Sample size and subject to item ratio in principal components analysis

Page 1

Practical Assessment, Research, and Evaluation Practical Assessment, and Evaluation

Volume 9 Volume9,2004

2004

Article 11

Sample size and subject to item ratio in principal components

Sample size and to item ratio principal components analysis analysis

Jason W. Osborne

Anna B. Costello

Follow this and additional works at: https://scholarworks.umass.edu/pare

Recommended Citation Recommended Citation

Osborne, Jason W. and Costello, Anna B. (2004) "Sample size and subject to item ratio in principal components analysis," PracticalAssessment,Research,andEvaluation: Vol. 9 , Article 11.

DOI: https://doi.org/10.7275/ktzq-jq66

Available at: https://scholarworks.umass.edu/pare/vol9/iss1/11

This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Practical Assessment, Research, and Evaluation by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu

Apeer-reviewedelectronicjournal.

Copyrightisretainedbythefirstorsoleauthor,whograntsrightoffirstpublicationtoPracticalAssessment, Research&Evaluation.Permissionisgrantedtodistributethisarticlefor nonprofit,educationalpurposesifitiscopiedinitsentiretyandthejournaliscredited.PAREhastherighttoauthorizethirdpartyreproductionofthisarticleinprint,electronicand databaseforms.

Volume9,Number11,June,2004

Samplesizeandsubjecttoitemratioinprincipalcomponentsanalysis.

ISSN=1531-7714

Statisticianshavewrestledwiththequestionofsamplesizeinexploratoryfactoranalysisand principalcomponentanalysisfordecades,somelookingattotalN,someattheratioofsubjectsto items. Althoughmanyarticlesattempttoexaminethisissue,fewexaminebothpossibilities comprehensivelyenoughtobedefinitive. Thisstudyexaminesapreviouslypublisheddatasetto examinewhetherNorsubjecttoitemratioismoreimportantinpredictingimportantoutcomesin PCA. Theresultsindicateaninteractionbetweenthetwo,wherethebestoutcomesoccurinanalyses wherelargeNsandhighratiosarepresent.

Exploratoryfactoranalysis(EFA)andPrincipalComponentsanalysis(PCA)havebothbeenimportanttoolsfor researchersforthebetterpartofacenturynow,andhavebecomeincreasinglycommonwithubiquitousaccessto computing. YetEFAandPCAremainodditiesinquantitativeanalysis,astherearenoinferentialstatisticaltests,and nowaytocalculateorcontroltheprobabilityofmakinganerrorofinference. Whilethefieldasawholeaspiresto maintainerrorratesof5%orless,wehavenowayofknowingwhatproportionofEFAsorPCAsresultinerrorsof inference.

ItiscrucialthatstatisticiansusesoundmethodologywhenconductingstudiesinvolvingEFAorPCAtominimizeerror ratesandmaximizethegeneralizabilitytothepopulationofinterest. Thegoalofthispaperistoexaminehowand whethersamplesizeaffectsthegoodnessofseveralimportantoutcomesrelatingtoprincipalcomponentsanalysis. PCA isoneofthemostcommonlyusedexploratorydatareductionproceduresusedinthesocialsciences,andisconceptually andmathematicallydistinctfromexploratoryfactoranalysis,althoughtheconclusionsreachedinthispapershould generalizetoEFA.

Whysizematters

Largersamplesarebetterthansmallersamples(allotherthingsbeingequal)becauselargersamplestendtominimize theprobabilityoferrors,maximizetheaccuracyofpopulationestimates,andincreasethegeneralizabilityofthe results. Unfortunately,therearefewsamplesizeguidelinesforresearchersusingEFAorPCA,andmanyofthesehave minimalempiricalevidence(e.g.,Guadagnoli&Velicer,1988).

Thisisproblematicbecausestatisticalproceduresthatcreateoptimizedlinearcombinationsofvariables(suchas multipleregression,canonicalcorrelation,andEFA\PCA)tendto"overfit"thedata. Thismeansthattheseprocedures optimizethefitofthemodelthegivendata;yetnosampleisperfectlyreflectiveofthepopulation. Thus,thisoverfitting canresultinerroneousconclusionsifmodelsfittoonedatasetareappliedtoothers. Inmultipleregressionthis manifestsitselfasinflatedR2(shrinkage)andmis-estimatedvariableregressioncoefficients(Cohen&Cohen,1983,p. 106). InEFAorPCAthis“overfitting”canresultinerroneousconclusionsinseveralways,includingtheextractionof erroneousfactorsormis-assignmentofitemstofactors(e.g.,Tabachnick&Fidell,2001,p.588)

Theultimateconcerniserror. Attheendoftheanalysis,ifonehastoosmallasample,errorsofinferencecaneasily occur,particularlywithtechniquessuchasEFAorPCA.

