Derivatives
Visit to download the full and correct content document: https://textbookfull.com/product/derivatives-principles-and-practice-das/
principles and practice Das
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Derivatives Theory and Practice Keith Cuthbertson
https://textbookfull.com/product/derivatives-theory-and-practicekeith-cuthbertson/
Principles of Foundation Engineering Braja M. Das
https://textbookfull.com/product/principles-of-foundationengineering-braja-m-das/
Principles of Geotechnical Engineering Braja M. Das
https://textbookfull.com/product/principles-of-geotechnicalengineering-braja-m-das/
Principles of foundation engineering Ninth Edition
Braja M. Das
https://textbookfull.com/product/principles-of-foundationengineering-ninth-edition-braja-m-das/
Principles of Foundation Engineering, 9th Edition, SI Edition Braja M. Das
https://textbookfull.com/product/principles-of-foundationengineering-9th-edition-si-edition-braja-m-das/
Tourism : principles and practice Fletcher
https://textbookfull.com/product/tourism-principles-and-practicefletcher/
Forecasting Principles and Practice Athanasopoulos
https://textbookfull.com/product/forecasting-principles-andpractice-athanasopoulos/
Paramedic Principles and Practice Brett Williams
https://textbookfull.com/product/paramedic-principles-andpractice-brett-williams/
Kidney Transplantation: Principles and Practice Stuart Knechtle
https://textbookfull.com/product/kidney-transplantationprinciples-and-practice-stuart-knechtle/
DERIVATIVES DE RI V A T IV ES
PRINCIPLES and PRACTICE PRINCIPLES and PRACTICE
Rangarajan K. Sundaram
Sanjiv R. Das
Second Edition
Derivatives: Principlesand Practice
StephenA.Ross
FrancoModiglianiProfessorofFinanceandEconomics SloanSchoolofManagement MassachusettsInstituteofTechnology ConsultingEditor
FINANCIALMANAGEMENT
Block,Hirt,andDanielsen FoundationsofFinancialManagement FifteenthEdition
Brealey,Myers,andAllen PrinciplesofCorporateFinance EleventhEdition
Brealey,Myers,andAllen PrinciplesofCorporateFinance,Concise SecondEdition
Brealey,Myers,andMarcus FundamentalsofCorporateFinance EighthEdition
Brooks FinGameOnline5.0 Bruner CaseStudiesinFinance:Managingfor CorporateValueCreation SeventhEdition
Cornett,Adair,andNofsinger Finance:ApplicationsandTheory ThirdEdition
Cornett,Adair,andNofsinger M:Finance ThirdEdition
DeMello CasesinFinance SecondEdition
Grinblatt(editor)
StephenA.Ross,Mentor:Influence throughGenerations
GrinblattandTitman FinancialMarketsandCorporate Strategy SecondEdition
Higgins AnalysisforFinancialManagement EleventhEdition
Kellison TheoryofInterest ThirdEdition
Ross,Westerfield,andJaffe CorporateFinance TenthEdition
Ross,Westerfield,Jaffe,andJordan CorporateFinance:CorePrinciples andApplications FourthEdition
Ross,Westerfield,andJordan EssentialsofCorporateFinance EighthEdition
Ross,Westerfield,andJordan FundamentalsofCorporateFinance EleventhEdition
Shefrin
BehavioralCorporateFinance:Decisions thatCreateValue FirstEdition
White FinancialAnalysiswithanElectronic Calculator SixthEdition
INVESTMENTS
Bodie,Kane,andMarcus EssentialsofInvestments NinthEdition
Bodie,Kane,andMarcus Investments TenthEdition HirtandBlock FundamentalsofInvestmentManagement TenthEdition
Jordan,Miller,andDolvin FundamentalsofInvestments:Valuation andManagement SeventhEdition
Stewart,Piros,andHeisler RunningMoney:ProfessionalPortfolio Management FirstEdition
SundaramandDas Derivatives:PrinciplesandPractice SecondEdition
FINANCIALINSTITUTIONSAND MARKETS
RoseandHudgins BankManagementandFinancialServices NinthEdition
RoseandMarquis FinancialInstitutionsandMarkets EleventhEdition
SaundersandCornett FinancialInstitutionsManagement: ARiskManagementApproach EighthEdition
SaundersandCornett FinancialMarketsandInstitutions SixthEdition
INTERNATIONALFINANCE
EunandResnick InternationalFinancialManagement SeventhEdition
REALESTATE
BrueggemanandFisher RealEstateFinanceandInvestments FourteenthEdition
LingandArcher RealEstatePrinciples:AValueApproach FourthEdition
FINANCIALPLANNINGAND INSURANCE
Allen,Melone,Rosenbloom,andMahoney RetirementPlans:401(k)s,IRAs,and OtherDeferredCompensation Approaches EleventhEdition Altfest PersonalFinancialPlanning FirstEdition
HarringtonandNiehaus RiskManagementandInsurance SecondEdition
Kapoor,Dlabay,andHughes FocusonPersonalFinance:Anactive approachtohelpyouachievefinancial literacy FifthEdition
Kapoor,Dlabay,andHughes PersonalFinance EleventhEdition
WalkerandWalker PersonalFinance:BuildingYourFuture FirstEdition
TheMcGraw-Hill/IrwinSeriesinFinance,Insurance,and RealEstate
Derivatives: Principlesand Practice
SecondEdition
RangarajanK.Sundaram
SternSchoolofBusiness
NewYorkUniversity
NewYork,NY10012
SanjivR.Das
LeaveySchoolofBusiness
SantaClaraUniversity
SantaClara,CA95053
DERIVATIVES:PRINCIPLESANDPRACTICE,SECONDEDITION
PublishedbyMcGraw-HillEducation,2PennPlaza,NewYork,NY10121.Copyright©2016byMcGraw-Hill Education.Allrightsreserved.PrintedintheUnitedStatesofAmerica.Previousedition©2011.Nopartofthis publicationmaybereproducedordistributedinanyformorbyanymeans,orstoredinadatabaseorretrieval system,withoutthepriorwrittenconsentofMcGraw-HillEducation,including,butnotlimitedto,inany networkorotherelectronicstorageortransmission,orbroadcastfordistancelearning.
Someancillaries,includingelectronicandprintcomponents,maynotbeavailabletocustomersoutsidethe UnitedStates.
Thisbookisprintedonacid-freepaper.
1234567890 QVS/QVS 1098765
ISBN978-0-07-803473-2
MHID0-07-803473-6
SeniorVicePresident,Products&Markets: KurtL.Strand VicePresident,GeneralManager,Products&Markets: MartyLange VicePresident,ContentDesign&Delivery: KimberlyMeriwetherDavid
ManagingDirector: DougReiner
BrandManager: CharlesSynovec
ProductDeveloper: JenniferLohn
DigitalProductDeveloper: MegMaloney
Director,ContentDesign&Delivery: LindaAvenarius
ExecutiveProgramManager: FayeM.Herrig
ContentProjectManagers: MaryJaneLampe,SandraSchnee
Buyer: JenniferPickel
CoverDesign: StudioMontage
ContentLicensingSpecialists: BethThole
CoverImageCredit: ©BrandXPictures/PunchStock
Compositor: MPSLimited
Typeface: 10/12TimesNewRoman
Printer: Quad/Graphics
Allcreditsappearingonpageorattheendofthebookareconsideredtobeanextensionofthecopyrightpage.
LibraryofCongressCataloging-in-PublicationData
Sundaram,RangarajanK.
Derivatives:principlesandpractice/RangarajanK.Sundaram,SanjivR. Das.–Secondedition. pagescm
ISBN978-0-07-803473-2(alk.paper)
1.Derivativesecurities.I.Das,SanjivR.(SanjivRanjan)II.Title. HG6024.A3S8732016 332.64’57—dc23 2014037947
TheInternetaddresseslistedinthetextwereaccurateatthetimeofpublication.Theinclusionofawebsitedoes notindicateanendorsementbytheauthorsorMcGraw-HillEducation,andMcGraw-HillEducationdoesnot guaranteetheaccuracyoftheinformationpresentedatthesesites.
