Microeconomics an intuitive approach with calculus 2nd edition thomas nechyba solutions manual

Page 1

Microeconomics An Intuitive Approach with Calculus 2nd Edition Thomas Nechyba Solutions Manual Visit to Download in Full: https://testbankdeal.com/download/microeconomics-an-intui tive-approach-with-calculus-2nd-edition-thomas-nechyba-solutions-manual/

ChoiceSetsandBudgetConstraints

Theeven-numberedsolutionstoend-of-chapterexercisesareprovidedforuse byinstructors. (Solutionstoodd-numberedend-of-chapterexercisesareprovidedhereaswellasinthe StudyGuide thatisavailabletostudents.)

Solutionsmaybesharedbyaninstructorwithhisorherstudentsattheinstructor’sdiscretion.

Theymaynotbemadepubliclyavailable.

Ifpostedonacourseweb-site,thesitemustbepasswordprotectedandfor useonlybythestudentsinthecourse.

Reproductionand/ordistributionofthesolutionsbeyondclassroomuseis strictlyprohibited.

Inmostcolleges,itisaviolationofthestudenthonorcodeforastudentto sharesolutionstoproblemswithpeersthattakethesameclassatalaterdate.

•Eachend-of-chapterexercisebeginsonanewpage.Thisistofacilitatemaximumflexibilityforinstructorswhomaywishtoshareanswerstosomebut notallexerciseswiththeirstudents.

•IfyouareassigningonlytheA-partsofexercisesin Microeconomics:AnIntuitiveApproachwithCalculus,youmaywishtoinsteadusethesolutionset createdforthecompanionbook Microeconomics:AnIntuitiveApproach

• SolutionstoWithin-ChapterExercisesareprovidedinthestudent StudyGuide.

CHAPTER
2
Microeconomics An Intuitive Approach with Calculus 2nd Edition Thomas Nechyba Solutions Manual Visit TestBankDeal.com to get complete for all chapters

Exercise2.1

AnygoodSouthernbreakfastincludesgrits(whichmywifeloves)andbacon (whichIlove).Supposeweallocate$60perweektoconsumptionofgritsandbacon, thatgritscost$2perboxandbaconcosts$3perpackage.

A: Useagraphwithboxesofgritsonthehorizontalaxisandpackagesofbacon ontheverticaltoanswerthefollowing:

(a) Illustratemyfamily’sweeklybudgetconstraintandchoice set. Answer:Thegraphisdrawninpanel(a)ofExerciseGraph2.1.

ExerciseGraph2.1:(a)Answerto(a);(b)Answerto(c);(c)Answerto(d)

(b) Identifytheopportunitycostofbaconandgritsandrelatethesetoconcepts onyourgraph.

Answer:Theopportunitycostofgritsisequalto2/3ofapackageofbacon (whichisequaltothenegativeslopeofthebudgetsincegritsappearon thehorizontalaxis).Theopportunitycostofapackageofbaconis3/2of aboxofgrits(whichisequaltotheinverseofthenegativeslopeofthe budgetsincebaconappearsontheverticalaxis).

(c) Howwouldyourgraphchangeifasuddenappearanceofararehogdiseasecausedthepriceofbacontoriseto$6perpackage,andhowdoesthis changetheopportunitycostofbaconandgrits?

Answer:Thischangeisillustratedinpanel(b)ofExerciseGraph2.1.This changestheopportunitycostofgritsto1/3ofapackageofbacon,and itchangestheopportunitycostofbaconto3boxesofgrits.Thismakes sense:Baconisnow3timesasexpensiveasgrits—soyouhavetogive up3boxesofgritsforonepackageofbacon,or1/3ofapackage ofbacon for1boxofgrits.

(d) Whathappensinyourgraphif(insteadofthechangein(c))thelossofmy jobcausedustodecreaseourweeklybudgetforSouthernbreakfastsfrom $60to$30?Howdoesthischangetheopportunitycostofbacon andgrits?

ChoiceSetsandBudgetConstraints 2

ChoiceSetsandBudgetConstraints

Answer:Thechangeisillustratedinpanel(c)ofExerciseGraph2.1.Since relativepriceshavenotchanged,opportunitycostshavenotchanged. Thisisreflectedinthefactthattheslopestaysunchanged.

B: Inthefollowing,compareamathematicalapproachtothegraphicalapproachusedinpartA,usingx1 torepresentboxesofgritsandx2 torepresent packagesofbacon:

(a) Writedownthemathematicalformulationofthebudgetlineandchoice setandidentifyelementsinthebudgetequationthatcorrespondtokey featuresofyourgraphfrompart2.1A(a).

Answer:Thebudgetequationis p1 x1 + p2 x2 = I canalsobewrittenas

x2 = I p2 p1 p2 x1 (2.1.i)

With I = 60, p1 = 2and p2 = 3,thisbecomes x2 = 20 (2/3)x1 —anequationwithinterceptof20andslopeof 2/3asdrawninExerciseGraph 2.1(a).

(b) Howcanyouidentifytheopportunitycostofbaconandgritsinyourequationofabudgetline,andhowdoesthisrelatetoyouranswerin2.1A(b).

Answer:Theopportunitycostof x1 (grits)issimplythenegativeofthe slopeterm(intermsofunitsof x2).Theopportunitycostof x2 (bacon)is theinverseofthat.

(c) Illustratehowthebudgetlineequationchangesunderthescenarioof2.1A(c) andidentifythechangeinopportunitycosts.

Answer:Substitutingthenewprice p2 = 6intoequation(2.1.i),weget x2 = 10 (1/3)x1 —anequationwithinterceptof10andslopeof 1/3as depictedinpanel(b)ofExerciseGraph2.1.

(d) Repeat(c)forthescenarioin2.1A(d).

Answer:Substitutingthenewincome I = 30intoequation(2.1.i)(holdingpricesat p1 = 2and p2 = 3,weget x2 = 10 (2/3)x1 —anequation withinterceptof10andslopeof 2/3asdepictedinpanel(c)ofExercise Graph2.1.

3

Exercise2.2

Supposetheonlytwogoodsintheworldarepeanutbutterandjelly.

A: Youhavenoexogenousincomebutyoudoown6jarsofpeanutbutterand2 jarsofjelly.Thepriceofpeanutbutteris$4perjar,andthe priceofjellyis$6per jar.

(a) Onagraphwithjarsofpeanutbutteronthehorizontalandjarsofjellyon theverticalaxis,illustrateyourbudgetconstraint.

Answer:Thisisdepictedinpanel(a)ofExerciseGraph2.2.Thepoint E istheendowmentpointof2jarsofjellyand6jarsofpeanutbutter(PB). Ifyousoldyour2jarsofjelly(atapriceof$6perjar),youcouldmake $12,andwiththatyoucouldbuyanadditional3jarsofPB(attheprice of$4perjar).Thus,themostPByoucouldhaveis9,theinterceptonthe horizontalaxis.Similarly,youcouldsellyour6jarsofPBfor$24,andwith thatyoucouldbuy4additionaljarsofjellytogetyoutoamaximumtotal of6jarsofjelly—theinterceptontheverticalaxis.Theresultingbudget linehasslope 2/3,whichmakessensesincethepriceofPB($4)divided bythepriceofjelly($6)isinfact2/3.