Publishedsamplesizeguidelines

Inmultipleregressiontextssomeauthors(e.g.,Pedhazur,1997,p.207)suggestsubjecttovariableratiosof15:1or30:1 whengeneralizationiscritical. ButtherearefewexplicitguidelinessuchasthisforEFAorPCA(Baggaley,1983). Two differentapproacheshavebeentaken: suggestingaminimumtotalsamplesize,orexaminingtheratioofsubjectsto variables,asinmultipleregression.

ComfreyandLee(1992)suggestthat“theadequacyofsamplesizemightbeevaluatedveryroughlyonthefollowing scale:50–verypoor;100–poor;200–fair;300–good;500–verygood;1000ormore–excellent”(p.217). Guadagnoli andVelicer(1988)reviewseveralstudiesthatconcludethatabsoluteminimumsamplesizes,ratherthansubjecttoitem ratios,aremorerelevant. ThesestudiesrangeintheirrecommendationsfromanNof50(Barrett&Kline,1981)to400

Page1of9 1 Osborne and Costello: Sample size and subject to item ratio in principal components ana Published by ScholarWorks@UMass Amherst, 2004

(Aleamoni,1976).

Thecaseforratios. TherearefewinthemultipleregressioncampwhowouldarguethattotalNisasuperiorguideline thantheratioofsubjectstovariables,yetindividualsfocusingonthePCAand/orEFAmethodologiesoccasionally vehementlydefendthisposition. Itisinterestingpreciselybecausethegeneralgoalforbothanalysesarethesame: to takeindividualvariablesandcreateoptimallyweightedlinearcomposites. Whilethemathematicsandprocedures differinthedetails,theessenceandthepitfallsarethesame. BothEFA/PCAandmultipleregressionexperience shrinkage,theover-fittingoftheestimatestothedata(Bobko&Schemmer,1984),bothsufferfromlackof generalizabilityandinflatederrorrateswhensamplesizeistoosmall.

Wefindabsolutesamplesizessimplisticgiventhevarianceinthetypesofscalesresearchersexamine. Eachscale differsinthenumberoffactorsorcomponents,thenumberofitemsoneachfactor,themagnitudeoftheitem-factor correlations,andthecorrelationbetweenfactors,forexample. Thisdiscomforthasledsomeauthorstofocusontheratio ofsubjectstoitems,ormorerecently,theratioofsubjectstoparameters(aseachitemwillhavealoadingforeachfactor orcomponentextracted),asauthorsdowithregression,ratherthanabsolutesamplesizewhendiscussingguidelines concerningEFAandPCA.

Gorsuch(1983,p.332)andHatcher(1994,p.73)recommendaminimumsubjecttoitemratioofatleast5:1inEFA,but theyalsohavestringentguidelinesforwhenthisratioisacceptable,andtheybothnotethathigherratiosaregenerally better.Thereisawidely-citedruleofthumbfromNunnally(1978,p.421)thatthesubjecttoitemratioforexploratory factoranalysisshouldbeatleast10:1,butthatrecommendationwasnotsupportedbypublishedresearch. Thereisno oneratiothatwillworkinallcases;thenumberofitemsperfactorandcommunalitiesanditemloadingmagnitudescan makeanyparticularratiooverkillorhopelesslyinsufficient(MacCallum,Widaman,Preacher,&Hong,2001).

Previousresearchonratios. Unfortunately,muchoftheliteraturethathasattemptedtoaddressthisissue,particularly thestudiesattemptingtodismisssubject:parameterratios,useflaweddata. Wewillpurposelynotcitestudieshere,but consideritsufficienttosaythatmanyofthesestudieseithertendtousehighlyrestrictedrangesofsubject:itemor subject:parameterratiosorfailtoadequatelycontrolfororvaryotherconfoundingvariables(e.g.,factorloadings, numberofitemsperscaleorperfactor/component)orrestrictedrangeofN. Someofthesestudiespurportingtoaddress subjecttoitemratiofailtoactuallytestsubjecttoitemratiointheiranalyses.

ThusresearchersseekingguidanceconcerningsufficientsamplesizeinEFAorPCAareleftbetweentwoentrenched camps--thosearguingforlookingattotalsamplesizeandthoselookingatratios. Thisisunfortunate,becauseboth probablymatterinsomesense,andignoringeitheronecanhavethesameresult:errorsofinference. Failuretohavea representativesampleofsufficientsizeresultsinunstableloadings(Cliff,1970),random,non-replicablefactors (Aleamoni,1976;Humphreys,Ilgen,McGrath,&Montanelli,1969),andlackofgeneralizabilitytothepopulation (MacCallum,Widaman,Zhang,&Hong,1999).