www.mhhe.com
TomylovelydaughterAditi and tothememoryofmybeautifulwifeUrmilla
Tomydepartedparents and PriyaandShikhar
...RKS
...SRD
PARTTHREE
MarketModels714
AuthorBiographiesxv Prefacexvi Acknowledgmentsxxi 1Introduction1 PARTONE FuturesandForwards19 2 FuturesMarkets21 3 PricingForwardsandFuturesI: TheBasicTheory63 4 PricingForwardsandFuturesII:Building ontheFoundations88 5 HedgingwithFuturesandForwards104 6 Interest-RateForwardsandFutures126 PARTTWO Options155 7 OptionsMarkets157 8 Options:PayoffsandTrading Strategies173 9 No-ArbitrageRestrictionson OptionPrices199 10 EarlyExerciseandPut-CallParity216 11 OptionPricing:AFirstPass231 12 BinomialOptionPricing261 13 ImplementingBinomialModels290 14 TheBlack-ScholesModel309 15 TheMathematicsofBlack-Scholes346 16 OptionsModeling:Beyond Black-Scholes359 17 SensitivityAnalysis:TheOption “Greeks”401 18 ExoticOptionsI:Path-Independent Options437 19 ExoticOptionsII:Path-Dependent Options467 20 Value-at-Risk495 21 ConvertibleBonds516 22 RealOptions547
BriefContents
Swaps567 23 InterestRateSwapsandFloating-Rate Products569 24 EquitySwaps614 25 CurrencyandCommoditySwaps632
InterestRateModeling651 26 TheTermStructureofInterestRates:
27 EstimatingtheYieldCurve671 28 ModelingTerm-Structure Movements688 29 FactorModelsoftheTermStructure697 30 TheHeath-Jarrow-MortonandLibor
PARTFIVE CreditRisk753 31 CreditDerivativeProducts755 32 StructuralModelsofDefaultRisk789 33 Reduced-FormModelsof DefaultRisk816 34 ModelingCorrelatedDefault850 vi
PARTFOUR
Concepts653
BibliographyB-1
IndexI-1
ThefollowingWebchaptersare availableatwww.mhhe.com/sd2e:
PARTSIX
Computation1
35 DerivativePricingwithFinite Differencing3
36 DerivativePricingwithMonteCarlo Simulation23
37 Using Octave 45
BriefContents vii
Contents
AuthorBiographiesxv
Prefacexvi
Acknowledgmentsxxi
Chapter1
Introduction1
1.1 ForwardandFuturesContracts5
1.2 Options9
1.3 Swaps10
1.4 UsingDerivatives:SomeComments12
1.5 TheStructureofthisBook16
1.6 Exercises17
PARTONE
FuturesandForwards19
Chapter2
FuturesMarkets21
2.1 Introduction21
2.2 TheFunctioningofFuturesExchanges23
2.3 TheStandardizationofFuturesContracts32
2.4 ClosingOutPositions35
2.5 MarginRequirementsandDefaultRisk37
2.6 CaseStudiesinFuturesMarkets40
2.7 Exercises55
Appendix2A FuturesTradingandUSRegulation: ABriefHistory59
Appendix2B Contango,Backwardation,and RolloverCashFlows62
Chapter3
PricingForwardsandFuturesI:TheBasic Theory63
3.1 Introduction63
3.2 PricingForwardsbyReplication64
3.3 Examples66
3.4 ForwardPricingonCurrenciesandRelated Assets69
3.5 Forward-RateAgreements72
3.6 ConceptCheck72
3.7 TheMarked-to-MarketValueofaForward Contract73
3.8 FuturesPrices75
3.9 Exercises77
Appendix3A CompoundingFrequency82
Appendix3B ForwardandFuturesPriceswith ConstantInterestRates84
Appendix3C RollingOverFuturesContracts86
Chapter4
PricingForwardsandFuturesII:Building ontheFoundations88
4.1 Introduction88
4.2 FromTheorytoReality88
4.3 TheImpliedRepoRate92
4.4 TransactionsCosts95
4.5 ForwardPricesandFutureSpotPrices96
4.6 IndexArbitrage97
4.7 Exercises100
Appendix4A ForwardPriceswithConvenience Yields103
Chapter5
HedgingwithFuturesandForwards104
5.1 Introduction104
5.2 AGuidetotheMainResults106
5.3 TheCashFlowfromaHedgedPosition107
5.4 TheCaseofNoBasisRisk108
5.5 TheMinimum-VarianceHedgeRatio109
5.6 Examples112
5.7 Implementation114
5.8 FurtherIssuesinImplementation115
5.9 IndexFuturesandChangingEquityRisk117
5.10 Fixed-IncomeFuturesandDuration-Based Hedging118
5.11 Exercises119
Appendix5A DerivationoftheOptimalTailed HedgeRatio h ∗∗ 124
Chapter6
Interest-RateForwardsandFutures126
6.1 Introduction126
6.2 EurodollarsandLiborRates126
6.3 Forward-RateAgreements127
6.4 EurodollarFutures133
6.5 TreasuryBondFutures140
viii
6.6 TreasuryNoteFutures144
6.7 TreasuryBillFutures144
6.8 Duration-BasedHedging144
6.9 Exercises147
Appendix6A PVBP-BasedHedgingUsing EurodollarFutures151
Appendix6B CalculatingtheConversion Factor152
Appendix6C DurationasaSensitivity Measure153
Appendix6D TheDurationofaFutures Contract154
PARTTWO
Options155
Chapter7 OptionsMarkets157
7.1 Introduction157
7.2 DefinitionsandTerminology157
7.3 OptionsasFinancialInsurance158
7.4 NakedOptionPositions160
7.5 OptionsasViewsonMarketDirection andVolatility164
7.6 Exercises167
Appendix7A OptionsMarkets169
Chapter8
Options:PayoffsandTrading Strategies173
8.1 Introduction173
8.2 TradingStrategiesI:CoveredCallsand ProtectivePuts173
8.3 TradingStrategiesII:Spreads177
8.4 TradingStrategiesIII:Combinations185
8.5 TradingStrategiesIV:OtherStrategies188
8.6 WhichStrategiesAretheMostWidely Used?191
8.7 TheBaringsCase192
8.8 Exercises195
Appendix8A AsymmetricButterfly Spreads198
Chapter9
No-ArbitrageRestrictionson OptionPrices199
9.1 Introduction199
9.2 MotivatingExamples199
9.3 NotationandOtherPreliminaries201
9.4 MaximumandMinimumPricesfor Options202
9.5 TheInsuranceValueofanOption207
9.6 OptionPricesandContractParameters208
9.7 NumericalExamples211
9.8 Exercises213
Chapter10
EarlyExerciseandPut-CallParity216
10.1 Introduction216
10.2 ADecompositionofOptionPrices216
10.3 TheOptimalityofEarlyExercise219
10.4 Put-CallParity223
10.5 Exercises229
Chapter11
OptionPricing:AFirstPass231
11.1 Overview231
11.2 TheBinomialModel232
11.3 PricingbyReplicationinaOne-Period BinomialModel234
11.4 Comments238
11.5 RisklessHedgePortfolios240
11.6 PricingUsingRisk-Neutral Probabilities240
11.7 TheOne-PeriodModelinGeneral Notation244
11.8 TheDeltaofanOption245
11.9 AnApplication:PortfolioInsurance249 11.10 Exercises251
Appendix11A RisklessHedgePortfolios andOptionPricing255
Appendix11B Risk-NeutralProbabilities andArrowSecurityPrices256
Appendix11C TheRisk-NeutralProbability, No-Arbitrage,andMarket Completeness257
Appendix11D EquivalentMartingale Measures260
Contents ix
Chapter12
BinomialOptionPricing261
12.1 Introduction261
12.2 TheTwo-PeriodBinomialTree263
12.3 PricingTwo-PeriodEuropeanOptions264
12.4 EuropeanOptionPricinginGeneral n -Period Trees271
12.5 PricingAmericanOptions:Preliminary Comments271
12.6 AmericanPutsonNon-Dividend-Paying Stocks272
12.7 CashDividendsintheBinomialTree274
12.8 AnAlternativeApproachtoCash Dividends278
12.9 DividendYieldsinBinomialTrees282
12.10 Exercises284
Appendix12A AGeneralRepresentationof EuropeanOptionPrices287
Chapter13
ImplementingBinomialModels290
13.1 Introduction290
13.2 TheLognormalDistribution291
13.3 BinomialApproximationsofthe Lognormal295
13.4 ComputerImplementationoftheBinomial Model299
13.5 Exercises304
Appendix13A EstimatingHistorical Volatility307
Chapter14
TheBlack-ScholesModel309
14.1 Introduction309
14.2 OptionPricingintheBlack-Scholes Setting311
14.3 RemarksontheFormula315
14.4 WorkingwiththeFormulaeI:PlottingOption Prices315
14.5 WorkingwiththeFormulaeII:Algebraic Manipulation317
14.6 DividendsintheBlack-ScholesModel321
14.7 OptionsonIndices,Currencies, andFutures326
14.8 TestingtheBlack-ScholesModel:Implied Volatility329
14.9 TheVIXandItsDerivatives334
14.10 Exercises336
Appendix14A FurtherPropertiesofthe Black-ScholesDelta340
Appendix14B VarianceandVolatilitySwaps341
Chapter15
TheMathematicsofBlack-Scholes346
15.1 Introduction346
15.2 GeometricBrownianMotionDefined346
15.3 TheBlack-ScholesFormulavia Replication350
15.4 TheBlack-ScholesFormulaviaRisk-Neutral Pricing353
15.5 TheBlack-ScholesFormulaviaCAPM356
15.6 Exercises357
Chapter16
OptionsModeling: BeyondBlack-Scholes359
16.1 Introduction359
16.2 Jump-DiffusionModels360
16.3 StochasticVolatility370
16.4 GARCHModels376
16.5 OtherApproaches380
16.6 ImpliedBinomialTrees/LocalVolatility Models381
16.7 Summary391
16.8 Exercises391
Appendix16A ProgramCodeforJumpDiffusions395
Appendix16B ProgramCodeforaStochastic VolatilityModel396
Appendix16C HeuristicCommentsonOption PricingunderStochastic Volatility
Seeonlineatwww.mhhe.com/sd2e Appendix16D ProgramCodeforSimulating GARCHStockPrices Distributions399
Appendix16E LocalVolatilityModels:TheFourth PeriodoftheExample
Seeonlineatwww.mhhe.com/sd2e
Chapter17
SensitivityAnalysis:TheOption “Greeks”401
17.1 Introduction401
17.2 InterpretingtheGreeks:ASnapshot View401
x Contents
17.3 TheOptionDelta405
17.4 TheOptionGamma409
17.5 TheOptionTheta415
