofellipticintegrals

22.73Theellipticintegralofthesecondkind.Thefunction E(u)

22.74Theellipticintegralofthethirdkind

22.8Thelemniscatefunctions

22.81Thevaluesof K and K forspecialvaluesof k

22.82Ageometricalillustrationofthefunctions sn u, cn u, dn u

22.9Miscellaneousexamples

23EllipsoidalHarmonicsandLamé’sEquation

23.1Thedefinitionofellipsoidalharmonics

23.2Thefourspeciesofellipsoidalharmonics

23.21Theconstructionofellipsoidalharmonicsofthefirstspecies

23.22Ellipsoidalharmonicsofthesecondspecies

23.23Ellipsoidalharmonicsofthethirdspecies

23.24Ellipsoidalharmonicsofthefourthspecies

23.25Niven’sexpressionsforellipsoidalharmonicsintermsofhomogeneousharmonics

23.26Ellipsoidalharmonicsofdegree n

23.3Confocalcoordinates

23.31Uniformisingvariablesassociatedwithconfocalcoordinates

23.32Laplace’sequationreferredtoconfocalcoordinates

23.33Ellipsoidalharmonicsreferredtoconfocalcoordinates

23.4VariousformsofLamé’sdifferentialequation

23.41SolutionsinseriesofLamé’sequation

23.42ThedefinitionofLaméfunctions

23.43Thenon-repetitionoffactorsinLaméfunctions

23.44ThelinearindependenceofLaméfunctions

23.45Thelinearindependenceofellipsoidalharmonics

23.46Stieltjes’theoremonthezerosofLaméfunctions

23.47Laméfunctionsofthesecondkind 593

23.5Lamé’sequationinassociationwithJacobianellipticfunctions

23.6TheintegralequationforLaméfunctions

23.61TheintegralequationsatisfiedbyLaméfunctionsofthethirdandfourthspecies 597

23.62Integralformulaeforellipsoidalharmonics 598

23.63Integralformulaeforellipsoidalharmonicsofthethirdandfourthspecies

23.7GeneralisationsofLamé’sequation

23.71TheJacobianformofthegeneralisedLaméequation

A.12Alogicalorderofdevelopmentoftheelementsofanalysis

A.21Theaddition-theoremfortheexponentialfunction,anditsconsequences

A.31ThecontinuityoftheLogarithm

A.32DifferentiationoftheLogarithm 616

A.33Theexpansionof Log(1 + a) inpowersof a 616

A.4Thedefinitionofthesineandcosine

A.41Thefundamentalpropertiesof sin z and cos z

A.42Theaddition-theoremsfor sin z and cos z

A.5Theperiodicityoftheexponentialfunction

A.51Thesolutionoftheequation exp γ = 1 619

A.52Thesolutionofapairoftrigonometricalequations

A.6Logarithmsofcomplexnumbers 623

A.7Theanalyticaldefinitionofanangle

Foreword

Therearefewbookswhichremaininprintandinconstantuseforoveracentury;“Whittaker andWatson”belongstothisselectgroup.Infactthereweretwobookswiththetitle“A CourseinModernAnalysis”,thefirstin1902byEdmundWhittakeralone,atextbookwith averyspecificagenda,andthenthejointwork,firstpublishedin1915asasecondedition. Itisanextensionofthefirsteditionbutinsuchafashionthatitbecomesahandbookfor thoseworkinginanalysis.Aslateas1966J.T.Whittaker,thesonofE.T.Whittaker,wrotein hisBiographicalMemoirofFellowsoftheRoyalSociety(i.e.obituary)ofG.N.Watsonthat therewerestillthosewhopreferredthefirsteditionbutaddedthatformostreadersthelater editionwastobepreferred.Indeedthejointworkissuperiorinmanydifferentways.