ExerciseGraph2.2:(a)Answerto(a);(b)Answerto(b)

(b) Howdoesyourconstraintchangewhenthepriceofpeanutbutterincreases to$6?Howdoesthischangeyouropportunitycostofjelly?

Answer:Thechangeisillustratedinpanel(b)ofExerciseGraph2.2.Since youcanalwaysstillconsumeyourendowment E ,thenewbudgetmust contain E .Buttheopportunitycostshavenowchanged,withtheratioof thetwopricesnowequalto1.Thus,thenewbudgetconstraint hasslope 1andrunsthrough E .Theopportunitycostofjellyhasnowfallenfrom 3/2to1.Thisshouldmakesense:Before,PBwascheaperthanjellyand so,foreveryjarofjellyyouhadtogiveupmorethanajarofpeanutbutter.

ChoiceSetsandBudgetConstraints 4

ChoiceSetsandBudgetConstraints

Nowthattheyarethesameprice,youonlyhavetogiveuponejarofPB toget1jarofjelly.

B: Considerthesameeconomiccircumstancesdescribedin2.2A andusex1 to representjarsofpeanutbutterandx2 torepresentjarsofjelly.

(a) Writedowntheequationrepresentingthebudgetlineandrelatekeycomponentstoyourgraphfrom2.2A(a).

Answer:Thebudgetlinehastoequateyourwealthtothecostofyourconsumption.Yourwealthisequaltothevalueofyourendowment,whichis p1e1 + p2e2 (where e1 isyourendowmentofPBand e2 isyourendowment ofjelly).Thecostofyourconsumptionisjustyourspending onthetwo goods—i.e. p1 x1 + p2 x2.Theresultingequationis

Whenthevaluesgivenintheproblemarepluggedin,thelefthandside becomes4(6) + 6(2) = 36andtherighthandsidebecomes4x1 + 6x2 resultingintheequation36

1, (2.2.ii)

whichisexactlywhatwegraphedinpanel(a)ofExerciseGraph2.2—a linewithverticalinterceptof6andslopeof 2/3.

(b) Changeyourequationforyourbudgetlinetoreflectthechangeineconomiccircumstancesdescribedin2.2A(b)andshowhowthisnewequation relatestoyourgraphin2.2A(b).

Answer:Nowthelefthandsideofequation(2.2.i)is6(6) + 6(2) = 48while therighthandsideis6x1 +6x2.Theequationthusbecomes48 = 6x1 +6x2 or,when x2 istakentooneside,

x2 = 8 x1 (2.2.iii)

Thisisanequationofalinewithverticalinterceptof8andslopeof 1— exactlywhatwegraphedinpanel(b)ofExerciseGraph2.2.

5
p1e1 + p2e2 = p1 x1 + p2 x2 (2.2.i)
= 4x1 + 6x2.Taking x2 tooneside,wethen
x2 = 6 2 3 x
get

Exercise2.3

Considerabudgetforgoodx1 (onthehorizontalaxis)andx2 (onthevertical axis)whenyoureconomiccircumstancesarecharacterizedbypricesp1 andp2 and anexogenousincomelevelI.

A: Drawabudgetlinethatrepresentstheseeconomiccircumstancesandcarefullylabeltheinterceptsandslope.

Answer:ThesketchofthisbudgetlineisgiveninExerciseGraph2.3.

ExerciseGraph2.3:Abudgetconstraintwithexogenousincome I

Theverticalinterceptisequaltohowmuchof x2 onecouldbywith I ifthat isallonebought—whichisjust I /p2 .Theanalogousistruefor x1 onthe horizontalintercept.Onewaytoverifytheslopeistorecognizeitisthe“rise” (I /p2)dividedbythe“run”(I /p1)—whichgives p1/p2 —andthatitisnegative sincethebudgetconstraintisdownwardsloping.

(a) IllustratehowthislinecanshiftparalleltoitselfwithoutachangeinI.

Answer:Inorderforthelinetoshiftinaparallelway,itmustbethat theslope p1/p2 remainsunchanged.Sincewecan’tchange I ,theonly valueswecanchangeare p1 and p2 —butsince p1/p2 can’tchange,it meanstheonlythingwecandoistomultiplybothpricesbythe same constant.So,forinstance,ifwemultiplybothpricesby2,theratioofthe newpricesis2p1/(2p2) = p1/p2 sincethe2’scancel.Wethereforehave notchangedtheslope.Butwehavechangedtheverticalinterceptfrom I /p2 to I /(2p2 ).Wehavethereforeshiftedinthelinewithoutchangingits slope.

Thisshouldmakeintuitivesense:Ifourmoneyincomedoesnotchange butallpricesdouble,thenIcanbyhalfasmuchofeverything.Thisis equivalenttopricesstayingthesameandmymoneyincomedropping byhalf.

(b) Illustratehowthislinecanrotateclockwiseonitshorizontalinterceptwithoutachangeinp2.

Answer:Tokeepthehorizontalinterceptconstant,weneedtokeep I /p1 constant.Buttorotatethelineclockwise,weneedtoincreasetheverticalintercept I /p2.Sincewecan’tchange p2 (whichwouldbetheeasiest

ChoiceSetsandBudgetConstraints 6

ChoiceSetsandBudgetConstraints

waytodothis),thatleavesusonly I and p1 tochange.Butsincewecan’t change I /p1,wecanonlychangethesebymultiplyingthembythesame constant.Forinstance,ifwemultiplybothby2,wedon’tchangethehorizontalinterceptsince2I /(2p1 ) = I /p1 .Butwedoincreasethevertical interceptfrom I /p2 to2I /p2 .So,multiplyingboth I and p1 bythesame constant(greaterthan1)willaccomplishourgoal. Thisagainshouldmakeintuitivesense:Ifyoudoublemyincomeandthe priceofgood1,Icanstillaffordexactlyasmuchofgood1ifthatisall Ibuywithmyincome.(Thustheunchangedhorizontalintercept).But, ifIonlybuygood2,thenadoublingofmyincomewithoutachangein thepriceofgood2letsmebuytwiceasmuchofgood2.Thescenariois exactlythesameasif p2 hadfallenbyhalf(and I and p1 hadremained unchanged.)

B: Writetheequationofabudgetlinethatcorrespondstoyourgraphin2.3A.

Answer: p1 x1 + p2 x2 = I ,whichcanalsobewrittenas

(a) Usethisequationtodemonstratehowthechangederivedin2.3A(a)can happen.

Answer:IfIreplace p1 with Îąp1 and p2 with Îąp2 (where Îą isjustaconstant),Iget

Thus,multiplyingbothpricesby Îą isequivalenttomultiplyingincome by1/Îą (andleavingpricesunchanged).

(b) Usethesameequationtoillustratehowthechangederivedin 2.3A(b)can happen.