17.6 TheOptionVega420
17.7 TheOptionRho423
17.8 PortfolioGreeks426
17.9 Exercises429
Appendix17A DerivingtheBlack-Scholes OptionGreeks433
Chapter18
ExoticOptionsI:Path-Independent Options437
18.1 Introduction437
18.2 ForwardStartOptions439
18.3 Binary/DigitalOptions442
18.4 ChooserOptions447
18.5 CompoundOptions450
18.6 ExchangeOptions455
18.7 QuantoOptions456
18.8 VariantsontheExchange OptionTheme458
18.9 Exercises462
Chapter19
ExoticOptionsII:Path-Dependent Options467
19.1 Path-DependentExotic Options467
19.2 BarrierOptions467
19.3 AsianOptions476
19.4 LookbackOptions482
19.5 Cliquets485
19.6 ShoutOptions487
19.7 Exercises489
Appendix19A BarrierOptionPricing Formulae493
Chapter20 Value-at-Risk495
20.1 Introduction495
20.2 Value-at-Risk495
20.3 RiskDecomposition502
20.4 CoherentRiskMeasures508
20.5 Exercises512
Chapter21
ConvertibleBonds516
21.1 Introduction516
21.2 ConvertibleBondTerminology516
21.3 MainFeaturesofConvertibleBonds517
21.4 BreakevenAnalysis521
21.5 PricingConvertibles:AFirstPass522
21.6 IncorporatingCreditRisk528
21.7 ConvertibleGreeks533
21.8 ConvertibleArbitrage540
21.9 Summary541
21.10 Exercises542
Appendix21A Octave CodefortheBlended DiscountRateValuationTree544 Appendix21B Octave CodefortheSimplified Das-SundaramModel545
Chapter22 RealOptions547
22.1 Introduction547
22.2 PreliminaryAnalysisandExamples549
22.3 ARealOptions“CaseStudy”553
22.4 CreatingtheStateSpace559
22.5 ApplicationsofRealOptions562
22.6 Summary563
22.7 Exercises563
PARTTHREE Swaps567
Chapter23
InterestRateSwapsandFloating-Rate Products569
23.1 Introduction569
23.2 Floating-RateNotes569
23.3 InterestRateSwaps573
23.4 UsesofSwaps574
23.5 SwapPayoffs577
23.6 ValuingandPricingSwaps580
23.7 ExtendingthePricingArguments586
23.8 CaseStudy:TheProcter&Gamble–Bankers Trust“5/30”Swap591
23.9 CaseStudy:ALong-TermCapital Management“ConvergenceTrade”595
23.10 CreditRiskandCreditExposure597
23.11 HedgingSwaps598
Contents xi
23.12 Caps,Floors,andSwaptions600
23.13 TheBlackModelforPricingCaps,Floors, andSwaptions605
23.14 Summary610
23.15 Exercises610
Chapter24
EquitySwaps614
24.1 Introduction614
24.2 UsesofEquitySwaps615
24.3 PayoffsfromEquitySwaps617
24.4 ValuationandPricingofEquitySwaps623
24.5 Summary629
24.6 Exercises629
Chapter25 CurrencyandCommoditySwaps632
25.1 Introduction632
25.2 CurrencySwaps632
25.3 CommoditySwaps643
25.4 Summary647
25.5 Exercises647
PARTFOUR
InterestRateModeling651
Chapter26
TheTermStructureofInterestRates: Concepts653
26.1 Introduction653
26.2 TheYield-to-Maturity653
26.3 TheTermStructureofInterestRates655
26.4 DiscountFunctions656
26.5 Zero-CouponRates657
26.6 ForwardRates658
26.7 Yield-to-Maturity,Zero-CouponRates,and ForwardRates660
26.8 ConstructingtheYield-to-MaturityCurve:An EmpiricalIllustration661
26.9 Summary665
26.10 Exercises665 Appendix26A TheRawYTMData668
Chapter27
EstimatingtheYieldCurve671
27.1 Introduction671
27.2 Bootstrapping671
27.3 Splines673
27.4 PolynomialSplines674
27.5 ExponentialSplines677
27.6 ImplementationIssueswithSplines678
27.7 TheNelson-Siegel-SvenssonApproach678
27.8 Summary680
27.9 Exercises680
Appendix27A BootstrappingbyMatrix Inversion684
Appendix27B ImplementationwithExponential Splines685
Chapter28
ModelingTerm-StructureMovements688
28.1 Introduction688
28.2 Interest-RateModelingversusEquity Modeling688
28.3 ArbitrageViolations:ASimple Example689
28.4 “No-Arbitrage”and“Equilibrium” Models691
28.5 Summary694
28.6 Exercises695
Chapter29
FactorModelsoftheTermStructure697
29.1 Overview697
29.2 TheBlack-Derman-ToyModel Seeonlineatwww.mhhe.com/sd2e
29.3 TheHo-LeeModel Seeonlineatwww.mhhe.com/sd2e
29.4 One-FactorModels698
29.5 MultifactorModels704
29.6 AffineFactorModels706
29.7 Summary709
29.8 Exercises709
Appendix29A DerivingtheFundamentalPDE inFactorModels712
Chapter30
TheHeath-Jarrow-MortonandLibor MarketModels714
30.1 Overview714
30.2 TheHJMFramework:Preliminary Comments714
30.3 AOne-FactorHJMModel716
30.4 ATwo-FactorHJMSetting725
xii Contents
30.5 TheHJMRisk-NeutralDrifts:AnAlgebraic Derivation729
30.6 LiborMarketModels732
30.7 MathematicalExcursion:Martingales733
30.8 LiborRates:Notation734
30.9 Risk-NeutralPricingintheLMM736
30.10 SimulationoftheMarketModel740
30.11 Calibration740
30.12 SwapMarketModels741
30.13 Swaptions743
30.14 Summary744
30.15 Exercises744
Appendix30A Risk-NeutralDrifts andVolatilitiesinHJM748
PARTFIVE
CreditRisk753
Chapter31
CreditDerivativeProducts755
31.1 Introduction755
31.2 TotalReturnSwaps759
31.3 CreditSpreadOptions/Forwards763
31.4 CreditDefaultSwaps763
31.5 Credit-LinkedNotes772
31.6 CorrelationProducts775
31.7 Summary781
31.8 Exercises782
Appendix31A TheCDSBigBang784
Chapter32
StructuralModelsofDefaultRisk789
32.1 Introduction789
32.2 TheMerton(1974)Model790
32.3 IssuesinImplementation799
32.4 APractitionerModel804
32.5 ExtensionsoftheMertonModel806
32.6 EvaluationoftheStructural ModelApproach808
32.7 Summary810
32.8 Exercises811
Appendix32A TheDelianedis-Geske Model813
Chapter33
Reduced-FormModelsofDefaultRisk816
33.1 Introduction816
33.2 ModelingDefaultI:IntensityProcesses817
33.3 ModelingDefaultII:RecoveryRate Conventions821
33.4 TheLitterman-IbenModel823
33.5 TheDuffie-SingletonResult828
33.6 DefaultableHJMModels830
33.7 Ratings-BasedModeling:TheJLT Model832
33.8 AnApplicationofReduced-FormModels: PricingCDS840
33.9 Summary842
33.10 Exercises842
Appendix33A Duffie-Singleton inDiscreteTime846
Appendix33B DerivationoftheDrift-Volatility Relationship847
Chapter34
ModelingCorrelatedDefault850
34.1 Introduction850
34.2 ExamplesofCorrelatedDefault Products850
34.3 SimpleCorrelatedDefaultMath852
34.4 StructuralModelsBasedon AssetValues855
34.5 Reduced-FormModels861
34.6 MultiperiodCorrelatedDefault862
34.7 FastComputationofCreditPortfolioLoss DistributionswithoutSimulation865
34.8 CopulaFunctions868
34.9 Top-DownModelingofCredit PortfolioLoss880
34.10 Summary884
34.11 Exercises885
BibliographyB-1 IndexI-1
Contents xiii
ThefollowingWebchaptersare availableatwww.mhhe.com/sd2e:
PARTSIX
Computation1
Chapter35
DerivativePricingwithFinite Differencing3
35.1 Introduction3
35.2 SolvingDifferentialEquations4
35.3 AFirstApproachtoPricingEquity Options7
35.4 ImplicitFiniteDifferencing13
35.5 TheCrank-NicholsonScheme17
35.6 FiniteDifferencingforTerm-Structure Models19
35.7 Summary21
35.8 Exercises22
Chapter36
DerivativePricingwithMonteCarlo Simulation23
36.1 Introduction23
36.2 SimulatingNormalRandomVariables24
36.3 BivariateRandomVariables25
36.4 CholeskyDecomposition25
36.5 StochasticProcessesforEquityPrices27
36.6 ARCHModels29
36.7 Interest-RateProcesses30
36.8 EstimatingHistoricalVolatilityfor Equities32
36.9 EstimatingHistoricalVolatilityforInterest Rates32
36.10 Path-DependentOptions33
36.11 VarianceReduction35
36.12 MonteCarloforAmericanOptions38
36.13 Summary42
36.14 Exercises43
Chapter37 Using Octave 45
37.1 SomeSimpleCommands45
37.2 RegressionandIntegration48
37.3 ReadinginData,Sorting,andFinding50
37.4 EquationSolving55
37.5 Screenshots55
xiv Contents
AuthorBiographies
RangarajanK.(“Raghu”)Sundaram isProfessorofFinanceatNewYorkUniversity’sSternSchoolofBusiness.Hewaspreviouslyamemberoftheeconomicsfaculty attheUniversityofRochester.Raghuhasanundergraduatedegreeineconomicsfrom LoyolaCollege,UniversityofMadras;anMBAfromtheIndianInstituteofManagement, Ahmedabad;andaMaster’sandPh.D.ineconomicsfromCornellUniversity.Hewascoeditorofthe JournalofDerivatives from2002–2008andisorhasbeenamemberofseveral othereditorialboards.Hisresearchinfinancecoversarangeofareasincludingagency problems,executivecompensation,derivativespricing,creditriskandcreditderivatives, andcorporatefinance.Hehasalsopublishedextensivelyinmathematicaleconomics,decisiontheory,andgametheory.Hisresearchhasappearedinallleadingacademicjournalsin financeandeconomictheory.TherecipientoftheJensenAwardandafinalistfortheBrattle Prizeforhisresearchinfinance,Raghuhasalsowonseveralteachingawardsincluding,in 2007,theinauguralDistinguishedTeachingAwardfromtheSternSchoolofBusiness.This isRaghu’ssecondbook;hisfirst,aPh.D.-leveltexttitled AFirstCourseinOptimization Theory,waspublishedbyCambridgeUniversityPress.