EFAandPCAinpractice

Ifoneweretotakeeithersetofguidelines(e.g,10:1ratiooraminimumNof400-500)asreasonableacasualperusalof thepublishedliteratureshowsthatalargeportionofstudiescomeupshort. OnecaneasilyfindarticlesutilizingEFA or(morecommonly)PCAbasedonsampleswithfewersubjectsthanitemsorparametersestimatedthatnevertheless drawsubstantiveconclusionsbasedonthesequestionableanalyses.Manymorehavehopelesslyinsufficientsamplesby eitherguideline.

Forexample,Ford,MacCallum,andTait(1986)examinedcommonpracticeinfactoranalysisinindustrialand organizationalpsychologyduringthetenyearperiodof1974-1984.Theyfoundthatoutof152studiesutilizingEFAor PCA,27.3%hadasubjecttoitemratiooflessthan5:1;56%hadaratiooflessthan10:1. Asimilar,morerecentsurvey of1076journalarticlesutilizingPCAorEFAinpsychologyrevealedthat40.5%ofpeer-reviewed,publishedstudies utilizedlessthana5:1subjecttoitemratio,and63.2%utilized10:1orunder(Costello&Osborne,2003). Giventhe stakesandtheempiricalevidenceontheconsequencesofinsufficientsamplesize,thisisnotexactlyadesirablestateof affairs.

ThePresent Study

Thisstudyfocusesononeparticularlyinterestingandwell-executedstudyonthisissue—thatofGuadagnoliandVelicer (1988). Inthisstudy,theauthorsusedmontecarlomethodstoexaminetheeffectsofnumberofcomponents(3,6,9,18), thenumberofvariables(36,72,108,and144),averageitem-componentcorrelation(.40,.60,or.80),andnumberof subjects(Nsof50,100,150,200,300,500,and1000)onthestabilityofcomponentpatternsinprincipalcomponents analysis. Intheseanalyseseachitemloadedononlyonecomponent,allitemsloadedequallyoneverycomponent,and eachcomponentcontainedanequalnumberofvariables. Thisstudyrepresentsoneofthefewstudiestomanipulateall oftheseimportantaspectsacrosstherangeofvariationseenintheliterature(withthetwopossibleexceptions: first, peopleoftenhavelessthan36itemsinanEFAorPCAanalysis,andsecond,thefactorloadingpatternsarerarelyas clearandhomogenousasinthesedata).

GuadagnoliandVelicer’s(1988)studywasalsointerestinginthattheyusedseveraldifferenthigh-qualityfit/agreement

https://scholarworks.umass.edu/pare/vol9/iss1/11

DOI: https://doi.org/10.7275/ktzq-jq66

Page2of9 2 Practical Assessment, Research, and Evaluation, Vol. 9 [2004], Art. 11

indices. Equallyinterestingistheauthors’strongassertionthattotalsamplesizeiscritical,althoughtheynever actuallyoperationalizesubjecttoitemratio,nortestwhethertotalNisabetterpredictorofimportantoutcomesthan subjecttoitemratio,althoughgiventheirdataitwaspossibletodoso. Finally,theauthors’completedatatableswere published,allowingforreanalysesofthedata.

ThegoalofthisstudyistodirectlyexaminecompetingclaimsregardingtheimportanceofsamplesizetoPCA--to determinewhethereitheroverallsamplesizeorsubjecttoitemratiouniquelycontributetothe“goodness”ofoutcomes inPCA,beyondthecontributionsofotherimportantvariables,suchasnumberofvariablesorcomponentsandaverage itemloadingthathavebeenidentifiedasimportantintheliterature.

METHODS

ThedataforthisstudyweretakendirectlyfrompublisheddatainGuadagnoliandVelicer(1988). Thesedatawere generatedviamontecarlomethodsoutlinedintheirarticleindetail. Ingeneral,theauthorsgeneratedmultipledata sets,eachsetrepresentingaspecificcombinationofconditions,discussedbelow. Thesedatasetswerethensubjectedto PCA,andtheoutcomeswererecordedforanalysis.

Variablesincludedbytheauthors

Numberoffactors(m). Thenumberofcomponentsexaminedincluded3,6,9,and18.

Loadings. Theauthorsusedloadingsof.40,.60,and.80. Itshouldbenotedthatinthesedatasets,itemsnot intendedtoloadonacomponentwereassignedaloadingof0.00,makingthesepatternmatricesartificially clear.

Numberofitems(p). Thenumberofitemsintheanalysesincluded36,72,108,and144.

Numberofsubjects(N). Thenumberofsubjectsintheanalysesincluded50,100,150,200,300,500,and 1000. Notehowever,thatcertaincaseswereomittedoralteredbytheauthors,suchaswhenNwaslessthan thenumberofitemsintheanalysis.