Answer:IfIreplace p1 with βp1 and I with βI ,Iget

Thus,thisisequivalenttomultiplying p2 by1/β.Solongas β > 1,itis thereforeequivalenttoreducingthepriceofgood2(withoutchanging theotherpriceorincome).

7
x2 = I p2 p1 p2 x1 (2.3.i)
x2 = I Îąp2 Îąp1 Îąp2 x1 = (1/Îą)I p2 p1 p2 x1 (2.3.ii)
x2 = βI p2 βp1 p2 x1 = I (1/β)p2 p1 (1/β)p2 x1. (2.3.iii)

Exercise2.4

Supposetherearethreegoodsintheworld:x1,x2 andx3

A: Ona3-dimensionalgraph,illustrateyourbudgetconstraintwhenyoureconomiccircumstancesaredenedbyp1 = 2,p2 = 6,p3 = 5 andI = 120.Carefully labelintercepts.

Answer:Panel(a)ofExerciseGraph2.4illustratesthis3-dimensionalbudget witheachinterceptgivenby I dividedbythepriceofthegoodonthataxis.

ExerciseGraph2.4:Budgetsover3goods:Answersto2.4A,A(b)andA(c)

(a) Whatisyouropportunitycostofx1 intermsofx2?Whatisyouropportunitycostofx2 intermsofx3?

Answer:Onanysliceofthegraphthatkeeps x3 constant,theslopeofthe budgetis p1/p2 =−1/3.Justasinthe2-goodcase,thisisthentheopportunitycostof x1 intermsof x2 —since p1 isathirdof p2,onegivesup 1/3ofaunitof x2 whenonechoosestoconsume1unitof x1 .Onanyverticalslicethatholds x1 fixed,ontheotherhand,theslopeis p3 /p2 =−5/6. Thus,theopportunitycostof x3 intermsof x2 is5/6,andtheopportunity costof x2 intermsof x3 istheinverse—i.e.6/5.

(b) IllustratehowyourgraphchangesifIfallsto$60.Doesyour answerto(a) change?

Answer:Panel(b)ofExerciseGraph2.4illustratesthischange(withthe dashedplaneequaltothebudgetconstraintgraphedinpanel (a).)The answertopart(a)doesnotchangesincenopricesandthusnoopportunitycostschanged.Thenewplaneisparalleltotheoriginal.

(c) Illustratehowyourgraphchangesifinsteadp1 risesto$4.Doesyouranswertopart(a)change?

Answer:Panel(c)ofExerciseGraph2.4illustratesthischange(withthe dashedplaneagainillustratingthebudgetconstraintfrom part(a).)Since

ChoiceSetsandBudgetConstraints 8

ChoiceSetsandBudgetConstraints

only p1 changed,onlythe x1 interceptchanges.Thischangestheslope onanyslicethatholds x3 fixedfrom 1/3to 2/3—thusdoublingthe opportunitycostof x1 intermsof x2.Sincetheslopeofanysliceholding x1 fixedremainsunchanged,theopportunitycostof x2 intermsof x3 remainsunchanged.Thismakessensesince p2 and p3 didnotchange, leavingthetradeoffbetween x2 and x3 consumptionunchanged.

B: Writedowntheequationthatrepresentsyourpicturein2.4A.Thensuppose thatanewgoodx4 isinventedandpricedat$1.Howdoesyourequationchange? Whyisitdifculttorepresentthisnewsetofeconomiccircumstancesgraphically?

= I or, pluggingintheinitialpricesandincomerelevantforpanel

Answer:Theequationrepresentingthegraphsis

= 120.Withanewfourthgoodpricedat1,thisequationwouldbecome2x1 + 6x2 + 5x3 + x4 = 120.Itwouldbedifculttographsincewewouldneedtoadd afourthdimensiontoourgraphs.

9
p1 x1 + p2 x2 + p3x3
(a),2x1 +6x2 +5
x3

Exercise2.5

EverydayApplication: WatchingaBadMovie: Ononeofmyfirstdateswithmy wife,wewenttoseethemovie“Spaceballs”andpaid$5perticket.

A: Halfwaythroughthemovie,mywifesaid:“Whatonearthwereyouthinking?

Thismoviesucks!Idon’tknowwhyIletyoupickmovies.Let’s leave.”

(a) Intryingtodecidewhethertostayorleave,whatistheopportunitycostof stayingtowatchtherestofthemovie?

Answer:Theopportunitycostofanyactivityiswhatwegiveupbyundertakingthatactivity.Theopportunitycostofstayingin themovieis whateverwewouldchoosetodowithourtimeifwewerenotthere.The priceofthemovieticketsthatgotusintothemovietheaterisNOTapart ofthisopportunitycost—because,whetherwestayorleave, wedonot getthatmoneyback.

(b) Supposewehadreadasignonthewayintotheaterstating“Satisfaction Guaranteed!Don’tlikethemoviehalfwaythrough—seethemanager andgetyourmoneyback!”Howdoesthischangeyouranswertopart(a)?

Answer:Now,inadditiontogivingupwhateveritiswewouldbedoing ifweweren’twatchingthemovie,wearealsogivingupthepriceofthe movietickets.Putdifferently,bystayinginthemovietheater,wearegivinguptheopportunitytogetarefund—andsothecostoftheticketsisa realopportunitycostofstaying.

ChoiceSetsandBudgetConstraints 10

ChoiceSetsandBudgetConstraints

Exercise2.6

EverydayApplication: RentingaCarversusTakingTaxis: Supposemybrother andIbothgoonaweek-longvacationinCaymanand,whenwearriveattheairportontheisland,wehavetochoosebetweeneitherrentinga carortakingataxi toourhotel.Rentingacarinvolvesafixedfeeof$300fortheweek,witheachmile drivenafterwardsjustcosting20cents—thepriceofgasolinepermile.Takingataxi involvesnofixedfees,buteachmiledrivenontheislandduringtheweeknowcosts $1permile.

A: SupposebothmybrotherandIhavebrought$2,000onourtriptospendon “milesdrivenontheisland”and“othergoods”.Onagraphwithmilesdrivenon thehorizontalandotherconsumptionontheverticalaxis,illustratemybudget constraintassumingIchosetorentacarandmybrother’sbudgetconstraint assuminghechosetotaketaxis.

Answer:ThetwobudgetlinesaredrawninExerciseGraph2.6.Mybrother couldspendasmuchas$2,000onothergoodsifhestaysattheairportand doesnotrentanytaxis,butforeverymilehetakesataxi,hegivesup$1inother goodconsumption.Themosthecandriveontheislandis2,000 miles.Assoon asIpaythe$300rentalfee,Icanatmostconsume$1,700inothergoods,but eachmilecostsmeonly20cents.Thus,Icandriveasmuchas1700/0.2=8,500 miles.

ExerciseGraph2.6:Graphsofequationsinexercise2.6

(a) WhatistheopportunitycostforeachmiledriventhatIfaced?