SanjivDas istheWilliamandJaniceTerryProfessorofFinanceatSantaClaraUniversity’s LeaveySchoolofBusiness.Hepreviouslyheldfacultyappointmentsasassociateprofessor atHarvardBusinessSchoolandUCBerkeley.Heholdspost-graduatedegreesinfinance (M.PhilandPh.D.fromNewYorkUniversity),computerscience(M.S.fromUCBerkeley), anMBAfromtheIndianInstituteofManagement,Ahmedabad,B.Cominaccountingand economics(UniversityofBombay,SydenhamCollege),andisalsoaqualifiedcostand worksaccountant.Heisasenioreditorof TheJournalofInvestmentManagement,coeditorof TheJournalofDerivatives andthe JournalofFinancialServicesResearch,and associateeditorofotheracademicjournals.Heworkedinthederivativesbusinessinthe Asia-Pacificregionasavice-presidentatCitibank.Hiscurrentresearchinterestsinclude themodelingofdefaultrisk,machinelearning,socialnetworks,derivativespricingmodels, portfoliotheory,andventurecapital.Hehaspublishedovereightyarticlesinacademic journals,andhaswonnumerousawardsforresearchandteaching.Hecurrentlyalsoserves asaseniorfellowattheFDICCenterforFinancialResearch.
xv
Preface
Thetwoofushaveworkedtogetheracademicallyformorethanaquartercentury,firstas graduatestudents,andthenasuniversityfaculty.Givenourclosecollaboration,ourcommon researchandteachinginterestsinthefieldofderivatives,andthefrequentpedagogical discussionswehavehadonthesubject,thisbookwasperhapsinevitable.
Thefinalproductgrewoutofmanysources.Aboutthree-fourthsofthebookwasdevelopedbyRaghufromhisnotesforhisderivativescourseatNewYorkUniversityaswellas forotheracademiccoursesandprofessionaltrainingprogramsatCreditSuisse,ICICIBank, theInternationalMonetaryFund(IMF),Invesco-GreatWall,J.P.Morgan,MerrillLynch, theIndianSchoolofBusiness(ISB),theInstituteforFinancialManagementandResearch (IFMR),andNewYorkUniversity,amongotherinstitutions.Otherpartsweredeveloped byacademiccoursesandprofessionaltrainingprogramstaughtbySanjivatHarvardUniversity,SantaClaraUniversity,theUniversityofCaliforniaatBerkeley,theISB,theIFMR, theIMF,andCitibank,amongothers.Somechaptersweredevelopedspecificallyforthis book,asweremostoftheend-of-chapterexercises.
Thediscussionbelowprovidesanoverviewofthebook,emphasizingsomeofitsspecial features.Weprovidetoooursuggestionsforvariousderivativescoursesthatmaybecarved outofthebook.
AnOverviewoftheContents
Themainbodyofthisbookisdividedintosixparts.Parts1–3cover,respectively,futuresand forwards;options;andswaps.Part4examinesterm-structuremodelingandthepricingof interest-ratederivatives,whilePart5isconcernedwithcreditderivativesandthemodeling ofcreditrisk.Part6discussescomputationalissues.Adetaileddescriptionofthebook’scontentsisprovidedinSection1.5;here,weconfineourselvestoabriefoverviewofeachpart.
Part1 examinesforwardandfuturescontracts,Thetopicscoveredinthisspaninclude thestructureandcharacteristicsoffuturesmarkets;thepricingofforwardsandfutures; hedgingwithforwardsandfutures,inparticular,thenotionof minimum-variancehedging anditsimplementation;andinterest-rate-dependentforwardsandfutures,suchasforwardrateagreementsorFRAs,eurodollarfutures,andTreasuryfuturescontracts.
Part2,thelengthiestportionofthebook,isconcernedmainlywithoptions.Webegin withadiscussionofoptionpayoffs,theroleofvolatility,andtheuseofoptionsinincorporatingintoaportfoliospecificviewsonmarketdirectionand/orvolatility.Thenweturn ourattentiontothepricingofoptionscontracts.ThebinomialandBlack-Scholesmodels aredevelopedindetail,andseveralgeneralizationsofthesemodelsareexamined.From pricing,wemovetohedgingandadiscussionoftheoption“greeks,”measuresofoption sensitivitytochangesinthemarketenvironment.Roundingoffthepricingandhedging material,twochaptersdiscussawiderangeof“exotic”optionsandtheirbehavior.
TheremainderofPart2focusesonspecialtopics:portfoliomeasuresofrisksuchas Value-at-Riskandthenotionofriskbudgeting,thepricingandhedgingofconvertiblebonds, andastudyof“real”options,optionalitiesembeddedwithininvestmentprojects.
Part3 ofthebooklooksatswaps.Theusesandpricingofinterestrateswapsare coveredindetail,asareequityswaps,currencyswaps,andcommodityswaps.(Otherinstrumentsbearingthe“swaps”monikerarecoveredelsewhereinthebook.Varianceand volatilityswapsarepresentedinthechapteronBlack-Scholes,andcredit-defaultswapsand
xvi
total-returnswapsareexaminedinthechapteroncredit-derivativeproducts.)Alsoincluded inPart3isapresentationofcaps,floors,andswaptions,andofthe“marketmodel”usedto pricetheseinstruments.
Part4 dealswithinterest-ratemodeling.Webeginwithdifferentnotionsoftheyield curve,theestimationoftheyieldcurvefrommarketdata,andthechallengesinvolvedin modelingmovementsintheyieldcurve.Wethenworkourwaythroughfactormodelsof theyieldcurve,includingseveralwell-knownmodelssuchasHo-Lee,Black-Derman-Toy, Vasicek,Cox-Ingersoll-Ross,andothers.AfinalchapterpresentstheHeath-Jarrow-Morton framework,andalsothatoftheLiborandswapmarketmodels.
Part5 dealswithcreditriskandcreditderivatives.Anopeningchapterprovidesa taxonomyofproductsandtheircharacteristics.Theremainingchaptersareconcernedwith modelingcreditrisk.Structuralmodelsarecoveredinonechapter,reduced-formmodels inthenext,andcorrelated-defaultmodelinginthethird.
Part6,availableonlineat http://www.mhhe.com/sd1e,looksatcomputationalissues. Finite-differencingandMonteCarlomethodsarediscussedhere.Afinalchapterprovides atutorialontheuseof Octave,afreesoftwareprogramakinto Matlab,thatweusefor illustrativepurposesthroughoutthebook.
BackgroundKnowledge
Itwouldbeinaccuratetosaythatthisbookdoesnotpresupposeanyknowledgeonthe partofthereader,butitistruethatitdoesnotpresupposemuch.Abasicknowledgeof financialmarkets,instruments,andvariables(equities,bonds,interestrates,exchangerates, etc.)willobviouslyhelp—indeed,isalmostessential.Sotoowilladegreeofanalytical preparedness(forexample,familiaritywithlogsandexponents,compounding,present valuecomputations,basicstatisticsandprobability,thenormaldistribution,andsoon).But beyondthis,notmuchisrequired.Thebookislargelyself-contained.Theuseofadvanced (fromthestandpointofanMBAcourse)mathematicaltools,suchasstochasticcalculus,is kepttoaminimum,andwheresuchconceptsareintroduced,theyareoftendeviationsfrom themainnarrativethatmaybeavoidedifsodesired.