ThefirsteditionwaswrittenatatimewhentherewasamovementforreforminmathematicsatCambridge.EdmundWhittaker’smentorAndrewForsythwasoneofthedriving forcesinthismovementandhadhimselfwrittena TheoryofFunctions (1893)whichwas, initstime,veryinfluentialbutisnowscarcelyremembered.Inthecourseofthenineteenth centurythemathematicseducationhadbecomecenteredaroundtheMathematicalTripos,an intenselycompetitiveexamination.CompetitionsandsportsweresalientfeaturesofVictorianBritain,amoveawayfromtheoldersystemofpatronageandtowardsameritocracy.The readerfamiliarwithGilbertandSullivanoperettaswillthinkoftheModernMajor-General in ThePiratesofPenzance.TheTriposhadbecomenotonlyasportbutaspectatorsport, followedextensivelyinmiddle-classEngland1 .Theresultofthissystemwasthatthecolleges wereincompetitionwithoneanotherandemployedcoachestopreparethetalentedstudents fortheTripos.Theydevelopedtheskillsneededtoanswerdifficultquestionsquicklyand accurately–manyTriposquestionscanbefoundintheexercisesin WhittakerandWatson. TheTripossystemdidnotencouragethestudentstobecomemathematiciansandseparated themfromtheprofessorswhoweregenerallyverywellinformedaboutthedevelopments ontheContinent.Itwasaveryinward-looking,self-reproducingsystem.Thesystemonthe Continent,especiallyintheGermanuniversities,wasquitedifferent.Theprofessorsthere soughtcontactwiththestudents,eitherasnote-takersforlecturesorinseminartalks,and activelysupportedthosebywhomtheyweremostimpressed.Thestudentsviedwithoneanotherfortheattentionoftheprofessor,adifferentandmorefruitfulformofcompetition.This

1 SomeideaofthismaybegleanedfromG.B.Shaw’splay MrsWarren’sProfession,writtenin1893butheld backbycensorshipuntil1902.InthisplayMrsWarren’sdaughterViviehasdistinguishedherselfin Cambridge–shetiedwiththethirdWrangler,describedasa“magnificentachievement”byacharacterwho hasnomathematicalbackground.SheherselfcouldnotberankedasaWranglerasshewasfemale.Shewould havebeenacontemporaryofGraceChisholm,laterGraceChisholmYoung,whosefamilybackgroundwasby nomeansascolourfulasthatofthefictionalVivieWarren.

systemallowedthelikesofWeierstrassandKleintobuildupgroupsoftalentedandhighly motivatedstudents.IthadbecomeevidenttoAndrewForsythandothersthatCambridgewas missingoutonthedevelopmentsabroadbecauseoftheconcentrationontheTripossystem2 ItisinterestingtoreadwhatWhittakerhimselfwroteaboutthesituationattheendof thenineteenthcenturyinCambridgeandsooftheconditionsunderwhich Whittakerand Watson waswritten.WequotefromhisRoyalSocietyObituaryNotice(1942)ofAndrew RussellForsyth:

Hehadforsometimepastrealized,asnooneelsedid,themostserious deficiencyoftheCambridgeschool,namelyitsignoranceofwhathad beenandwasbeingdoneonthecontinentofEurope.Thecollegelecturers couldnotreadGerman,anddidnotreadFrench.

TheschoolsofGöttingenandBerlintoagreatextentignoredeachother (BerlinsaidthatGöttingenprovednothing,andGöttingenretortedthat Berlinhadnoideas)andbothofthemignoredFrenchwork.

ButCambridgehadhithertoignoredthemall:andthetimewasripe forForsyth’sbook.Theyoungermen,evenundergraduates,hadheardin hislecturesoftheextraordinaryrichesandbeautyofthedomainbeyond Triposmathematics,andwereeagertoenterintoit.Fromthedayofits publicationin1893,thefaceofCambridgewaschanged:themajorityof thepuremathematicianswhotooktheirdegreesinthenexttwentyyears becamefunction-theorists. andfurther

AsheadoftheCambridgeschoolofmathematicshewasconspicuously successful.Britishmathematicianswerealreadyindebtedtohimforthe firstintroductionofthesymbolicinvariant-theory,theWeierstrassianellipticfunctions,theCauchy–Hermiteapplicationsofcontour-integration,the Riemanniantreatmentofalgebraicfunctions,thetheoryofentirefunctions,andthetheoryofautomorphicfunctions:andtheimportationof noveltiescontinuedtooccupyhisattention.Agreattravellerandagood linguist,helovedtomeeteminentforeignersandinvitethemtoenjoy Trinityhospitality:andinthiswayhispost-graduatestudentshadopportunitiesofbecomingknownpersonallytosuchmenasFelixKlein(who camefrequently),Mittag-Leffler,DarbouxandPoincaré.Tothestudents themselves,hewasdevoted:youngmenfreshfromthenarrowexaminationroutineoftheTriposwereinvitedtohisroomsandtoldofthelatest researchpapers:andunderhisfosteringcare,manyofthewranglersofthe period1894–1910becameoriginalworkersofdistinction. Thetwoauthorswereverydifferentpeople.EdmundWhittaker(1874–1956)wenton fromCambridgein1906tobecometheRoyalAstronomerinIreland(thenstillapartofthe 2 ForhisargumentsseeA.Forsyth:OldTriposDaysatCambridge, Math.Gazette 19 162–179(1935).Fora dissentingopinionseeK.Pearson:OldTriposDaysatCambridge,asseenfromanotherviewpoint, Math. Gazette 20 27–36(1936).