Patterncomparison(g2). Inordertocomparesamplecomponentpatternswithpopulationcomponent patterns,theaverageofthesquareddifferencesbetweenthetwomatriceswascomputed. Furthermore,the authorsidentifiedg2=.01asthemaximumvaluethatindicatesacceptablefit.

Patternagreement (kappa). Salientvariables(loadings>.40)andnon-salientvariables(loadings<.40)were identifiedandnotedindecisiontables. Thesedecisiontableswerethencomparedtothepopulationdecision tableviathekappastatistic. Askappaapproaches1.0thetwomatricesbecomemoreinagreementwitheach other.A0indicatesrandomchancelevelofagreement,andnegativekappasindicatepoorerthanchance agreement.

TypeI errors. Theauthorscalculatedthepercentofvariablesthatshouldnothavebeenconsideredsalient butwereinaparticulardataset,indicatingTypeIerrorclassifications.

TypeII errors. Theauthorsalsocalculatedthepercentofvariablesthatshouldhavebeenconsideredsalient butwerenotfoundtobeso,indicatingTypeIIerrorclassifications.

Variablescalculatedforthisanalysis

Forourpurposeswecalculatedthefollowingvariablesbasedontheinformationobtainedfromthedataset:

Subject-to-itemratio. Theratioofthenumberofsubjectsperiteminaparticularanalysiswascalculated fromtheinformationgiven.

Variable-to-component ratio. Assomeauthorshavearguedthatthenumberofvariablespercomponentor factorisimportant(seeGuadagnoli&Velicer,1988)weincludedthisvariableinanalyses.

Extramatrices. IndescribingtheirdatagenerationproceduresGuadagnoliandVelicer(1988)indicatedthat undercertainconditions“thecomponentpatternsdidnotpossessastructuredefinedwellenoughforaoneto-onecomponentmatchwiththepopulationcomponentstructuretobeattained.”(p.267). Inotherwords, certaindatasetsproducederrorsofinferenceregardingthenumberoffactorsextractedfromthedata. The authorsdiscardedthesedatamatricesandreplacedthemuntil5goodmatricesforaparticularsetofcriteria wereobtained. Theynotedcaseswhereupto10additionalmatriceswererequiredbefore5goodmatrices wereobtained,andcaseswhere10ormorematriceswererequired(aphenomenallyhigherrorrate). From anappliedresearchpointofview,thiscouldbeviewedasanimportantoutcome,wherearesearcherwould findresultsthatdifferradicallyfromthepopulation,andthusshouldbeexaminedasavariableofinterest. Thus,thisvariablewascodedintothedatasetforthecurrentanalysesas0(noextramatrices),1(upto10 extramatricesrequired),or2(morethan10extramatricesrequired)asthatishowthisinformationwas

Page3of9 3 Osborne and Costello: Sample size and subject to item ratio in principal components ana Published by ScholarWorks@UMass Amherst, 2004

reported.

Correct factorstructure. WhatmanypeoplearelookingforwhentheydoaEFAorPCAanalysisisthe pattern—whatvariables“load”onwhatcomponents. Researchersaregenerallylessinterestedinthe absolutemagnitudeoftheloading(aboveacertain“salient”level--thatisasourceofdebateinandofitself) thanwhichvariablegoeswithwhichfactor. Thus,weincludedinformationinourdatasetthatindicated whenthishadorhadnotoccurred,basedonthenumberofTypeIandTypeIIerrors. Matricesthathadno errorswereconsidered“correct,”whilematriceswitherrorswereconsiderednotcorrect. Somemightthink thisastrictcriterion,andtheyarecorrect.However,thepresenceoftheseerrorscansignificantlyalterthe interpretationofanexploratoryanalysis(eitherEFAorPCA). Inthisstudy,34.3%ofthecasesfailedto faithfullyreplicatethepatternfoundinthepopulation.

Data

Theauthorsgeneratedfivesamplesforeachofthe205validconditionsdescribed. Theaverageg2,kappa,typeIerror, typeIIerrorforthefivesamplesineachconditionwerereportedintables. Thus,theseresultsrepresentanalysesofthe dataaggregatedacrossfivesamplesineachcondition.

RESULTS

Maineffects

Withtheexceptionofthenewly-calculatedvariablesdescribedabove,weattemptedtofaithfullyreproducetheauthors’ analyses. Weperformedmultipleregressionanalysesonthedependentvariables(g2 ,kappa,TypeIerror,andTypeII error),abinomiallogisticmultipleregressionpredictingcorrectfactorstructure,andamultinomiallogisticregression predictingthepresenceofextramatrices. Asintheoriginalarticle,weexaminedallpossibletwo-wayinteractions. The differenceisthatwenowsimultaneouslycanexaminetotalNandsubjecttoitemratiofortheiruniqueandjoint contributionstothegoodnessofPCAoutcomes.