Answer:Iamrentingacar—whichmeansIgiveup20centsinother consumptionpermiledriven.Thus,myopportunitycostis20 cents.My opportunitycostdoesnotincludetherentalfeesinceIpaid thatbefore evengettingintothecar.

(b) Whatistheopportunitycostforeachmiledriventhatmybrotherfaced?

Answer:Mybrotheristakingtaxis—sohehastogiveup$1inother consumptionforeverymiledriven.Hisopportunitycostistherefore$1 permile.

11

B: Derivethemathematicalequationsformybudgetconstraint andmybrother’s budgetconstraint,andrelateelementsoftheseequationstoyourgraphsinpart A.Usex1 todenotemilesdrivenandx2 todenoteotherconsumption.

Answer:Mybudgetconstraint,onceIpaytherentalfee,is0.2x1 + x2 = 1700 whilemybrother’sbudgetconstraintis x1 + x2 = 2000.Thesecanberewritten with x2 onthelefthandsideas

Theinterceptterms(1700formeand2000formybrother)aswellastheslopes ( 0.2formeand 1formybrother)areasinExerciseGraph2.6.

(a) Whereinyourbudgetequationformecanyoulocatetheopportunitycost ofamiledriven?

Answer:Myopportunitycostofmilesdrivenissimplytheslopeterm in mybudgetequation—i.e.0.2.Igiveup$0.20inotherconsumptionfor everymiledriven.

(b) Whereinyourbudgetequationformybrothercanyoulocatetheopportunitycostofamiledriven?

Answer:Mybrother’sopportunitycostofmilesdrivenistheslopeterm inhisbudgetequation—i.e.1;hegivesup$1inotherconsumptionfor everymiledriven.

ChoiceSetsandBudgetConstraints 12
x2 = 1700 0.2x1 forme,and (2.6.i) x2 = 2000 x1 formybrother. (2.6.ii)

ChoiceSetsandBudgetConstraints

Exercise2.7

EverydayApplication: DietingandNutrition: Onarecentdoctor’svisit,you havebeentoldthatyoumustwatchyourcalorieintakeandmustmakesureyou getenoughvitaminEinyourdiet.

A: Youhavedecidedthat,tomakelifesimple,youwillfromnowoneatonly steakandcarrots.Anicesteakhas250caloriesand10unitsofvitamins,anda servingofcarrotshas100caloriesand30unitsofvitaminsYourdoctor’sinstructionsarethatyoumusteat nomore than2000caloriesandconsume atleast 150 unitsofvitaminsperday.

(a) Inagraphwith“servingsofcarrots”onthehorizontalandsteakonthe verticalaxis,illustrateallcombinationsofcarrotsandsteaksthatmake upa2000calorieadaydiet.

Answer:Thisisillustratedasthe“calorieconstraint”inpanel(a)ofExerciseGraph2.7.Youcanget2000caloriesonlyfromsteakif youeat8 steaksandonlyfromcarrotsifyoueat20servingsofcarrots.Theseform theinterceptsofthecalorieconstraint.

ExerciseGraph2.7:(a)CaloriesandVitamins;(b)BudgetConstraint

(b) Onthesamegraph,illustrateallthecombinationsofcarrotsandsteaks thatprovideexactly150unitsofvitamins.

Answer:Thisisalsoillustratedinpanel(a)ofExerciseGraph2.7. Youcan get150unitsofvitaminsfromsteakifyoueat15steaksonlyorifyoueat 5servingsofcarrotsonly.Thisresultsintheinterceptsforthe“vitamin constraint”.

(c) Onthisgraph,shadeinthebundlesofcarrotsandsteaksthat satisfyboth ofyourdoctor’srequirements.

Answer:Yourdoctorwantsyoutoeatnomorethan2000calories—which meansyouneedtostayunderneaththecalorieconstraint.Yourdoctor alsowantsyoutogetatleast150unitsofvitaminE—whichmeansyou mustchooseabundle above thevitaminconstraint.Thisleavesyouwith

13

theshadedareatochoosefromifyouaregoingtosatisfyboth requirements.

(d) Nowsupposeyoucanbuyaservingofcarrotsfor$2andasteakfor$6.You have$26perdayinyourfoodbudget.Inyourgraph,illustrateyourbudget constraint.Ifyoulovesteakanddon’tmindeatingornoteatingcarrots, whatbundlewillyouchoose(assumingyoutakeyourdoctor’s instructions seriously)?

Answer:With$26youcanbuy13/3steaksifthatisallyoubuy,oryoucan buy13servingsofcarrotsifthatisallyoubuy.Thisformsthetwointerceptsonyourbudgetconstraintwhichhasaslopeof p1/p2 =−1/3and isdepictedinpanel(b)ofthegraph.Ifyoureallylikesteak anddon’tmind eatingcarrotsonewayoranother,youwouldwanttogetasmuchsteak aspossiblegiventheconstraintsyourdoctorgaveyouandgivenyour budgetconstraint.Thisleadsyoutoconsumethebundleattheintersectionofthevitaminandthebudgetconstraintinpanel(b) —indicated by(x1, x2)inthegraph.Itseemsfromthetwopanelsthatthisbundlealso satisfiesthecalorieconstraintandliesinsidetheshadedregion.

B: ContinuewiththescenarioasdescribedinpartA.

(a) DenethelineyoudrewinA(a)mathematically.

(b) DenethelineyoudrewinA(b)mathematically.

(c) Informalsetnotation,writedowntheexpressionthatisequivalenttothe shadedareainA(c).

(d) DerivetheexactbundleyouindicatedonyourgraphinA(d).

Answer:Wewouldliketondthemostamountofsteakwecanaffordin theshadedregion.Ourbudgetconstraintis2x1 +6x2 = 26.Ourgraphsuggeststhatthisbudgetconstraintintersectsthevitaminconstraint(from equation(2.7.ii))withintheshadedregion(inwhichcasethatintersectiongivesusthemoststeakwecanaffordintheshadedregion).Tond thisintersection,wecanplugequation(2.7.ii)intothebudgetconstraint 2x1 + 6x2 = 26toget

ChoiceSetsandBudgetConstraints 14
Answer:Thisisgivenby100x1 + 250x2 = 2000whichcanbewrittenas x2 = 8 2 5 x1. (2.7.i)
Answer:Thisisgivenby30x1 + 10x2 = 150whichcanbewrittenas x2 = 15 3x1 . (2.7.ii)
Answer: (x1, x2) ∈ R2 + | 100x1 + 250x2 ≤ 2000and30x1 + 10x2 ≥ 150 (2.7.iii)

ChoiceSetsandBudgetConstraints

2x1 + 6(15 3x1 ) = 26, (2.7.iv) andthensolvefor x1 toget x1 = 4.Pluggingthisbackintoeitherthebudgetconstraintorthevitaminconstraint,wecanget x2 = 3.Weknowthis liesonthevitaminconstraintaswellasthebudgetconstraint.Tocheck tomakesureitliesintheshadedregion,wejusthavetomakesureitalso satisfiesthedoctor’sordersthatyouconsumefewerthan2000calories. Thebundle(x1, x2)=(4,3)resultsincaloriesof4(100) + 3(250) = 1150,well withindoctor’sorders.