Foreword xix UnitedKingdom)andDirectorofDunsinkObservatory,therebyfollowinginthefootsteps ofWilliamRowanHamilton.In1985,ontheoccasionofthebicentenaryofDunsink,the thenDirector,PatrickA.Wayman,singledoutWhittakerasthegreatestdirectorasidefrom Hamiltonandonewho,despitehisrelativelyshorttenureofoffice,1906–1912,hadachieved mostfortheObservatory3 .Thisappointmentbroughtouthisskillsasanadministrator. FollowingthishemovedtoEdinburghwhereheexertedhisinfluencetoguidemathematics thereintothenewcentury.Someindicationofthesuccessisgivenbythefactthatitwas W.V.D.Hodge,astudentofhis,who,attheInternationalCongressofMathematiciansin 1954,invitedtheInternationalMathematicalUniontoholdthenextCongressinEdinburgh. Whittakerhimselfdidnotlivetoexperiencetheeventwhichreflectedthestatusinwhich Edinburghwasheldattheendofhislife.

GeorgeNevilleWatson(1886–1965)ontheotherhandwasaretiringscholarwho,after leavingCambridge,atleastintheflesh,spentfouryears(1914–1918)inLondon,andthen becameprofessorinBirminghamwhereheremainedfortherestofhislife4 ,livingarelatively withdrawnlifedevotedtohismathematicalworkandwithstamp-collectingandthestudy ofthehistoryofrailwaysashobbies.Hisearlyworkwasverymuchinthedirectionof E.W.BarnesandA.G.Greenhill.AfterRamanujan’sdeathhetookoverfromHardythe analysisofmanyofRamanujan’sunpublishedpapers,especiallythoseconnectedwiththe theoryofmodularformsandfunctions,andofcomplexmultiplication.Itisworthremarking thatGreenhill,astudentandardentadmirerofJamesClerkMaxwellandprimarilyan appliedmathematician,concernedhimselfwiththecomputationofsingularmoduli,andit wasprobablyhewhoarousedRamanujan’sinterestinthistopic.Watson’sworkinthisarea is,besideshisbooks,thatforwhichheisbestrememberedtoday.

Bothauthorswroteotherbooksthatarestillusedtoday.InWhittaker’scasethesearehis ATreatiseontheAnalyticalDynamicsofParticles&RigidBodies,reprintedin1999,with aforewordbySirWilliamMcCreaintheCUPseries“CambridgeMathematicalLibrary”,a sourceofmuchmathematicswhichisdifficulttofindelsewhere,andhis HistoryofTheories oftheAetherandElectricity which,despitesomeunconventionalviews,isaninvaluable sourceonthehistoryofthesepartsofphysicsandtheassociatedmathematics.

Watson,ontheotherhand,wrotehis ATreatiseontheTheoryofBesselFunctions, publishedin1922,whichlike WhittakerandWatson hasnotbeenoutofprintsinceits appearance.OncomingacrossitforthefirsttimeasastudentIwastakenabackbysuch athickbookbeingdevotedtowhatseemedtobeaverycircumscribedsubject.Oneofthe Fellowsofmycollege,aphysicist,replyingtoafellowstudentwhohadmadeasimilar observation,declaredthatitwasaworkofgeniusandhewouldhavebeenproudtohave writtensomethinglikeit.InthecourseoftheyearsIhavehadrecoursetoitoverandover againandwouldnowconcurwiththisopinion.