WhatIsDifferentaboutThisBook?
Ithasbeenourexperiencethattheoverwhelmingmajorityofstudentsinderivativescourses goontobecometraders,creatorsofstructuredproducts,orotherusersofderivatives,for whomadeepconceptual,ratherthansolelymathematical,understandingofproductsand modelsisrequired.Happily,thefieldofderivativeslendsitselftosuchanend:while itisoneofthemostmathematicallysophisticatedareasoffinance,itisalsopossible, perhapsmoresothaninanyotherareaoffinance,toexplainthefundamentalprinciples underlyingderivativespricingandrisk-managementinsimple-to-understandandrelatively non-mathematicalterms.Ourbooklookstocreatepreciselysuchablendedapproach,one thatisformalandrigorous,yetintuitiveandaccessible.
Tothispurpose,agreatdealofoureffortthroughoutthisbookisspentonexplaining whatliesbehindtheformalmathematicsofpricingandhedging.Howareforwardprices determined?WhydoestheBlack-Scholesformulahavetheformitdoes?Whatistheoption gammaandwhyisitofsuchimportancetoatrader?Theoptiontheta?Whydoterm-structure modelstaketheapproachtheydo?Inparticular,whatarethesubtletiesandpitfallsin modelingterm-structuremovements?Howmayequitypricesbeusedtoextractdefaultrisk ofcompanies?Debtprices?Howdoesdefaultcorrelationmatterinthepricingofportfolio creditinstruments?Whydoesitmatterinthisway?Inallofthesecasesandothersthroughout
Preface xvii
thebook,weuseverbalandpictorialexpositions,andsometimessimplemathematical models,toexplaintheunderlyingprinciplesbeforeproceedingtoaformalanalysis.
Noneofthisshouldbetakentoimplythatourpresentationsareinformalormathematicallyincomplete.Butitistruethatweeschewtheuseofunnecessarymathematics.Where discrete-timesettingscanconveythebehaviorofamodelbetterthancontinuous-timesettings,weresorttosuchaframework.Whereapicturecandotheworkofathousand(oreven ahundred)words,weuseapicture.Andweavoidthepresentationof“blackbox”formulae tothemaximumextentpossible.Inthefewcaseswherederivingthepricesofsomederivativeswouldrequiretheuseofadvancedmathematics,wespendeffortexplainingintuitively theformandbehaviorofthepricingformula.
Tosupplementtheintuitiveandformalpresentations,wemakeextensiveuseofnumerical examplesforillustrativepurposes.Toenablecomparability,thenumericalexamplesare oftenbuiltaroundacommonparametrization.Forexample,inthechapteronoptiongreeks, abaselinesetofparametervaluesischosen,andthebehaviorofeachgreekisillustrated usingdeparturesfromthesebaselines.
Inaddition,thebookpresentsseveralfull-lengthcasestudies,includingsomeofthemost (in)famousderivativesdisastersinhistory.TheseincludeAmaranth,Barings,Long-Term CapitalManagement(LTCM),Metallgesellschaft,Procter&Gamble,andothers.These aresupplementedbyothercasestudiesavailableonthisbook’swebsite,includingAshanti, Sumitomo,theSon-of-Bosstaxshelters,andAmericanInternationalGroup(AIG).
Finally,sincethebestwaytolearnthetheoryofderivativespricingandhedgingisby workingthroughexercises,thebookoffersalargenumberofend-of-chapterproblems. Theseproblemsareofthreetypes.Someareconceptual,mostlyaimedatensuringthebasic definitionshavebeenunderstood,butoccasionallyalsoinvolvingalgebraicmanipulations. Thesecondgroupcomprisenumericalexercises,problemsthatcanbesolvedwithacalculatororaspreadsheet.Thelastgroupareprogrammingquestions,questionsthatchallenge thestudentstowritecodetoimplementspecificmodels.
NewtothisEdition
Thiseditionhasbeensubstantiallyrevisedandincorporatesmanyadditionstoandchanges fromtheearlierone,entirelycarriedoutbythefirstauthor.Theseinclude
•brieftolengthydiscussionsofseveralnewcasestudies(e.g.,AracruzCellulose’s$1 billion + lossesfromforeign-exchangederivativesin2008,Soci´et´eG´en´erale’s €5billion lossesfromJ´erômeKerviel’s“unauthorized”derivativestradingin2008,HarvardUniversity’s$1.25billionlossesfromswapcontractsin2009–13,thelikelystructureofthe GoldmanSachs-Greeceswaptransactionof2002thatallowedGreecetocircumventEU restrictionsondebt,andothers);
•expandedexpositionsofseveralkeytheoreticalconcepts(suchtheBlack-ScholesformulainChapter14);
•detaileddiscussionsofchangingmarketpractices(suchasthenew“dualcurve”approach toswappricinginChapter23andthecredit-eventauctionsthatarehardwiredintoall credit-defaultswapcontractspost-2009inChapter31);
•newdescriptionsofexchange-tradedinstrumentsandindices(e.g.,theCBoT’sUltra T-BondfuturesinChapter6,theCBOE’sBXMandBXY“coveredcall”indicesin Chapter8ortheCBOE’sS&P500andVIXdigitaloptionsinChapter18);
•and,ofcourse,thankstotheassistanceofstudentsandcolleagues,theidentificationand correctionoftypographicalerrors.
Specialthankstoallthosewhosentintheircommentsandsuggestionsonthefirstedition. Wetrusttheend-productismoresatisfying.
xviii Preface
PossibleCourseOutlines
Figure1describesthelogicalflowofchaptersinthebook.Thebookcanbeusedatthe undergraduateandMBAlevelsasthetextforafirstcourseinderivatives;forasecond(or advanced)courseinderivatives;fora“topics”courseinderivatives(asafollow-uptoafirst course);andforafixed-incomeand/orcreditderivativescourse;amongothers.Wedescribe belowoursuggestedselectionofchaptersforeachofthese.
Preface xix
FIGURE1 TheFlowoftheBook 1 Overview 2–4 Forwards/Futures Pricing 7–14 Options 17 Option Sensitivity 23 Interest Rate Swaps 20–22 VaR, Convertibles, Real Options 26–27 Term Structure of Interest Rates 28–30 Term-Structure Models 31–34 Credit Derivatives 24–25 Equity, Currency, and Commodity Swaps 18–19 Exotics 15–16 Advanced Options 5–6 Interest-Rate Forwards/ Futures, Hedging 35–36 Finite-Differencing and Monte Carlo
Afirstcourseinderivativestypicallycoversforwardsandfutures,basicoptionsmaterial, andperhapsinterestrateswaps.SuchacoursecouldbebuiltaroundChapters1–4onfutures marketsandforwardandfuturespricing;Chapters7–14onoptionspayoffsandtrading strategies,no-arbitragerestrictionsandput-callparity,andthebinomialandBlack-Scholes models;Chapters17–19onoptiongreeksandexoticoptions;andChapter23oninterest rateswapsandotherfloating-rateproducts.
Asecondcourse,focusedprimarilyoninterest-rateandcredit-riskmodeling,couldbegin withareviewofbasicoptionpricing(Chapters11–14),moveontoanexaminationofmore complexpricingmodels(Chapter16),thencoverinterest-ratemodeling(Chapters26–30) andfinallycreditderivativesandcredit-riskmodeling(Chapters31–34).
A“topics”coursefollowingthefirstcoursecouldbeginagainwithareviewofbasicoptionpricing(Chapters11–14)followedbyanexaminationofmorecomplexpricingmodels (Chapter16).ThiscouldbefollowedbyValue-at-Riskandrisk-budgeting(Chapter20); convertiblebonds(Chapter21);realoptions(Chapter22);andinterest-rate,equity,and currencyswaps(Chapters23–25),withthefinalpartofthecoursecoveringeitheranintroductiontoterm-structuremodeling(Chapters26–28)oranintroductiontocreditderivatives andstructuralmodels(Chapters31and32).
Finally,acourseonfixed-incomederivativescanbestructuredaroundbasicforward pricing(Chapter3);interest-ratefuturesandforwards(Chapter6);basicoptionpricingand theBlack-Scholesmodel(Chapters11and14);interestrateswaps,caps,floors,andswaptions,andtheBlackmodel(Chapter23);andtheyieldcurveandterm-structuremodeling (Chapters26–30).
AFinalComment
Thisbookhasbeenseveralyearsinthemakingandhasundergoneseveralrevisionsinthat time.Meanwhile,thederivativesmarkethasitselfbeenchangingatanexplosivepace.The financialcrisisthateruptedin2008willalmostsurelyresultinalteringmajorcomponents ofthederivativesmarket,particularlyinthecaseofover-the-counterderivatives.Thus,itis possiblethatsomeoftheproductswehavedescribedcouldvanishfromthemarketinafew years,orthewaytheseproductsaretradedcouldfundamentallychange.Butthe principles governingthevaluationandrisk-managementoftheseproductsaremorepermanent,and itisthoseprinciples,ratherthansolelythedetailsoftheproductsthemselves,thatwehave triedtocommunicateinthisbook.Wehaveenjoyedwritingthisbook.Wehopethereader findsthefinalproductasenjoyable.
xx Preface
Acknowledgments
Wehavebenefitedgreatlyfrominteractionswithanumberofourcolleaguesinacademia andothersinthebroaderfinanceprofession.Itisapleasuretobeabletothankthemin print.