TheresultsoftheseanalysesarepresentedinTables1-3. AsTable1indicates,thenumberofcomponentswasnot significantpredictorofanydependentvariableonceothervariableswerecontrolledfor. Aspreviousresearchhas reported,itemloadingmagnitudeaccountedforsignificantuniquevarianceintheexpecteddirectioninallbutonecase, andinmostcaseswasthestrongestuniquepredictorofcongruencebetweensampleandpopulation. Specifically,as itemloadingsincreased,averagesquareddiscrepancybetweenpopulationandsampleresults(g2)decreased,agreement (kappa)increased,TypeIIerrorsdecreased,andtheoddsofgettingthecorrectcomponentpatternincreased dramatically.

Table1:Predictors ofcomponent pattern stability—main effects

Note: Statistics reportedrepresent betas (standardizedregression coefficients)when all predictors are in theequation. Betas in parentheses arefrom regression equations with tworatiovariables removed. * p< .05, ** p< .01, *** p< .001.

1. Odds ratioreported. For loadings, as therewas only .40, .60, and.80for values, this was considered acategorical variable. Thus, thefirst odds ratiorepresents therelativeodds ofgetting correct pattern structures with a.40vs. a.80averageloading, whilethesecondodds ratiorepresents therelativeodds ofgetting correct pattern structures with a.60vs. an .80averageloading.

Contrarytootherstudies,neitherthenumberofvariablesnorNhadasignificantuniqueeffectwhenallothervariables wereheldconstant(exceptfortherelationshipbetweenNandtheoddsofaTypeIIerror). Thelackoffindingsforthese

https://scholarworks.umass.edu/pare/vol9/iss1/11 DOI: https://doi.org/10.7275/ktzq-jq66

Dependent variable: Numberof components Loadings Numberof variables Numberof subjects Subject: item ratio Variable: component ratio g2 -.08 (.15**) -.41*** (-.45***) -.26 (-.30***) -.11 (-.41***) -.37*** -.25 Kappa -.09 (-.01) .62*** (.62***) .16 (.03) .20 (.31***) .14 -.08 TypeIerror -.12 (-.12) -.22 (-.22***) -.23 (-.23***) .12 (-.17***) -.36*** -.20 TypeIIerror .09 (-.01) -.67*** (-.67***) -.03 (.07) -.29*** (-.31***) -.03 .10 Correctpattern1 1.14 (1.10) .58*** (.99) .76*** (.99) 1.01 (.99) 1.00 (1.01***) 1.44** 1.15
Page4of9 4 Practical Assessment, Research, and Evaluation, Vol. 9 [2004], Art. 11

twovariablesmightbedirectlyattributabletothepresenceoftheratiosofsubjecttoitemandvariabletocomponent, whichwouldlikelysharevariance. Totestthishypothesis,ablockwisemultipleregressionwasperformedentering numberofcomponents,loadings,numberofvariables,andNinblock1,andsubjecttoitemratioandvariabletofactor ratioinblock2. Numberofvariableswasasignificantpredictorintwoofthefiveanalyseswherethetworatiovariables werenotintheequation. TotalNwassignificantinallfiveanalyseswherethetworatiovariableswerenotinthe equation.

Theratioofsubjectstoitemshadasignificantandsubstantialinfluenceonthreeoutcomesintheexpecteddirection. As subjecttoitemratioincreased,thesquareddiscrepancybetweenpopulationandsamplematricesdecreased,theoddsof aTypeIerrordecreased,andtheoddsofgettingacorrectcomponentpatternmatrixincreased. Finally,theratioof variablestocomponentshadnouniqueeffect.

Themultinomiallogisticregressionpredictingtheneedforextramatricesdidnotidentifyanysignificantpredictors,nor didabinomiallogisticregressionanalysispredictingtheneedforanyextramatricesornone. Whateverthereasonfor thislackofresults,itisclearthatthisoutcomeisrelatedtosubjecttoitemratio,numberofsubjects,andtheratioof variablestocomponents(allp<.001whenanalyzedindividually),asTable2shows. Notethatthiseventonlyoccurred whenloadingswererelativelyweak(.40),andthusloadingswasheldconstant.

+ extra 1-9extra Noextra S:I ratio <5:1 8 7 30 5:1-10:1 1 14 >10:1 9 #subjects 50 2 1 100 2 1 3 150 2 4 6 200 2 10 300 2 10 500 1 11 1000 12 V:F ratio Page5of9 5 Osborne and Costello: Sample size and subject to item ratio in principal components ana Published by ScholarWorks@UMass Amherst, 2004
Table2Therelationship between the numberofextra matrices drawn and subject:itemratio.
10

Interactions

Totestforinteractioneffects,ablockwisemultipleregressionanalysiswasperformedenteringallmaineffectsinblock1 andallinteractionsinblock2. Inallcases,whenblock2wasenteredtherewasasignificantchangeinRandR2(all p< .0001).