Watson’s BesselFunctions,like WhittakerandWatson,despitebeingsomewhatoldfashioned,hasretainedafreshnessandrelevancethathasmadebothofthemclassics.Unlike manyotherbooksofthisperiodtheterminology,althoughnotthestyle,isthatoftoday.It islessa Coursd’Analyse andmoreofa HandbuchderFunktionentheorie.Perhapsmyown experiencescanilluminatethis.Mycopywasgiventomein1967bymymathematicsteacher,

3 IrishAstronomicalJournal 17 177–178(1986).

4 Itisworthnotingthatfrom1924onE.W.BarneswasadisputativeBishopofBirmingham.

MrCecilHawe,afterIhadbeenawardedaplacetostudymathematicsinCambridge.Hehad boughtit20yearsearlierasastudent.Duringmystudentyears the textbookonsecondyear analysiswasJ.Dieudonné’s FoundationsofModernAnalysis.Peoplethenwerepronetobe abitsuperciliousatleastaboutthe“modern”inthetitleof WhittakerandWatson 5 Atthat timeitlayonmybookshelfunused.FiveyearslaterIwascomingtotermswiththetheory ofnon-analyticautomorphicforms,especiallywithSelberg’stheoryofEisensteinseries.At thispointIdiscoveredhowusefulabookitwas,bothforthetreatmentofBesselfunctions andforthatofthehypergeometricfunction.ItalsohasaveryusefulchapteronFredholm’s theoryofintegralequationswhichSelberghadused.Intheyearssincethenseveralother chaptershaveproveduseful,andonesIthoughtIknewbecameusefulinnovelways.It becameaconstantcompanion.Thiswasmainlyinconnectionwithdoingmathematicsbut italsoproveditsworthinteaching–forexamplethechapteronFourierseriesgivesvery usefulresultswhichcanbeobtainedbyrelativelyelementarymethodsandaresuitablefor undergraduatelectures.Dieudonné’sbookistremendousfortheuniversityteacher;itgives thefundamentalsofanalysisinaconcentratedform,somethingveryusefulwhenonehasan overloadedsyllabusandalimitednumberofhourstoteachitin.Ontheotherhanditismuch lessusefulasa“Handbuch”fortheworkinganalyst,atleastinmyexperience.Norwasit writtenforthispurpose. WhittakerandWatson started,inthefirstedition,assuchabookfor teachingbutinthesecondandlatereditionsbecamethatbookwhichhasremainedonthe bookshelvesofgenerationsofworkingmathematicians,betheyformallymathematicians, naturalscientistsorengineers.

Oneaspectthatprobablycontributedtothelongpopularityof WhittakerandWatson is thefactthatitisnotoverloadedwithmanyofthetopicsthatarewithinrangeofthetext. Thus,forexample,theauthorsdonotgointothearithmetictheoryoftheRiemannzetafunctionbeyondtheEulerproductoverprimes.Whereastheydiscussthe24solutionsto thehypergeometricequationintermsofthehypergeometricseriesfromRiemann’spointof viewtheydonotgointoH.A.Schwarz’beautifulsolutionofGauss’problemastowhich ofthesefunctionsisalgebraic.Schwarz’theoryiscoveredinForsyth’s FunctionTheory. ThedecisiontoleavethisoutmusthavebeendifficultforWhittakerforitisatopiccloseto hisearlyresearch.FinallytheytouchonthetheoryofHilbertspacesonlyverylightly,just enoughfortheirpurposes.OntheotherhandFredholm’stheory,welltreatedhere,hasoften beenpushedasidebythetheoryofHilbertspacesinothertextsanditisatopicaboutwhich ananalystshouldbeaware.

So,gentlereader,youhaveinyourhandsabookwhichhasbeenusefulandinstructiveto thoseworkinginmathematicsforwelloverahundredyears.Thelanguageisperhapsalittle quaintbutitisapleasuretoperuse.Mayyoutooprofitfromthisnewedition.

5 B.L.v.d.Waerden’s ModerneAlgebra becamesimply Algebra fromthe1955editionon;witheithernameit remainsagreattextonalgebra.