15

Exercise2.8

EverydayApplication: SettingupaCollegeTrustFund: Supposethatyou,after studyingeconomicsincollege,quicklybecamerich—sorich thatyouhavenothing bettertodothanworryaboutyour16-yearoldniecewhocan’t seemtofocusonher future.Yourniececurrentlyalreadyhasatrustfundthatwillpayheraniceyearly incomeof$50,000startingwhensheis18,andshehasnoother meansofsupport.

A: Youareconcernedthatyourniecewillnotseethewisdomofspendingagood portionofhertrustfundonacollegeeducation,andyouwouldthereforeliketo use$100,000ofyourwealthtochangeherchoicesetinwaysthatwillgiveher greaterincentivestogotocollege.

(a) Oneoptionisforyoutoplace$100,000inasecondtrustfundbuttorestrict yourniecetobeabletodrawonthistrustfundonlyforcollegeexpensesof upto$25,000peryearforfouryears.Onagraphwith“yearlydollarsspent oncollegeeducation”onthehorizontalaxisand“yearlydollarsspenton otherconsumption”onthevertical,illustratehowthisaffectsherchoice set.

Answer:Panel(a)ofExerciseGraph2.8illustratesthechangeinthebudgetconstraintforthistypeoftrustfund.Theoriginalbudgetshiftsout by$25,000(denoted$25K),exceptthattherst$25,000canonlybeused forcollege.Thus,themaximumamountofotherconsumptionremains $50,000becauseofthestipulationthatshecannotusethetrustfundfor non-collegeexpenses.

ExerciseGraph2.8:(a)RestrictedTrustFund;(b)Unrestricted;(c)MatchingTrustFund

(b) Asecondoptionisforyoutosimplytellyourniecethatyouwillgiveher $25,000peryearfor4yearsandyouwilltrustherto“dowhat’sright”.How doesthisimpactherchoiceset?

Answer:Thisisdepictedinpanel(b)ofExerciseGraph2.8—itisapure incomeshiftof$25,000sincetherearenorestrictionsonhowthemoney canbeused.

ChoiceSetsandBudgetConstraints 16

ChoiceSetsandBudgetConstraints

(c) Supposeyouarewrongaboutyourniece’sshort-sightedness andshewas planningonspendingmorethan$25,000peryearfromherothertrust fundoncollegeeducation.Doyouthinkshewillcarewhether youdoas describedinpart(a)orasdescribedinpart(b)?

Answer:Ifshewasplanningtospendmorethan$25Koncollegeanyhow, thentheadditionalbundlesmadepossiblebythetrustfundin(b)arenot valuedbyher.Shewouldthereforenotcarewhetheryousetup thetrust fundasin(a)or(b).

(d) Supposeyouwererightabouther—sheneverwasgoingtospend very muchoncollege.Willshecarenow?

Answer:Nowshewillcare—becauseshewouldactuallychooseoneof thebundlesmadeavailablein(b)thatisnotavailablein(a) andwould thereforeprefer(b)over(a).

(e) Afriendofyoursgivesyousomeadvice:becareful—yourniecewillnot valuehereducationifshedoesnothavetoputupsomeofherownmoney forit.Soberedbythisadvice,youdecidetosetupadifferenttrustfundthat willrelease50centstoyourniece(tobespentonwhatevershewants)for everydollarthatshespendsoncollegeexpenses.Howwillthisaffecther choiceset?

Answer:Thisisdepictedinpanel(c)ofExerciseGraph2.8.Ifyourniece nowspends$1oneducation,shegets50centsforanythingshe would liketospenditon—so,ineffect,theopportunitycostofgetting$1of additionaleducationisjust50cents.This“matching”trustfundtherefore reducestheopportunitycostofeducationwhereasthepreviousonesdid not.

(f) Ifyourniecespends$25,000peryearoncollegeunderthetrustfundinpart (e),canyouidentifyaverticaldistancethatrepresentshowmuchyoupaid toachievethisoutcome?

Answer:Ifyourniecespends$25,000onhereducationunderthe“matching”trustfund,shewillgethalfofthatamountfromyourtrustfund—or $12,500.Thiscanbeseenastheverticaldistancebetweenthebeforeand afterbudgetconstraints(inpanel(c)ofthegraph)at$25,000ofeducation spending.

B: Howwouldyouwritethebudgetequationforeachofthethreealternatives discussedabove?

Answer:Theinitialbudgetis x1 +x2 = 50,000.Thersttrustfundin(a)expands thistoabudgetof

whilethesecondtrustfundin(b)expandsitto x1 + x2 = 75,000.Finally,the last“matching”trustfundin(e)(depictedinpanel(c))is0.5x1 + x2 = 50,000.

17
x
=
2
50,000for x1 ≤ 25,000and x1 + x2 = 75,000for x1 > 25,000, (2.8)

Exercise2.9

BusinessApplication: PricingandQuantityDiscounts: Businessesoftengive quantitydiscounts.Below,youwillanalyzehowsuchdiscountscanimpactchoice sets.

A: Irecentlydiscoveredthatalocalcopyservicechargesoureconomicsdepartment$0.05perpage(or$5per100pages)fortherst10,000copiesinanygiven monthbutthenreducesthepriceperpageto$0.035foreachadditionalpage upto100,000copiesandto$0.02pereachpagebeyond100,000.Supposeour departmenthasamonthlyoverallbudgetof$5,000.

(a) Putting“pagescopiedinunitsof100”onthehorizontalaxis and“dollarsspentonothergoods”onthevertical,illustratethisbudgetconstraint. Carefullylabelallinterceptsandslopes.

Answer:Panel(a)ofExerciseGraph2.9tracesoutthisbudgetconstraint andlabelstherelevantslopesandkinkpoints.

ExerciseGraph2.9:(a)Constraintfrom2.9A(a);(b)Constraintfrom2.9A(b)

(b) Supposethecopyservicechangesitspricingpolicyto$0.05 perpagefor monthlycopyingupto20,000and$0.025perpagefor all pagesifcopying exceeds20,000permonth.(Hint:Yourbudgetlinewillcontainajump.)

Answer:Panel(b)ofExerciseGraph2.9depictsthisbudget.Thefirst portion(beginningatthe x2 intercept)isrelativelystraightforward.The secondpartarisesforthefollowingreason:Theproblemsaysthat,ifyou copymorethan2000pages, all pagescostonly$0.025perpage—includingthefirst2000.Thus,whenyoucopy20,000pagespermonth, youtotal billis$1,000.Butwhenyoucopy2001pages,yourtotalbillis$500.025.

(c) Whatisthemarginal(or“additional”)costofthefirstpagecopiedafter 20,000inpart(b)?Whatisthemarginalcostofthefirstpagecopiedafter 20,001inpart(b)?