AtNewYorkUniversity,whereRaghucurrentlyteachesandSanjivdidhisPhD(and hasbeenafrequentvisitorsince),wehaveenjoyedmanyilluminatingconversationsover theyearsconcerningderivativesresearchandteaching.Forthese,wethankViralAcharya, EdAltman,YakovAmihud,MenachemBrenner,AswathDamodaran,SteveFiglewski, HalinaFrydman,KoseJohn,TonySaunders,andMartiSubrahmanyam.Weowespecial thankstoViralAcharya,long-timecollaboratorofbothauthors,forhisfeedbackonearlier versionsofthisbook;EdAltman,fromwhomwe—liketherestoftheworld—learneda greatdealaboutcreditriskandcreditmarkets,andwhowasalwaysgenerouswithhistime andsupport;MenachemBrenner,formanydelightfulexchangesconcerningderivatives usageandstructuredproducts;SteveFiglewski,withwhomwewereprivilegedtoserveas co-editorsofthe JournalofDerivatives,awonderfullearningexperience;and,especially, MartiSubrahmanyam,whowasSanjiv’sPhDadvisoratNYUandwithwhomRaghuhas co-taughtexecutive-MBAandPhDcoursesonderivativesandcreditriskatNYUsince themid-90s.Marti’semphasisonanintuitiveunderstandingofmathematicalmodelshas considerablyinfluencedbothauthors’approachtotheteachingofderivatives;itseffectmay beseenthroughoutthisbook.
AtSantaClaraUniversity,GeorgeChacko,AtulyaSarin,HershShefrin,andMeir Statmanallprovidedmuch-appreciatedadvice,support,andencouragement.Valuableinput alsocamefromothersintheacademicprofession,includingMarcoAvellaneda,Pierluigi Balduzzi,JonathanBerk,DarrellDuffie,AnuragGupta,PaulHanouna,NikunjKapadia, DanOstrov,N.R.Prabhala,andRamanUppal.Inthebroaderfinancecommunity,wehave benefitedgreatlyfrominteractionswithSanthoshBandreddi,JamilBaz,RichardCantor, GiffordFong,SilverioForesi,GaryGeng,GraceKoo,ApoorvaKoticha,MuraliKrishna, MarcoNaldi,ShankarNarayan,RajRajaratnam,RahulRathi,JacobSisk,RogerStein, andRamSundaram.ThefirstauthorwouldparticularlyliketothankRamSundaramand MuraliKrishnafornumerousstimulatingandinformativeconversationsconcerningthe markets;thesecondauthorthanksRobertMertonforhisinsightsonderivativesandguidanceinteachingcontinuous-timefinance,andGiffordFongformanyyearsofgenerous mentorship.
Overtheyearsthatthisbookwasbeingwritten,manyofourcolleaguesintheprofessionprovided(anonymous)reviewsthatgreatlyhelpedshapethefinalproduct.Avery specialthankstothosereviewerswhotookthetimetoreviewvirtuallyeverychapterindraft form:BalaArshanapalli(IndianaUniversity–Northwest),Dr.R.BrianBalyeat(TexasA&M University),JamesBennett(UniversityofMassachusetts–Boston),Jinliang(Jack)Li(NortheasternUniversity),SpencerMartin(ArizonaStateUniversity),PatriciaMatthews(Mount UnionCollege),DennisOzenbas(MontclairStateUniversity),VivekPandey(University ofTexas–Tyler),PeterRitchken(Case-WesternReserveUniversity),TieSu(University ofMiami),ThomasTallerico(DowlingCollege),KudretTopyan(ManhattanCollege), AlanTucker(PaceUniversity),JorgeUrrutia(LoyolaUniversity–Watertower),MattWill (UniversityofIndianapolis),andGuofuZhou(WashingtonUniversity–St.Louis).
Aswehavenotedinthepreface,thisbookgrewoutofnotesdevelopedbytheauthorsfor academiccoursesandprofessionaltrainingprogramsatanumberofinstitutionsincluding
xxi
HarvardUniversity,SantaClaraUniversity,UniversityofCaliforniaatBerkeley,Citibank, Credit-Suisse,MerrillLynch,theIMF,and,mostofall,NewYorkUniversity.Participants inallofthesecourses(andatLondonBusinessSchool,whereanearlierversionofRaghu’s NYUnoteswereusedbyViralAcharya)haveprovideddetailedfeedbackthatledtoseveral revisionsoftheoriginalmaterial.Wegreatlyappreciatethecontributiontheyhavemadeto thefinalproduct.WearealsogratefultoRaviKumarofCapitalMetricsandRiskSolutions (P)Ltd.forhisterrificassistanceincreatingthesoftwarethataccompaniesthisbook;andto PriyankaSinghofthesameorganizationforproofreadingthemanuscriptanditsexercises.
AspecialthankstotheteamatMcGraw(especiallyLoriBradshaw,ChuckSynovec, JenniferUpton,andMaryJaneLampe)forthesplendidsupportwereceived.Thankstooto SusanNortonforhermeticulouscopyeditingjob;AmyHillforhercarefulproofreading; andMohammadMisbahforthepatienceandcarewithwhichheguidedthisbookthrough thetypesettingprocess.
Ourgreatestdebtsaretothemembersofourrespectivefamilies.Wearebothextraordinarilyfortunateinhavinglargeandsupportiveextendedfamilynetworks.Toallofthem: thankyou.Weoweyoumorethanwecaneverrepay.
xxii Acknowledgments
NewYork,NY
RangarajanK.Sundaram
SanjivRanjanDas SantaClara,CA
Chapter 1 Introduction
Theworldderivativesmarketisan immense one.TheBankforInternationalSettlements (BIS)estimatedthatinJune2012,thetotalnotionaloutstandingamountworldwidewasa staggering$639 trillion withacombinedmarketvalueofover$25trillion(Table1.1)— andthisfigureincludesonlyover-the-counter(OTC)derivatives,thosederivativestraded directlybetweentwoparties.Itdoesnotcountthetrillionsofdollarsinderivativesthatare tradeddailyontheworld’smanyexchanges.Bywayofcomparison,worldGDPin2011 wasestimatedatjustunder$70trillion.
Formuchofthelasttwodecades,growthhasbeenfurious.Totalnotionaloutstanding inOTCderivativesmarketsworldwideincreasedalmost tenfold inthedecadefrom1998 to2008(Table1.2).Derivativesturnoverontheworld’sexchangesquadrupledbetween 2001and2007,reachingavolumeofover$2.25 quadrillion inthelastyearofthatspan (Table1.3).Marketsfellwiththeonsetofthefinancialcrisis,butby2011–12,asubstantial portionofthatdeclinehadbeenreversed.
Thegrowthhasbeentrulywidespread.Therearenowthrivingderivativesexchangesnot onlyinthetraditionaldevelopedeconomiesofNorthAmerica,Europe,andJapan,butalso inBrazil,China,India,Israel,Korea,Mexico,andSingapore,amongmanyothercountries. AsurveybytheInternationalSwapsandDerivativesAssociation(ISDA)in2003found that92%oftheworld’s500largestcompaniesusederivativestomanageriskofvarious forms,especiallyinterest-raterisk(92%)andcurrencyrisk(85%),but,toalesserextent, alsocommodityrisk(25%)andequityrisk(12%).Firmsinover90%ofthecountries representedinthesampleusedderivatives.
Matching—andfueling—thegrowthhasbeenthepaceofinnovationinthemarket. Traditionalderivativeswerewrittenoncommodityprices,butbeginningwithforeigncurrencyandotherfinancialderivativesinthe1970s,newformsofderivativeshavebeenintroducedalmostcontinuously.Today,derivativescontractsreferenceawiderangeofunderlying instrumentsincludingequityprices,commodityprices,exchangerates,interestrates,bond prices,indexlevels,andcreditrisk.Derivativeshavealsobeenintroduced,withvaryingsuccessrates,onmoreexoticunderlyingvariablessuchasmarketvolatility,electricityprices, temperaturelevels,broadband,newsprint,andnaturalcatastrophes,amongmanyothers.