PrefacetotheFifthEdition

In1896EdmundWhittakerwaselectedtoaFellowshipatTrinityCollege,Cambridge. Amongstotherduties,hewasemployedtoteachstudents,manyofwhomwouldlater becomedistinguishedfiguresinscienceandmathematics.TheseincludedG.H.Hardy, ArthurEddington,JamesJeans,J.E.LittlewoodandacertainG.NevilleWatson.Hiscourse onmathematicalanalysischangedthewaythesubjectwastaught,andhedecidedtowrite abook.Sowasborn ACourseofModernAnalysis,whichwasfirstpublishedin1902.It introducedstudentstofunctionsofacomplexvariable,tothe‘methodsandprocessesof highermathematicalanalysis’,muchofwhichwasthenfairlymodern,andabovealltospecial functionsassociatedwithequationsthatwereusedtodescribephysicalphenomena.Itwas oneofthefirstbooksinEnglishtodescribematerialdeveloped onthecontinent,mostlyin FranceandGermany.Itsbreadthanddepthofcoveragewereunparalleledatthetimeandit becameaninstantclassic.Asecondeditionwascalledfor,butin1906Whittakerhadleft Cambridge,movingfirsttoDublin,andthenin1912toEdinburgh.Hisvariousduties,and nodoubt,themovesthemselves,impededworkonthenewedition,andWhittakergratefully acceptedtheofferfromWatsontohelphim.Agreatlyexpandedsecondeditiondulyappeared in1915.Thethirdedition,publishedfiveyearslater,wasalsoenlargedbytheadditionof chapters,butthefourtheditionwasnotmuchmorethanacorrectedreprintwithadded references.Idonotknowifafiftheditionwaseverplanned.Bothauthorsremainedactive formanyyears(Watsonwrote,amongstotherpublications,thedefinitive TreatiseonBessel Functions),butperhapstheyhadnothingmoretosaytowarrantanewedition.Nevertheless, thebookremainedaclassic,beingcontinuallyinprintandreissuedinpaperback,firstin 1963,andagain,in1996,asavolumeofthe CambridgeMathematicalLibrary.Itneverlost itsappealandoccupiedauniqueplaceintheheartandworkofmanymathematicians(in particular,me)asanindispensablereference.

Theoriginaleditionsweretypesetusing‘hotmetal’,andovertheyearssuccessivereprintingsledtothedegradingoftheoriginalplates.Photographicprintingmethodsslowedthis decline,butDavidTranahatCambridgeUniversityPresshadtheideatohalt,indeedreverse, thedegradation,byrekeyingthebookandatthesametimeupdatingitwithnewreferences andcommentary.Hespoketomeaboutthis,andweagreedthatifhearrangedfortherekeyingintoLaTeX,Iwoulddotheupdating.Ididnotneedmuchpersuading:ithasbeenalabor oflove.SomuchsothatIhavepreservedthearchaicspellingoftheoriginal,alongwith thePeanodecimalsystemofnumberingparagraphs,asdescribedbyWatsoninthePreface tothefourthedition!Thiswillmakeitstraightforwardforusersofthisfiftheditiontorefer tothepreviousone.Ihavehoweverdecidedtocreateacompletereferencelistandtorefer readerstothatratherthantoitemsinfootnotes,itemsthatwereoftenhardtoidentify.Many xxi

oftheseitemsarenowavailableindigitallibrariesandsoformanypeoplewillbeeasierto accessthantheywereintheauthors’time.

Ihavemadenosubstantialchangestothetext:inparticular,theoriginalideaofadding commentariesonthetextwasabandoned.Ihavecheckedandrecheckedthemathematics,and Ihaveaddedsomeadditionalreferences.Ihavealsowrittenanintroductionthatdescribes what’sinthebookandhowitmaybeusedincontemporaryteachingofanalysis.Ihavealso providedsummariesofeachchapter,and,withinthem,makementionofmorerecentwork whereappropriate.

AsIsaid,preparingthiseditionhasbeenalaboroflove.Ihavealsolearnedalotof mathematics,evidenceoftheenduringqualityandvalueoftheoriginalwork.Ithasbeen arewardingexperiencetoedit ACourseofModernAnalysis:Ihopethatitwillbeequally rewardingforreaders.

2020,NewOrleans

PrefacetotheFourthEdition

Advantagehasbeentakenofthepreparationofthefourtheditionofthisworktoaddafew additionalreferencesandtomakeanumberofcorrectionsofminorerrors.

Ourthanksareduetoanumberofourreadersforpointingouterrorsandmisprints,and inparticularwearegratefultoMrE.T.Copson,LecturerinMathematicsintheUniversity ofEdinburgh,forthetroublewhichhehastakeninsupplyinguswithasomewhatlengthy list.

E.T.W. G.N.W. June 18,1927

Thedecimalsystemofparagraphing,introducedbyPeano,isadoptedinthiswork.The integralpartofthedecimalrepresentsthenumberofthechapterandthefractionalpartsare arrangedineachchapterinorderofmagnitude.Thus,e.g.,onpp.187,1886 ,§9.632precedes §9.7[because 9 632 < 9 7.]