ChoiceSetsandBudgetConstraints 18

ChoiceSetsandBudgetConstraints

Answer:Themarginalcostoftherstpageafter20,000is-$499.975,and themarginalcostofthenextpageafterthatis2.5cents.Toseethedifferencebetweenthese,thinkofthemarginalcostastheincreaseinthe totalphoto-copybillforeachadditionalpage.Whengoingfrom20,000to 20,001,thetotalbillfallsby$499.975.Whengoingfrom20,001to20,002, thetotalbillrisesby2.5cents.

B: Writedownthemathematicalexpressionforchoicesetsforeachofthescenariosin2.9A(a)and2.9A(b)(usingx1 todenote“pagescopiedinunitsof100” andx2 todenote“dollarsspentonothergoods”).

Answer:Thechoicesetin(a)is

19
{(x1, x2) ∈ R2 + | x2 = 5000 5x1 for x1 ≤ 100and x2 = 4850 3.5x1 for100 < x1 ≤ 1000and x2 = 3350 2x1 for x1 > 1000 } (2.9.i) Thechoicesetin(b)is {(x1, x2) ∈ R2 + | x2 = 5000 5x1 for x1 ≤ 200and x2 = 5000 2.5x1 for x1 > 200 } . (2.9.ii)

Exercise2.10

BusinessApplication: Supersizing: SupposeIrunafast-foodrestaurantandI knowmycustomerscomeinonalimitedbudget.Almosteveryonethatcomesinfor lunchbuysasoft-drink.Nowsupposeitcostsmevirtuallynothingtoserveamedium versusalargesoft-drink,butIdoincursomeextracostswhenaddingitems(likea dessertoranotherside-dish)tosomeone’slunchtray.

A: Supposeforpurposesofthisexercisethatcupscomeinallsizes,notjustsmall, mediumandlarge;andsupposetheaveragecustomerhasalunchbudgetB.On agraphwith“ouncesofsoft-drink”onthehorizontalaxisand“dollarsspent onotherlunchitems”onthevertical,illustrateacustomer’sbudgetconstraint assumingIchargethesamepricepperounceofsoft-drinknomatterhowbiga cupthecustomergets.

Answer:Panel(a)ofExerciseGraph2.10illustratestheoriginalbudget,with thepriceperouncedenoted p.Thehorizontalinterceptisthemoneybudget B dividedbythepriceperounceofsoftdrink;theverticalinterceptisjust B (sincethegoodontheverticalaxisisdenominatedindollars—withtheprice of“$’soflunchitems”thereforeimplicitlysetto1.

(a) Ihavethreebusinesspartners:Larry,hisbrotherDaryland hisotherbrother Daryl.TheDarylsproposethatwelowerthepriceoftheinitialouncesof soft-drinkthataconsumerbuysandthen,startingat10ounces,weincreasetheprice.Theyhavecalculatedthatouraveragecustomerwouldbe abletobuyexactlythesamenumberofouncesofsoft-drink(ifthatisall heboughtonhislunchbudget)asunderthecurrentsingleprice.Illustrate howthiswillchangetheaveragecustomer’sbudgetconstraint.

Answer:Panel(b)illustratestheDaryls’proposal.Thebudgetisinitially shallower(becauseoftheinitiallowerpriceandthenbecomessteeper at10ouncesbecauseofthenewhigherprice.)Theintercepts areunchangedbecausenothinghasbeendonetoallowtheaveragecustomer tobuymoreofnon-drinkitemsifthatisallshebuys,andbecausethe

ChoiceSetsandBudgetConstraints 20
ExerciseGraph2.10:(a)OriginalBudget;(b)TheDaryls’proposal;(c)Larry’sproposal

ChoiceSetsandBudgetConstraints

newpriceshavebeenconstructedsoastoallowcustomerstoachievethe sametotaldrinkconsumptionintheeventthattheydonotbuy anything else.

(b) LarrythinkstheDarylsareidiotsandsuggestsinsteadthat weraisethe priceforinitialouncesofsoft-drinkandthen,startingat 10ounces,decreasethepriceforanyadditionalounces.He,too,hascalculatedthat, underhispricingpolicy,theaveragecustomerwillbeabletobuyexactly thesameouncesofsoft-drinks(ifthatisallthecustomerbuysonhislunch budget).Illustratetheeffectontheaveragecustomer’sbudgetconstraint. Answer:Larry’sproposalisgraphedinpanel(c).Thereasoningissimilar tothatinthepreviouspart,exceptnowtheinitialpriceishighandthen becomeslowafter10ounces.

(c) Iftheaveragecustomerhadachoice,whichofthethreepricingsystems— thecurrentsingleprice,theDaryls’proposalorLarry’sproposal—would hechoose?

Answer:CustomerswouldsurelyprefertheDaryls’proposal—since the choicesetitformscontainsalltheotherchoicesets.

P.S:IfyoudidnotcatchthereferencetoLarry,hisbrotherDarylandhis otherbrotherDaryl,Irecommendyourentsomeoldversionsofthe1980’s BobNewhartShow.

B: Writedownthemathematicalexpressionforeachofthethree choicesetsdescribedabove,lettingouncesofsoft-drinksbedenotedbyx1 anddollarsspend onotherlunchitemsbyx2

Answer:Theoriginalbudgetsetinpanel(a)ofExerciseGraph2.10issimply px1 + x2 = B givingachoicesetof

= B px1 . (2.10.i)

IntheDaryls’proposal,wehaveaninitialprice p ′ < p forthefirst10ounces, andthenaprice p ′′ > p thereafter.Wecancalculatethe x2 interceptofthe steeperlinefollowingthekinkpointinpanel(b)ofthegraphbysimplymultiplyingthe x1 interceptof B/p bytheslope p ′′ ofthatlinesegmenttoget Bp ′′ /p ThechoicesetfromtheDaryls’proposalcouldthenbewrittenas {(

Wecouldevenbemorepreciseabouttherelationshipof p ′ , p and p ′′ .The twolinesintersectat x1 = 10,anditmustthereforebethecasethat B 10p ′ = (Bp ′′ /p) 10p ′′ .Solvingthisfor p ′ ,wegetthat p ′ = B(p p ′′ ) 10p + p ′′ (2.10.iii)

21
(x1, x2) ∈ R2 + | x2
x1, x2) ∈ R2 + | x2 = B p ′ x1 for x1 ≤ 10and x2 = Bp ′′ p p ′′ x1 for x1 > 10where p ′ < p < p ′′ } . (2.10.ii)

Larry’sproposalbeginswithaprice p ′′ > p andthenswitchesat10ouncesto aprice p ′ < p (wherethesepriceshavenoparticularrelationtothepriceswe justusedfortheDaryl’sproposal).Thisresultsinthechoiceset

Wecouldagainderiveananalogousexpressionfor p ′ intermsof p and p ′′

ChoiceSetsandBudgetConstraints 22
{(x1, x2) ∈ R2 + | x2 = B p ′′ x1 for x1 ≤ 10and x2 = Bp ′ p p ′ x1 for x1 > 10where p ′ < p < p ′′ } . (2.10.iv)

ChoiceSetsandBudgetConstraints

Exercise2.11

BusinessApplication: FrequentFlyerPerks: Airlinesofferfrequentflyersdifferentkindsofperksthatwewillmodelhereasreductionsinaveragepricespermile flown.