Thisisanimpressivepicture.Onceasideshowinworldfinancialmarkets,derivatives havetodaybecomekeyinstrumentsofrisk-managementandpricediscovery.Yetderivatives havealsobeenthetargetoffiercecriticism.In2003,WarrenBuffet,perhapstheworld’smost successfulinvestor,labeledthem“financialweaponsofmassdestruction.”Derivatives— especiallycreditderivatives—havebeenwidelyblamedforenabling,oratleastexacerbating, theglobalfinancialmarketscrisisthatbeganinlate2007.Victimsofderivatives(mis-)use overthedecadesincludesuchprominentnamesasthecenturies-oldBritishmerchantbank Barings,theGermanindustrialconglomerateMetallgesellschaftAG,theJapanesetrading
1
TABLE1.1 BISEstimatesofOTCDerivativesMarketsNotionalOutstandingandMarketValues:2008–12 (FiguresinUSDbillions)
Source:BISwebsite(http://www.bis.org).
powerhouseSumitomo,thegiantUSinsurancecompany,AmericanInternationalGroup (AIG),andBrazil’sAracruz,thentheworld’slargestmanufacturerofeucalyptuspulp. What is aderivative?Whatarethedifferenttypesofderivatives?Whatarethebenefits ofderivativesthathavefueledtheirgrowth?Therisksthathaveledtodisasters?Howis thevalueofaderivativedetermined?Howaretherisksinaderivativemeasured?How cantheserisksbemanaged(or hedged)?Theseandotherquestionsarethefocusofthis book.Wedescribeandanalyzeawiderangeofderivativesecurities.Bycombiningthe analyticaldescriptionswithnumericalexamples,exercises,andcasestudies,wepresentan introductiontotheworldofderivativesthatisatonceformalandrigorousyetaccessible andintuitive.Therestofthischapterelaboratesandlaysthefoundationforthebook.
WhatAreDerivatives?
A derivativesecurity isafinancialsecuritywhosepayoffdependson(or derivesfrom)other, morefundamental,variablessuchasastockprice,anexchangerate,acommodityprice, aninterestrate—oreventhepriceofanotherderivativesecurity.Theunderlyingdriving variableiscommonlyreferredtoassimply theunderlying. Thesimplestkindofderivative—andhistoricallytheoldestform,datingbackthousands ofyears—isa forwardcontract.Aforwardcontractisoneinwhichtwoparties(commonly referredtoasthe counterparties inthetransaction)agreetothetermsofatradetobe consummatedonaspecifieddateinthefuture.Forexample,onDecember3,abuyerand sellermayenterintoaforwardcontracttotradein100ozofgoldinthreemonths(i.e.,on March3)atapriceof$1,500/oz.Inthiscase,thesellerisundertakingtosell100ozin threemonthsatapriceof$1,500/ozwhilethebuyerisundertakingtobuy100ozofgold inthreemonthsat$1,500/oz.
2 Chapter1 Introduction
NotionalOutstanding GrossMarketValue Jun.2008Jun.2010Jun.2012Jun.2008Jun.2010Jun.2012 TotalContracts 672,558582,685638,92820,34024,69725,392 FXDerivatives 62,98353,15366,6452,2622,5442,217 ForwardsandFXswaps 31,96625,62431,395 802930771 Currencyswaps 16,30716,36024,1561,0711,2011,184 Options 14,71011,17011,094 388413262 Interest-RateDerivatives458,304451,831494,0189,26317,53319,113 Forwardrateagreements39,37056,24264,302 888151 Interestrateswaps 356,772347,508379,4018,05615,95117,214 Options 62,16248,08150,3141,1201,5011,848 EquityDerivatives 10,1776,2606,3131,146706645 Forwardsandswaps 2,6571,7541,880 283189147 Options 7,5214,5064,434 863518497 CommodityDerivatives13,2292,8522,9932,213458390 Gold 649417523 724562 Othercommodities 12,5802,4342,4702,141413328 CreditDerivatives 57,40330,26126,9313,1921,6661,187 Single-nameinstruments33,41218,49415,5661,901993715 Multi-nameinstruments 23,99111,76711,3641,291673472
TABLE1.2 BISEstimatesofOTCDerivativesMarketsNotionalOutstanding:1998–2012 (FiguresinUSDbillions)
Jun1998Jun2002Jun2006Jun2008Jun2010Jun2011Jun2012
TotalContracts 72,134127,509372,513672,558582,685706,884638,928
FXDerivatives 18,71918,06838,12762,98353,15364,69866,645 ForwardsandFXswaps12,14910,42619,40731,96625,62431,11331,395 Currencyswaps 1,9474,2159,69616,30716,36022,22824,156 Options 4,6233,4279,02414,71011,17011,35811,094 Interest-RateDerivatives42,36889,955262,526458,304451,831553,240494,018 Forwardrateagreements5,1479,14618,11739,37056,24255,74764,302 Interestrateswaps 29,36368,234207,588356,772347,508441,201379,401 Options 7,85812,57536,82162,16248,08156,29150,314 EquityDerivatives 1,2742,2146,78210,1776,2606,8416,313 Forwardsandswaps 1543861,4302,6571,7542,0291,880 Options 1,1201,8285,3517,5214,5064,8134,434 CommodityDerivatives4437776,39413,2292,8523,1972,993 Gold 185279456649417468523 Othercommodities 2584985,93812,5802,4342,7292,470 Forwardsandswaps
Source:BISwebsite(http://www.bis.org).
Acommonmotivationforenteringintoaforwardcontractistheeliminationofcash-flow uncertaintyfromafuturetransaction.Inourexample,ifthebuyeranticipatesaneedfor 100ozofgoldinthreemonthsandisworriedaboutpricefluctuationsoverthatperiod, anyuncertaintyaboutthecashoutlayrequiredcanberemovedbyenteringintoaforward contract.Similarly,ifthesellerexpectstobeoffloading100ozofgoldinthreemonths andisconcernedaboutpricesthatmightprevailattheendofthathorizon,enteringintoa forwardcontractlocksinthepricereceivedforthatfuturesale.
Inshort,forwardcontractsmaybeusedasinstrumentsof hedging.Infinancialparlance, hedgingisthereductionincash-flowriskassociatedwithamarketcommitment.Forward contractsarecommonlyusedbyimportersandexportersworriedaboutexchange-rate fluctuations,investorsandborrowersworriedaboutinterest-ratefluctuations,commodity producersandbuyersworriedaboutcommoditypricefluctuations,andsoon.
Aslightlymorecomplexexampleofaderivativeisan option.Asinaforward,anoption contracttoospecifiesthetermsofafuturetrade,butwhileaforwardcommitsbothpartiesto thetrade,inanoption,onepartytothecontract(calledthe holder oftheoption)retainsthe right toenforceoroptoutofthecontract.Iftheholderhastherightto buy atthespecified price,theoptioniscalleda calloption;iftherightto sell atthatprice,a putoption
Thekeydifferencebetweenaforwardandanoptionisthatwhileaforwardcontractis aninstrumentfor hedging,anoptionprovidesaformoffinancial insurance.Consider,for example,acalloptionongoldinwhichthebuyerhastherighttobuygoldfromthesellerata priceof(say)$1,500/ozinthreemonths’time.Ifthepriceofgoldinthreemonthsisgreater than$1,500/oz(forexample,itis$1,530/oz),thenthebuyerwillexercisetherightinthecontractandbuythegoldforthecontractpriceof$1,500.However,ifthepriceinthreemonths
Chapter1 Introduction 3
1532902,1887,5611,5511,8461,659 Options 1062083,7505,019883883811 CreditDerivatives 20,35257,40330,26132,40926,931 Single-nameinstruments
Multi-nameinstruments ––6,47923,99111,76714,30511,364 ofwhichindexproducts 7,50012,4739,731
––13,87333,41218,49418,10515,566
islessthan$1,500/oz(e.g.,is$1,480/oz),thebuyercanchoosetooptoutofthecontract and,ifnecessary,buythegolddirectlyinthemarketatthecheaperpriceof$1,480/oz.
Thus,holdingacalloptioneffectivelyprovidesthebuyerwithprotection(or“insurance”) againstan increase inthepriceabovethatspecifiedinthecontractevenwhileallowingthe buyertotakefulladvantageofpricedecreases.Sinceitisthesellerwhotakestheotherside ofthecontractwheneverthebuyerdecidestoenforceit,itisthesellerwhoprovidesthis insurancetothebuyer.Inexchangeforprovidingthisprotection,thesellerwillchargethe buyeranup-frontfeecalledthe calloptionpremium.
Analogously,a put optionprovidesthesellerwithinsuranceagainsta decrease inthe price.Forinstance,consideraputoptionongoldinwhichthesellerhastherighttosellgold tothebuyerat$1,500/oz.Ifthepriceofgoldfallsbelow$1,500/oz,thesellercanexercise therightintheputandsellthegoldfor$1,500/oz,butifthepriceofgoldrisestomore than$1,500/oz,thenthesellercanelecttolettheputlapseandsellthegoldatthehigher marketprice.Holdingtheputinsurestheselleragainstafallinthepricebelow$1,500/oz. Thebuyerprovidesthisinsuranceandwillchargeanup-frontfee,the putpremium,for providingthisservice.
Optionsofferanalternativetoforwardsforinvestorsconcernedaboutfuturepricefluctuations.Unlikeforwards,thereisanup-frontcostofbuyinganoption(viz.,theoption premium)but,compensatingforthis,thereisnocompulsiontoexerciseifdoingsowould resultinaloss.
Forwardsandoptionsaretwoofthemostcommonandimportantformsofderivatives. Inmanyways,theyarethebuildingblocksofthederivativeslandscape.Manyotherforms ofderivativesexist,somewhicharesimplevariantsofthesestructures,othersmuchmore complexor“exotic”(thefavoredterminthederivativesareafordescribingsomethingthat isnotrun-of-the-millor“plainvanilla”).Weelaborateonthislaterinthischapterandin therestofthebook.Butfirst,wepresentabriefdiscussiononthedifferentcriteriathatmay beusedtoclassifyderivatives.