G.N.W. July 1920

PrefacetotheThirdEdition

Advantagehasbeentakenofthepreparationofthethirdeditionofthisworktoaddachapter onEllipsoidalHarmonicsandLamé’sEquationandtorearrangethechapteronTrigonometric SeriessothatthepartswhichareusedinAppliedMathematicscomeatthebeginningofthe chapter.Anumberofminorerrorshavebeencorrectedandwehaveendeavouredtomake thereferencesmorecomplete.

OurthanksareduetoMissWrinchforreadingthegreaterpartoftheproofsandtothe staffoftheUniversityPressformuchcourtesyandconsiderationduringtheprogressofthe printing.

E.T.W. G.N.W. July,1920

Whenthefirsteditionofmy CourseofModernAnalysis becameexhausted,andtheSyndics ofthePressinvitedmetoprepareasecondedition,Ideterminedtointroducemanynew featuresintothework.Thepressureofotherdutiespreventedmeforsometimefromcarrying outthisplan,anditseemedasiftheappearanceoftheneweditionmightbeindefinitely postponed.Atthisjuncture,myfriendandformerpupil,MrG.N.Watson,offeredtoshare theworkofpreparation;and,withhiscooperation,ithasnowbeencompleted.

TheappearanceofseveraltreatisesontheTheoryofConvergence,suchasMrHardy’s CourseofPureMathematics and,moreparticularly,DrBromwich’s TheoryofInfiniteSeries, ledustoconsiderthedesirabilityofomittingthefirstfourchaptersofthiswork;butwefinally decidedtoretainallthatwasnecessaryforsubsequentdevelopmentsinordertomakethe bookcompleteinitself.Theconciseaccountwhichwillbefoundinthesechaptersisbyno meansexhaustive,althoughwebelieveittobefairlycomplete.ForthediscussionofInfinite Seriesontheirownmerits,wemayrefertotheworkofDrBromwich.

ThenewchaptersofRiemannIntegration,onIntegralEquations,andontheRiemann Zeta-Function,areentirelyduetoMrWatson:hehasrevisedandimprovedthenewchapters whichIhadmyselfdraftedandhehasenlargedorpartlyrewrittenmuchofthematterwhich appearedintheoriginalwork.Itisthereforefittingthatournamesshouldstandtogetheron thetitle-page.

GratefulacknowledgementmustbemadetoMrW.H.A.Lawrence,B.A.,andMrC.E. Winn,B.A.,ScholarsofTrinityCollege,whowithgreatkindnessandcarehavereadthe proof-sheets,toMissWrinch,ScholarofGirtonCollege,whoassistedinpreparingtheindex, andtoMrLittlewood,whoreadtheearlychaptersinmanuscriptandmadehelpfulcriticisms. Thanksareduealsotomanyreadersofthefirsteditionwhosuppliedcorrectionstoit;and tothestaffoftheUniversityPressformuchcourtesyandconsiderationduringtheprogress oftheprinting.

E.T.Whittaker July1915

PrefacetotheFirstEdition

Thefirsthalfofthisbookcontainsanaccountofthosemethodsandprocessesofhigher mathematicalanalysis,whichseemtobeofgreatestimportanceatthepresenttime;aswill beseenbyaglanceatthetableofcontents,itischieflyconcernedwiththeproperties ofinfiniteseriesandcomplexintegralsandtheirapplicationstotheanalyticalexpression offunctions.Adiscussionofinfinitedeterminantsandofasymptoticexpansionshasbeen included,asitseemedtobecalledforbythevalueofthesetheoriesinconnexionwithlinear differentialequationsandastronomy.

Inthesecondhalfofthebook,themethodsoftheearlierpartareappliedinorderto furnishthetheoryoftheprincipalfunctionsofanalysis–theGamma,Legendre,Bessel, Hypergeometric,andEllipticFunctions.Anaccounthasalsobeengivenofthosesolutions ofthepartialdifferentialequationsofmathematicalphysicswhichcanbeconstructedbythe helpofthesefunctions.

MygratefulthanksareduetotwomembersofTrinityCollege,Rev.E.M.Radford,M.A. (nowofStJohn’sSchool,Leatherhead),andMrJ.E.Wright,B.A.,whowithgreatkindness andcarehavereadtheproof-sheets;andtoProfessorForsyth,formanyhelpfulconsultations duringtheprogressofthework.MygreatindebtednesstoDrHobson’smemoirsonLegendre functionsmustbespeciallymentionedhere;andImustthankthestaffoftheUniversityPress fortheirexcellentcooperationintheproductionofthevolume.