AstheresultsinTable3show,therewereseveralinterestinginteractionspresentinthesedata. Therewereno significantinteractionsincludingtheratioofvariablestocomponents.

Table3:Predictors ofcomponent pattern stability—interactions

Numberofcomponentsandcomponent loadings. Therewasasignificantinteractionbetweenthenumberofcomponents extractedandthemagnitudeofcomponentloadings. Thenatureoftheinteractionindicatedthatmorecomponents tendedtoinflateg2whenloadingswererelativelyweak,buthadlessofaneffectwhentheloadingswereverystrong.

Component loadingsandthenumberofvariables. Thisinteractionindicatedthat,whilestrongercomponentloadings arerelatedtolowerg2andTypeIerrorrates,loadingshadlessofaneffectasthenumberofvariablesincreased.

Component loadingsandthenumberofsubjects. Thisinteractionindicatedthat,whilestrongercomponentloadingsare relatedtohigherkappasandlowerTypeIIerrorrates,loadingshadlessofaneffectasthenumberofsubjectsincreased.

Component loadingsandtheratioofsubjectstovariables. Thisinteractionindicatedthat,whilestrongercomponent loadingsweregenerallyrelatedtolowerg2andTypeIerrorrates,loadingshadlessofaneffectastheratioofsubjectsto variablesincreased.

https://scholarworks.umass.edu/pare/vol9/iss1/11

<10:1 8 7 15 10:1-19:1 1 27 >19:1 11
Interaction g2 Kappa TypeI error TypeII error #componentsxloadings .003 #componentsx# variables #componentsx#subjects #componentsxS:Iratio Loadingx#variables .0001 .0001 Loadingx#subjects .004 .0001 LoadingxS:Iratio .007 .003 #variablesx#subjects .0001 .03 .003 #variablesxS:Iratio #subjectsxS:Iratio .0001 .0001 .0001 .0001
Page6of9 6 Practical Assessment, Research, and Evaluation, Vol. 9 [2004], Art. 11
https://doi.org/10.7275/ktzq-jq66
DOI:

Numberofvariablesandthenumberofsubjects. Whilethenumberofvariableswasgenerallyrelatedtomorefavorable outcomes(lowerg2 ,higherkappa,andlowerTypeIerrorrates),asthenumberofsubjectsincreasedtheeffectofthe numberofvariablesdecreased.

Numberofsubjectsandtheratioofsubjectstovariables. Whileincreasingratiosofsubjectstovariableswasgenerally relatedtomorefavorableoutcomes(lowerg2 ,higherkappa,andlowerTypeIandTypeIIerrorrates),asNincreased, thiseffectbecamelessimportant.

DISCUSSION

Whiletheoriginalauthorsofthisstudyconcludedthattheonlytwoimportantfactorsindeterminingthe correspondencebetweenaPCAandthepopulationweretherawnumberofsubjectsandthemagnitudeofthe componentloadings,theexaminationoftheratioofsubjectstovariablesandvariablestocomponentsandtheirvarious interactionstellaslightlymoresubtlestory.

First,whilethemagnitudeofcomponentloadingshasalargeinfluenceongoodnessoftheanalyses,therawnumberof subjectshadasignificantinfluenceontheaveragepercentofTypeIIerrors. Theratioofsubjectstovariableshada significantuniqueeffectong2,TypeIerrorrates,andobtainingthecorrectloadingpattern. InlookingatTable1itis difficulttodismisscomponentloadingsandtheratioofsubjectstovariablesasthemostconsistentpredictorsofthese variables. EquallynotablewastherelativelackofuniqueimpactofNoncetheratioofsubjecttovariableswas accountedfor.

Thesemaineffectswereinsomewaysqualifiedbyseveralinteractions. Forexample,theratioofsubjectstovariables appearedtohavealargereffectwhentherawnumberofsubjectswaslower,thenumberofsubjectsappearedtohave lessofaneffectwhentherewerefewervariablesintheanalysis,andthenumberofvariables,thenumberofsubjects, andthesubjecttovariableratiohadalargereffectswhenthecomponentloadingsweresmaller.

TheinteractionofNandsubjecttovariableratiowasparticularlyinteresting. Althoughtheratioofsubjecttovariable isanimportantpredictorofthegoodnessofaPCAorEFA,itappearsthatastotalNincreases,thisratiobecomesless important(theconverseisalsotrue--asthesubjecttoitemratioincreases,totalNbecomeslessimportant). Insome sense,then,authorsfrombothsidesofthisdebatearecorrect--totalNmatters(butmoresowhensubject:itemratiois low),andtheratioofsubjectstoitemsmatters(butmoresowhenNisrelativelylow),andifyouhavealargeNorlarge ratio,yourresultswillbemorereliable. Itshouldbeclearfromboththemaineffectandinteractionanalysesthatitis difficulttodismissanyofthesefactorsindiscussingthereproducibilityofpopulationvaluesandpatternsinsample analyses.