A: Supposethatanairlinecharges20centspermileflown.However,oncea customerreaches25,000milesinagivenyear,thepricedropsto10centsper mileflownforeachadditionalmile.Thealternatewaytotravelistodrivebycar whichcosts16centspermile.

(a) Consideraconsumerwhohasatravelbudgetof$10,000peryear,abudget whichcanbespentonthecostofgettingtoplacesaswellas“otherconsumption”whiletraveling.Onagraphwith“milesflown”onthehorizontalaxisand“otherconsumption”onthevertical,illustratethebudgetconstraintforsomeonewhoonlyconsidersflying(andnotdriving)totravel destinations.

Answer:Panel(a)ofExerciseGraph2.11illustratesthisbudgetconstraint.

ExerciseGraph2.11:(a)Airtravel;(b)Cartravel;(c)Comparison

(b) Onasimilargraphwith“milesdriven”onthehorizontalaxis,illustratethe budgetconstraintforsomeonethatconsidersonlydriving(andnotflying) asameansoftravel.

Answer:Thisisillustratedinpanel(b)ofthegraph.

(c) Byoverlayingthesetwobudgetconstraints(changingthegoodonthehorizontalaxissimplyto“milestraveled”),canyouexplainhowfrequentflyer perksmightpersuadesometoflyalotmorethantheyotherwise would?

Answer:Panel(c)ofthegraphoverlaysthetwobudgetconstraints. Ifit werenotforfrequentflyermiles,thisconsumerwouldneverfly—becausedrivingwouldbecheaper.Withthefrequentflyerperks,drivingis cheaperinitiallybutbecomesmoreexpensiveperadditionalmilestraveledifatravelerfliesmorethan25,000miles.Thisparticularconsumer wouldthereforeeithernotflyatall(andjustdrive),orshewouldflya lotbecauseitcanonlymakesensetoflyifshereachestheportionofthe

23

air-travelbudgetthatcrossesthecarbudget.(Oncewelearnmoreabout howtomodeltastes,wewillbeabletosaymoreaboutwhetherornotit makessenseforatravelertoflyunderthesecircumstances.)

B: Determinewheretheair-travelbudgetfromA(a)intersects thecarbudget fromA(b).

Answer:Theshallowerportionoftheair-travelbudget(relevantformilesflown above25,000)hasequation x2 = 7500 0.1x1 ,where x2 standsforotherconsumptionand x1 formilestraveled.Thecarbudget,ontheotherhand,has equation x2 = 10000 0.16x1 .Todeterminewheretheycross,wecansetthe twoequationsequaltooneanotherandsolvefor x1 —whichgives x1 = 41,667 milestraveled.Pluggingthisbackintoeitherequationgives x2 = $3,333.

ChoiceSetsandBudgetConstraints 24

ChoiceSetsandBudgetConstraints

Exercise2.12

BusinessApplication: ChoiceinCallingPlans: Phonecompaniesusedtosell minutesofphonecallsatthesamepricenomatterhowmanyphonecallsacustomermade.(Wewillabstractawayfromthefactthattheychargeddifferentprices atdifferenttimesofthedayandweek.)Morerecently,phone companies,particularly cellphonecompanies,havebecomemorecreativeintheirpricing.

A: Onagraphwith“minutesofphonecallspermonth”onthehorizontalaxis and“dollarsofotherconsumption”onthevertical,drawabudgetconstraint assumingthepriceperminuteofphonecallsispandassuming theconsumer hasamonthlyincomeI.

Answer:ExerciseGraph2.12givesthisbudgetconstraintasthestraightline withverticalintercept I .

ExerciseGraph2.12:PhonePlans

(a) Nowsupposeanewoptionisintroduced:Youcanpay$Px tobuyintoa phoneplanthatoffersyouxminutesoffreecallspermonth,withanycalls beyondxcostingpperminute.Illustratehowthischangesyourbudget constraintandassumethatPx issufcientlylowsuchthatthenewbudget containssomebundlesthatwerepreviouslyunavailabletoourconsumer.

Answer:Thesecondbudgetconstraintinthegraphbeginsat I Px whichishowmuchmonthlyincomeremainsavailableforother consumptiononcethefixedfeeforthefirst x minutesispaid.Thepriceper additionalminuteisthesameasbefore—soafter x callshavebeenmade, theslopeofthenewbudgetisthesameastheoriginal.

(b) Supposeitactuallycostsphonecompaniesclosetopperminutetoprovideaminuteofphoneservicesothat,inordertostayprotable,aphone companymustonaveragegetaboutpperminuteofphonecall.Ifallconsumerswereabletochoosecallingplanssuchthattheyalwaysuseexactly xminutespermonth,woulditbepossibleforphonecompanies tosetPx sufcientlylowsuchthatnewbundlesbecomeavailabletoconsumers?

25

Answer:Ifthephonecompanyneedstomakeanaverageof p perminute ofphonecalls,andifallconsumersplanaheadperfectlyand choosecallingplansunderwhichtheyusealltheirfreeminutes,thenthecompany wouldhavetoset Px = px.Butthatwouldmeanthatthekinkpointon thenewbudgetwouldoccurexactlyontheoriginalbudget—thusmakingnonewbundlesavailableforconsumers.

(c) Ifsomefractionofconsumersinanygivenmonthbuyintoacallingplan butmakefewerthanxcalls,howdoesthisenablephonecompaniestoset Px suchthatnewbundlesbecomeavailableinconsumerchoicesets?

Answer:Ifsomeconsumersdonotinfactusealltheir“freeminutes”, thenthephonecompanycouldset Px < px andstillcollectanaverageof p perminuteofphonecall.Thiswouldcausethekinkpointofthenew budgettoshifttotherightoftheoriginalbudget—makingnewbundles availableforconsumers.Consumerswhoplanaheadwellare, insome sense,receivingatransferfromconsumerswhodonotplanaheadwell.

B: Supposeaphonecompanyhas100,000customerswhocurrently buyphone minutesundertheoldsystemthatchargespperminute.Supposeitcoststhe companyctoprovideoneadditionalminuteofphoneservicebutthecompany alsohasfixedcostsFC(thatdon’tvarywithhowmanyminutesaresold)ofan amountthatissufficientlyhightoresultinzeroprofit.Supposeasecondidenticalphonecompanyhas100,000customersthathaveboughtintoacallingplan thatchargesPx = kpxandgivescustomersxfreeminutesbeforechargingpfor minutesabovex.

(a) Ifpeopleonaverageusehalftheir“freeminutes”permonth, whatisk(asa functionsofFC,p,candx)ifthesecondcompanyalsomakeszeroprofit?