Cambridge 1902August5

Introduction

Thebookisdividedintotwodistinctparts. PartI.TheProcessesofAnalysis discusses topicsthathavebecomestandardinbeginningcourses.Ofcoursetheemphasisisinconcrete examplesandregrettably,thisisdifferentnowadays.Moreoverthequalityandlevelofthe problemspresentedinthispartishigherthanwhatappearsinmoremoderntexts.Duringthe secondpartofthelastcentury,thetendencyinintroductoryAnalysistextswastoemphasize thetopologicalaspectsofthematerial.Forobviousreasons,thisisabsentinthepresenttext. Thereare 11 chaptersinPartI.

ForastudentinanAmericanuniversity,thematerialpresentedhereisroughlydistributed alongthefollowinglines:

• Chapter1(ComplexNumbers)

• Chapter2(TheTheoryofConvergence)

• Chapter3(ContinuousFunctionsandUniformConvergence)

• Chapter4(TheTheoryofRiemannIntegration) arecoveredin RealAnalysis courses.

• Chapter5(TheFundamentalPropertiesofAnalyticFunctions;Taylor’s,Laurent’sand Liouville’sTheorems)

• Chapter6(TheTheoryofResidues,ApplicationstotheEvaluationsofDefiniteIntegrals)

• Chapter7(TheExpansionofFunctionsinInfiniteSeries) arecoveredin ComplexAnalysis.Thesecoursesusuallycoverthemoreelementaryaspects of

• Chapter12(TheGamma-Function) appearinginPartII.

Mostundergraduateprogramsalsoincludebasicpartsof

• Chapter9(FourierSeriesandTrigonometricSeries)

• Chapter10(LinearDifferentialEquations) andsomeofthemwillexposethestudenttotheelementarypartsof

• Chapter8(AsymptoticExpansionsandSummableSeries)

• Chapter11(IntegralEquations)

ThematerialcoveredinPartIIismostlyabsentfromagenericgraduateprogram.Students interestedinNumberTheorywillbeexposedtosomepartsofthecontentsin

• Chapter12(TheGamma-Function)

• Chapter13(TheZeta-FunctionofRiemann)

• Chapter14(TheHypergeometricFunction) andaglimpseof

• Chapter17(BesselFunctions)

• Chapter20(EllipticFunctions.GeneralTheoremsandtheWeierstrassianFunctions)

• Chapter21(TheTheta-Functions)

• Chapter22(TheJacobianEllipticFunctions).

StudentsinterestedinAppliedMathematicswillbeexposedto

• Chapter15(LegendreFunctions)

• Chapter16(TheConfluentHypergeometricFunction)

• Chapter18(TheEquationsofMathematicalPhysics) andsomepartsof

• Chapter19(MathieuFunctions)

• Chapter23(EllipsoidalHarmonicsandLamé’sEquation)

Itisperfectlypossibletocompleteagraduateeducationwithouttouchinguponthetopics inPartII.Forinstance,inthemostcommonlyusedtextbooksforAnalysis,suchasRoyden [565]andWheedenandZygmund[666]thereisnomentionofspecialfunctions.Onthe complexvariablesside,inAhlfors[13]andGreene–Krantz[260]onefindssomediscussion ontheGammafunction,butnotmuchmore.

Thisisnotanewphenomenon.FleixKlein[377]in 1928 (quotedin[91,p.209])writes ‘WhenIwasastudent,Abelianfunctionswere,asaneffectoftheJacobiantradition, consideredtheuncontestedsummitofmathematics,andeachofuswasambitioustomake progressinthisfield.Andnow?TheyoungergenerationhardlyknowsAbelianfunctions.