Caveats

Itshouldalsobenotedthat,althoughthesedataweresuperiorthanthedatausedinmanyotherarticlesonthetopic, theyarenotnecessarilyideal. Forexample,theoriginalauthorschosetoanalyzelargenumberofitems(36minimum, 144maximum),whichmaynotberepresentativeofwhatresearchersgenerallyinvestigate. Thenumberoffactorswas generallylarge,rangingfrom3to18,ignoringsingle-ortwo-factoranalyses. Finally,themediansubjecttoitemratio was3.5(witharangeof1.04:1to27.78:1),whichisfarfromideal. Thisgeneralrestrictionofrangeandthehighly skewednatureoftheratiovariablemayleadtoanunderestimationoftheeffectofthisratio,asmostguidelinescallfor atleast10:1ormore.

Itisalsoimportanttonotethattheresultsreportedherereflectprincipalcomponentanalyses. Manystatisticiansand methodologistswillpointoutthatEFAandPCAaredistinctprocedures. However,fromapractitionerpointofview,the mathematicsandprocessesbehindeacharerelatedandsimilar,inpracticetheoutcomeofaPCAandEFAisoften identical,andtheseresultsrelatingtoPCAshouldgeneralizetoEFAhandily. However,thecaveatisthattheeffectof thesevariablesonEFAhasnotbeenrigorouslydemonstratedyet.

Finally,itshouldbenotedthateventheoriginalauthorsnotedtheartificially“clean”natureofthepatternsbeing replicated. Noresearcherworkingwithempiricaldatawillseepatternsof0sand.60s,forexample. Infact,many researcherswillnotseeaverageloadingsof.80atall;anythingover.50isgenerallyclassifiedasa“strong”itemloading. Moderateandweakloadings,whicharefrequentlytheruleinbehavioralresearch,rangefrom.32(whichequatesto approximately10%ofthevarianceaccountedfor)upto.50. GuadagnoliandVelicer(1988)alsocompletelyignore crossloaders,whichareitemsthatloadabovethe.32levelonmorethanonefactors.Theseareparticularlyproneto occurduringtheinitialresearchphaseofmeasureconstruction,whenitemsarebeingtestedforinclusion.Theincidence ofcrossloadingscanbedramaticallyeffectedbybothsamplesizeandsubject:itemratio,particularlywhenitemloadings areinthelowtomoderaterange(Costello&Osborne,2003).Frequentlycrossloadersdisappearwhenthesamplesizeis adequate,butwhenthesamplesizeorsubject:itemratioissmallthereisnowaytodeterminewhetheracrossloading itemistheresultofasamplingerrorortheindicationofapooritem.

Paststudieshavefoundthatvariablessuchasthenumberofitemspercomponent/factor,andthemagnitudeoftheitem loadingstendtoreducethesamplesizeneededforvalidinference. Wedonottakeissuewiththesepreviousfindings. Whileitispossibleforresearcherstocontrolthenumberofitemsiftheresearchersisalsoascaledesigner,itseemstobe

Page7of9 7 Osborne and Costello: Sample size and subject to item ratio in principal components ana Published by ScholarWorks@UMass Amherst, 2004

eveneasiertocontrolsamplesizeinmanycases.

CONCLUSIONS

Althoughsomeauthorseschewtheconceptofsubjecttovariableratioasanimportantinfluenceinthe“goodness”of exploratoryfactoranalysisorprincipalcomponentsanalysis,thatseemsshort-sightedandsimplistic. Researchersneed torememberthatEFAandPCA(andothertechniqueslikestructuralequationmodeling)arelarge-sampletechniques, notwell-suitedtothesmallsamplesizessomeresearchersusethemon. Theseanalysesdemonstratethat,atleastfor thisdataset(whichwebelieveisoneofthebetteronesoutthere),holdingallothervariablesconstant,subjectto variableratiomakesasignificantcontributionbeyondthatofmeresamplesize,particularlywhenoverallsamplesizeis notoverwhelminglylarge.

Buttheseeffectsdonotshowevidenceofa“criticalmass”or“criticalratio”--theydonotplateau,thelinesarenot asymptotic. Therearediminishingreturns,butevenatlargesubjecttoitemratiosandNs(suchas20:1ratioorN> 1000)andwithunrealisticallystrongfactorloadingsandclearfactorstructures,EFAandPCAcanproduceerrorrates upto30%(Costello&Osborne,2003),leavingroomforimprovementvialargersamples.

Thus,themostvalidconclusionregardingsamplesizeisthatmoreisalwaysbetter. Period. Ifsubjecttoitemratios appealintuitivelytosomeresearchers,andifitleadsresearcherstoutilizesamplesofamoreappropriatesize,itis useful. Whynotencouragethiswayofthinking?