ClassifyingDerivatives
Therearethreepopularwaystoclassifyderivatives:bytheunderlying(equity,interestrate, etc.),bythenatureoftheinstrument(forwards,futures,options,etc.),andbythenatureof themarket(over-the-counterversusexchange-traded).
Apopularwaytoclassifyderivativesistogroupthemaccordingtotheunderlying.For example,an equityderivative isonewhoseunderlyingisanequitypriceorstockindex level;a currency or FX (shortforforeign-exchange) derivative isonewhoseunderlyingis anexchangerate;andsoon.Muchoftheworld’sderivativestradeonjustafewcommon underlyings.Table1.1showsthat interest-ratederivatives (derivativesdefinedoninterest ratesoroninterest-rate-sensitivesecuritiessuchasbonds)accountforaround75%ofthe grossmarketvalueoftheOTCderivativesmarket,withsmallersharesbeingtakenby currency,equity,commodity,andcreditderivatives.
Whilethesearethemostcommonunderlyings,derivativesmay,inprinciple,bedefined onjustaboutanyunderlyingvariable.Indeed,asubstantialchunkofthegrowthinderivatives marketsintheearlyyearsofthe2000scamefrom creditderivatives (derivativesdependent onthecreditriskofspecifiedunderlyingentities),acategoryofderivativesthatdidnot evenexistin1990.Asnotedearlierinthischapter,derivativeshavealsobeenintroduced onanumberofexoticunderlyingvariablesincludingelectricityprices,temperaturelevels, broadband,newsprint,andmarketvolatility.
Asecondpopularwaytoclassifyderivativesisusingthenatureofinstrument.Derivatives candiffergreatlyinthemannerinwhichtheydependontheunderlying,rangingfromvery simpledependenciestoverycomplexones.Nonetheless,mostderivativesfallintooneof twoclasses:thosethatinvolvea commitment toagiventradeorexchangeofcashflowsin
4 Chapter1 Introduction
TABLE1.3 BISEstimatesofDerivativesTurnoveronExchanges:2001toQ3–2012 (FiguresinUSDbillions)
20012004200720092011ToQ3–2012
FuturesTotal445,683830,5461,584,6111,126,5191,524,141898,253
Interestrate420,950783,1401,433,7671,016,3621,359,131799,579 Currency 3,1587,40422,44224,59937,62824,576
Equityindex21,57540,001128,40185,559127,38274,098
NorthAmerica243,022438,718868,784599,025822,958487,000 Europe 154,094336,593588,087449,390565,185318,091 AsiaandPacific43,39448,547107,90763,125107,49072,875 Othermarkets5,1736,68719,83314,97928,50820,286
OptionsTotal148,370312,080701,891533,635635,363331,033 Interestrate122,766260,056547,629434,601466,281254,255
Currency 3565892,1411,9802,5251,776
Equityindex25,24751,435152,12197,054166,55775,002
NorthAmerica107,684181,503414,728216,390262,515158,288
Europe 33,473101,954203,787258,557258,265125,692
AsiaandPacific6,53427,57477,83652,751102,91239,708
Othermarkets6791,0485,5405,93611,6717,345
Source:BISwebsite(http://www.bis.org).
thefutureandthoseinwhichonepartyhasthe option toenforceoroptoutofthetradeor exchange.Includedintheformerclassarederivativesecuritiessuchas forwards, futures; and swaps;derivativesinthelatterclassarecalled options
Forwardsandoptionshavealreadybeendefinedabove.Futurescontractsaresimilar toforwardcontractsexceptthattheyaretradedonorganizedexchanges;wediscussthe differencesmorepreciselybelow.Swapsarecontractsinwhichthepartiescommitto multiple exchangesofcashflowsinthefuture,withthecashflowstobeexchangedcalculated underrulesspecifiedinthecontract;thus,swapsarelikeforwardsexceptwithmultiple transactionstowhichthepartiescommit.
Tables1.1–1.3usebothoftheseschemesofclassification,firstbreakingdowntheworld derivativesmarketbyunderlyingandthenintoforwards,futures,swaps,andoptions.The breakdownrevealssomeinterestingvariations.Forexample,whileswapsaccountforthe greatbulk(roughly80%)ofOTCinterest-ratederivatives,optionsconstituteover75%of OTCequityderivatives.
Athirdclassificationofderivativesisintoover-the-counter(OTC)orexchange-traded derivatives.Over-the-counterderivativescontractsaretradedbilaterallybetweentwocounterpartieswhodealdirectlywitheachother.Insuchtransactions,eachpartytakesthecredit riskoftheother(i.e.,theriskthattheothercounterpartymayfailtoperformor“default”on thecontract).Inexchange-tradedcontracts,thepartiesdealthoughanorganizedexchange, andtheidentityofthecounterpartyisusuallynotknown.Exchangescommonlyguarantee performanceonthecontract,soeachpartyistakingononlythecreditriskoftheexchange. ForwardsandswapsareOTCcontracts,whilefuturesareexchangetraded.Optionscanbe bothOTCandexchangetraded.
1.1ForwardandFuturesContracts
A forwardcontract isanagreementbetweentwopartiestotradeinaspecifiedquantityof aspecifiedgoodataspecifiedpriceonaspecifieddateinthefuture.Thefollowingbasic
Chapter1 Introduction 5
terminologyisusedwhendiscussingthesecontracts:
•Thebuyerintheforwardcontractissaidtohavea longposition inthecontract;theseller issaidtohavea shortposition.
•Thegoodspecifiedinthecontractiscalledthe underlyingasset or,simply,the underlying
•Thedatespecifiedinthecontractonwhichthetradewilltakeplaceiscalledthe maturity date ofthecontract.
•Thepricespecifiedinthecontractforthetradeiscalledthe deliveryprice inthecontract. Thisisthepriceatwhichdeliverywillbemadebythesellerandacceptedbythebuyer.
Wewilldefinetheimportantconceptofa forwardprice shortly.Forthemoment,wenote thattheforwardpriceisrelatedto,butisnotthesameconceptas,thedeliveryprice.
Theunderlyinginaforwardcontractmaybeanycommodityorfinancialasset.Forward contractsmaybewrittenonforeigncurrencies,bonds,equities,orindices,orphysical commoditiessuchasoil,gold,orwheat.Forwardcontractsalsoexistonsuchunderlyings asinterestratesorvolatilitywhichcannotbedeliveredphysically(see,forexample,the forward-rateagreements orFRAsdescribedinChapter6,ortheforwardcontractsonmarket volatilityknownas variance and volatilityswaps, describedinChaper14);insuchcases, thecontractsaresettledincashwithonesidemakingapaymenttotheotherbasedonrules specifiedinthecontract.Cashsettlementisalsocommonlyusedforthoseunderlyingsfor whichphysicaldeliveryisdifficult,suchasequityindices.
Ashasbeendiscussed,aprimarymotiveforenteringintoaforwardcontractis hedging: usingaforwardcontractresultsinlocking-inapricetodayforafuturemarkettransaction, andthiseliminatescash-flowuncertaintyfromthetransaction.Foreigncurrencyforwards, forexample,enableexporterstoconvertthepaymentsreceivedinforeigncurrencyinto homecurrencyatafixedrate.Interest-rateforwardssuchasFRAsenablefirmstolock-in aninterestratetodayforafutureborrowingorinvestment.Commodityforwardssuchas forwardsonoilenableusersofoiltolock-inpricesatwhichfuturepurchasesaremadeand refinersofoiltolock-inapriceatwhichfuturesalesaremade.
Forwardcontractscanalsobeusedfor speculation,thatis,withoutanunderlyingexposurealreadyexisting.Aninvestorwhofeelsthatthepriceofsomeunderlyingislikelyto increasecanspeculateonthisviewbyenteringintoalongforwardcontractonthatunderlying.Ifpricesdogoupasanticipated,theinvestorcanbuytheassetatthelocked-inprice ontheforwardcontractandsellatthehigherprice,makingaprofit.Similarly,aninvestor wishingtospeculateonfallingpricescanuseashortforwardcontractforthispurpose.
KeyCharacteristicsofForwardContracts
Fourcharacteristicsofforwardcontractsdeservespecialemphasisbecausetheseareexactly thedimensionsalongwhichforwardsandfuturesdiffer:
•First,aforwardcontractisabilateralcontract.Thatis,thetermsofthecontractare negotiateddirectlybythesellerandthebuyer.
•Second,aforwardcontractiscustomizable.Thatis,thetermsofthecontract(maturity date,qualityoftheunderlying,etc.)canbe“tailored”totheneedsofthebuyerandseller.
•Third,thereispossibledefaultriskforbothparties.Eachpartytakestheriskthatthe othermayfailtoperformonthecontract.
•Fourth,neitherpartycantransferitsrightsandobligationsinthecontractunilaterallyto athirdparty.
Wereturntothesecharacteristicswhendiscussingfuturescontracts.
6 Chapter1 Introduction