Duringthelasttwodecades,thetrendtowardstheabstractionisbeingcomplementedby agroupofresearcherswhoemphasizeconcreteexamplesasdevelopedbyWhittakerand Watson.Amongthefactorsinfluencingthisreturntotheclassicsoneshouldinclude7 the appearanceofsymboliclanguagesandalgorithmsproducingautomaticproofsofidentities. TheworkinitiatedbyWilfandZeilberger,describedin[518],showsthatmanyidentities have automaticproofs.AsecondinfluentialfactoristhemonumentalworkbyB.Berndt, G.Andrewsandcollaboratorstoprovidecontextandproofsofallresultsappearingin S.Ramanujan’swork.Thishasproducedacollectionofbooks,startingwith[60]and currentlyat[25].ThethirdexampleinthislististheworkdevelopedbyJ.M.Borweinand hiscollaboratorsinthepropagationof ExperimentalMathematics.Inthevolumes[88,89] theauthorspresenttheirideasonhowtotransformmathematicsintoasubject,similarin flavortootherexperimentalsciences.Thepointofviewexpressedinthethreeexamples mentionedabovehasattractedanewgenerationofresearcherstogetinvolvedinthispoint ofviewtypeofmathematics.ThisisjustonedirectioninwhichWhittakerandWatsonhas beenaprofoundinfluenceinmodernauthors.

7 Thislistisclearlyasubjectiveone.

Theremainderofthischapteroutlinesthecontentofthebookandacomparisonwith modernpractices.

Thefirstpartisnamed TheProcessesofAnalysis.Itconsistsof 11 chapters.Abrief descriptionofeachchapterisprovidednext.

Chapter1:ComplexNumbers.Theauthorsbeginwithaninformaldescriptionofpositive integersandmoveontorationalnumbers.Statingthat fromthelogicalstandpointitis impropertointroducegeometricalintuitiontosupplydeficienciesinarithmeticalarguments, theyadoptDedekind’spointofviewontheconstructionofrealnumbersasclassesofrational numbers,latercalled Dedekind’scuts.Anexampleisgiventoshowthatthereisnorational numberwhosesquareis 2.Thearithmeticofrealnumbersisdefinedintermsofthese cuts.Complexnumbersarethenintroducedwithashortdescriptionof Arganddiagrams. Thecurrenttreatmentofferstwoalternatives:someauthorspresenttherealnumberfroma collectionofaxioms(asanorderedinfinitefield)andotherapproachthemfromCauchy’s theoryofsequences: arealnumberisanequivalenceclassofCauchysequencesofrational numbers.Thereaderwillfindthefirstpointofviewin[304]andthesecondoneispresented in[599].

Chapter2.TheTheoryofConvergence.Thischapterintroducesthenotionofconvergence ofsequencesofrealorcomplexnumbersstartingwiththedefinitionof lim n→∞ xn = L currently giveninintroductorytexts.Theauthorsthenconsidermonotonesequencesofrealnumbers andshowthat,forboundedsequences,thereisanaturalDedekindcut(thatis,arealnumber) associatedtothem.ApresentationofBolzano’stheorem aboundedsequenceofrealnumbers containsalimitpoint andCauchy’sformulationofthecompletenessofrealnumbers;that is,theexistenceofthelimitofasequenceintermsofelementsbeingarbitrarilyclose, isdiscussed.Theseideasarethenillustratedintheanalysisofconvergenceofseries.The discussionbeginswith Dirichlet’stestforconvergence: Assume an isasequenceofcomplex numbersand fn isasequenceofpositiverealnumbers.Ifthepartialsums p n=1 an areuniformly boundedand fn isdecreasingandconvergesto 0,then ∞ n=1 an fn converges.Thisisusedtogive examplesofconvergenceofFourierseries(discussedindetailinChapter9).Theconvergence ofthegeometricseries ∞ n=1 xn andtheseries ∞ n=1 1 ns ,forreal s,arepresentedindetail.This lastseriesdefinesthe Riemannzetafunction ζ(s),discussedinChapter13.Theelementary ratioteststatesthat ∞ n=1 an convergesif lim

|an+1/an | < 1 anddivergesifthelimitisstrictly above 1.Adiscussionofthecasewhenthelimitis 1 ispresentedandillustratedwiththe convergenceanalysisofthe hypergeometricseries (presentedindetailinChapter14).The chaptercontainssomestandardmaterialontheconvergenceofpowerseriesaswellassome topicsnotusuallyfoundinmoderntextbooks:discussionondoubleseries,convergenceof infiniteproductsandinfinitedeterminants.Thefinalexercise8 inthischapterpresentsthe evaluationofaninfinitedeterminantconsideredbyHillinhisanalysisoftheSchrödinger 8 Inthisbook,ExamplesareoftenwhatarenormallyknownasExercisesandarenumberedbysection,i.e., ‘Examplea.b.c’.AttheendofmostchaptersareMiscellaneousExamples,allofwhichareExercises,and whicharenumberedbychapter:thus‘Examplea.b’.Thisishowtodistinguishthem.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.