References

Aleamoni,L.M.(1976).Therelationofsamplesizetothenumberofvariablesinusingfactoranalysistechniques. EducationalandPsychologicalMeasurement,36,879-883.

Baggaley,A.R.(1983).Decidingontheratioofnumberofsubjectstonumberofvariablesinfactoranalysis. MultivariateExperimentalClinicalResearch,6(2),81-85.

Barrett,P.T.,&Kline,P.(1981).Theobservationtovariableratioinfactoranalysis.Personalitystudyandgroup behavior,1,23-33.

Bobko,P.,&Schemmer,F.M.(1984).Eigenvalueshrinkageinprincipalcomponentbasedfactoranalysis.Applied PsychologicalMeasurement,8,439-451.

Cliff,N.(1970).Therelationbetweensampleandpopulationcharacteristicvectors.Psychometrika,35,163-178.

Cohen,J.,&Cohen,P.(1983).Appliedmultipleregression/correlationanalysisforthebehavioralsciences.Hillsdale,NJ: LawrenceErlbaumAssociates,Inc.

Comfrey,A.L.,&Lee,H.B.(1992).AFirst CourseinFactorAnalysis.Hillsdale,NJ:LawrenceErlbaumAssociates.

Costello,A.B.,&Osborne,J.W.(2003).Exploring best practicesinFactorAnalysis:Fourmistakesappliedresearchers make.PaperpresentedatthePaperpresentedattheannualmeetingoftheAmericanEducationalResearch Association,Chicago,Ill,April.

Ford,J.K.,MacCallum,R.C.,&Tait,M.(1986).Theapplicationofexploratoryfactoranalysisinappliedpsychology:A criticalreviewandanalysis.PersonnelPsychology,39,291-314.

Gorusch,R.L.(1983).FactorAnalysis(2nded.).Hillsdale,NJ:LawrenceErlbaumAssociates.

Guadagnoli,E.,&Velicer,W.F.(1988).relationofsamplesizetothestabilityofcomponentpatterns.Psychological Bulletin,103,265-275.

Hatcher,L.(1994).AStep-by-StepApproachtoUsing theSAS®SystemforFactorAnalysisandStructuralEquation Modeling.Cary,N.C.:SASInstitutte,Inc.

Humphreys,L.G.,Ilgen,D.,McGrath,D.,&Montanelli,R.(1969).Capitalizationonchanceinrotationoffactors. EducationalandPsychologicalMeasurement,29(2),259-271.

MacCallum,R.C.,Widaman,K.F.,Preacher,K.J.,&Hong,S.(2001).Samplesizeinfactoranalysis:Theroleofmodel error.MultivariateBehavioralResearch,36,611-637.

MacCallum,R.C.,Widaman,K.F.,Zhang,S.,&Hong,S.(1999).Samplesizeinfactoranalysis.PsychologicalMethods, 4,84-99.

Nunnally,J.C.(1978).PsychometricTheory(2nded.).NewYork:McGrawHill.

Pedhazur,E.J.(1997).MultipleRegressioninBehavioralResearch:ExplanationandPrediction.FortWorth,TX:

https://scholarworks.umass.edu/pare/vol9/iss1/11

DOI: https://doi.org/10.7275/ktzq-jq66

Page8of9 8 Practical Assessment, Research, and Evaluation, Vol. 9 [2004], Art. 11

Osborne and Costello: Sample size and subject to item ratio in principal components ana

HarcourtBraceCollegePublishers.

Tabachnick,B.G.,&Fidell,L.S.(2001).Using MultivariateStatistics(4thed.).NewYork::HarperCollins.

AuthorContact information:

JasonW.Osborne, DeptofCurriculumandInstruction

NorthCarolinaStateUniversity

PoeHall602,CampusBox7801 RaleighNC27695-7801

919-515-1714

jason_osborne@ncsu.edu

Authornotes:

Asoftenhappensinscience,theimpetusforthispaperwasamethodologicaldebatearisingoutofthesecondauthor’s Master’sthesis. Wedecidedtotakeanempiricalandscholarlyapproachtoinformingthedebate. Communication regardingthispapershouldbedirectedviaemailtojason_osborne@ncsu.eduorblandy_costello@ncsu.edu

Descriptors:FactorAnalysis;PCA;PrincipalComponents;SampleSize

Citation:Osborne,JasonW.&AnnaB.Costello(2004).Samplesizeandsubjecttoitemratioinprincipalcomponentsanalysis.Practical Assessment,Research&Evaluation,9(11).Availableonline:http://PAREonline.net/getvn.asp?v=9&n=11

Page9of9 9
Published by ScholarWorks@UMass Amherst, 2004

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.