Answer:Theprotofthesecondcompanyisitsrevenueminusitscosts. Revenueis

Eachcustomeronlyuses x/2minutes,whichmeansthecostofproviding thephoneminutesis100,000(cx/2) = 50,000cx.Thecompanyalsohas tocoverthexedcosts FC .So,ifprotiszeroforthesecondcompany (asitisfortherst),then

(b) Iftherewerenoxedcosts(i.e.FC = 0)buteverythingelsewasstillas statedabove,whatdoeschavetobeequaltoinorderfortherstcompany tomakezeroprot?Whatiskinthatcase?

Answer: c = p and k = 1/2.Thisshouldmakeintuitivesense:Underthe simpliedscenario,thefactthatpeopleonaverageuseonly halftheir

ChoiceSetsandBudgetConstraints 26
100,000(Px ) = 100,000(kpx). (2.12.i)
100000(kpx) 50000(cx) FC = 0. (2.12.ii)
k = FC 100000px + c 2p (2.12.iii)
Solvingthisfor k,weget

ChoiceSetsandBudgetConstraints

“freeminutes”impliesthatthesecondcompanycansetitsfixedfeeof x minutesathalfthepricethattheothercompanywouldcharge forconsumingthatmanyminutes.

27

Exercise2.13

PolicyApplication: FoodStampProgramsandotherTypesofSubsidies: The U.S.governmenthasafoodstampprogramforfamilieswhoseincomefallsbelow acertainpovertythreshold.Foodstampshaveadollarvalue thatcanbeusedatsupermarketsforfoodpurchasesasifthestampswerecash,but thefoodstampscannot beusedforanythingotherthanfood.

A: Supposetheprogramprovides$500offoodstampspermonthto aparticular familythathasaxedincomeof$1,000permonth.

(a) With“dollarsspentonfood”onthehorizontalaxisand“dollarsspenton non-fooditems”onthevertical,illustratethisfamily’smonthlybudgetconstraint.Howdoestheopportunitycostoffoodchangealongthebudget constraintyouhavedrawn?

Answer:Panel(a)ofExerciseGraph2.13illustratestheoriginalbudget— withintercept1,000oneachaxis.Itthenillustratesthenewbudgetunder thefoodstampprogram.Sincefoodstampscanonlybespenton food, the“othergoods”interceptdoesnotchange—owningsomefoodstamps stillonlyallowshouseholdstospendwhattheypreviouslyhadonother goods.However,thefamilyisnowabletobuy$1,000inothergoodseven asitbuysfood—becauseitcanusethefoodstampsonthefirst$500 worthoffoodandstillhaveallitsotherincomeleftforotherconsumption.Onlyafterallthefoodstampsarespent—i.e.afterthe familyhas bought$500worthoffood—doesthefamilygiveupotherconsumptionwhenconsumingadditionalfood.Asaresult,theopportunitycost offoodiszerountilthefoodstampsaregone,anditis1after that.Thatis, afterthefoodstampsaregone,thefamilygivesup$1inother consumptionforevery$1offooditpurchases.

(b)

ChoiceSetsandBudgetConstraints 28
ExerciseGraph2.13:(a)FoodStamps;(b)Cash;(c)Re-imbursehalf Howwouldthisfamily’sbudgetconstraintdifferifthegovernmentreplaced thefoodstampprogramwithacashsubsidyprogramthatsimplygavethis

ChoiceSetsandBudgetConstraints

family$500incashinsteadof$500infoodstamps?Whichwouldthefamilyprefer,andwhatdoesyouranswerdependon?

Answer:Inthiscase,theoriginalbudgetwouldsimplyshiftoutby$500 asdepictedinpanel(b).Ifthefamilyconsumesmorethan$500offood underthefoodstampprogram,itwouldnotseemlikeanything really changesunderthecashsubsidy.(Wecanshowthismoreformallyonce weintroduceamodeloftastes).If,ontheotherhand,thefamilyconsumes$500offoodunderthefoodstamps,itmaywellbethatit would prefertogetcashinsteadsothatitcanconsumemoreothergoodsinstead.

(c) Howwouldthebudgetconstraintchangeifthegovernmentsimplyagreed toreimbursethefamilyforhalfitsfoodexpenses?

Answer:Inthiscase,thegovernmentessentiallyreducestheprice of$1of foodto50centsbecausewhenever$1isspentonfood,thegovernment reimbursesthefamily50cents.Theresultingchangeinthefamilybudget isthendepictedinpanel(c)ofthegraph.

(d) Ifthegovernmentspendsthesameamountforthisfamilyontheprogram describedin(c)asitdidonthefoodstampprogram,howmuchfoodwill thefamilyconsume?Illustratetheamountthegovernmentis spendingas averticaldistancebetweenthebudgetlinesyouhavedrawn.

Answer:Ifthegovernmentspent$500forthisfamilyunderthisprogram, thenthefamilywillbeconsuming$1,000offoodand$500inothergoods. Youcanillustratethe$500thegovernmentisspendingasthe distance betweenthetwobudgetconstraintsat$1,000offoodconsumption.The reasoningforthisisasfollows:Ontheoriginalbudgetline,youcansee thatconsuming$1,000offoodimpliesnothingisleftoverfor“otherconsumption”.Whenthefamilyconsumes$1,000offoodunderthe newprogram,itisabletoconsume$500inothergoodsbecauseoftheprogram— sothegovernmentmusthavemadethatpossiblebygiving$500 tothe family.

B: Writedownthemathematicalexpressionforthechoicesetyoudrewin2.13A(a), lettingx1 representdollarsspentonfoodandx2 representdollarsspentonnonfoodconsumption.Howdoesthisexpressionchangein2.13A(b)and2.13A(c)?

Answer:Theoriginalbudgetconstraint(priortoanyprogram)isjust x2 = 1000 x1,andthebudgetconstraintwiththe$500cashpaymentinA(b) is x2 = 1500 x1 .Thechoicesetunderfoodstamps(depictedinpanel(a))then is

whilethechoicesetinpanel(b)underthecashsubsidyis

29
{(x1, x2) ∈ R2 + | x2 = 1000for x1 ≤ 500and x2 = 1500 x1 for x1 > 500 } , (2.13.i)
ChoiceSetsandBudgetConstraints 30 (x1, x2) ∈ R2 + | x2 = 1500 x1 (2.13.ii) Finally,thechoicesetunderthere-imbursementplanfromA(c)is (x1, x2) ∈ R2 + | x2 = 1000 1 2 x1 . (2.13.iii)

ChoiceSetsandBudgetConstraints

Exercise2.14

PolicyApplication: PublicHousingandHousingSubsidies: Foralongperiod,the U.S.governmentfocuseditsattemptstomeethousingneedsamongthepoorthrough publichousingprograms.Eligiblefamiliescouldgetonwaitingliststoapplyfor anapartmentinapublichousingdevelopmentandwouldbeofferedaparticular apartmentastheymovedtothetopofthewaitinglist.

A: Supposeaparticularfamilyhasamonthlyincomeof$1,500andisoffereda 1,500squarefootpublichousingapartmentfor$375inmonthlyrent.Alternatively,thefamilycouldchoosetorenthousingintheprivatemarketfor$0.50per squarefoot.

(a) Illustrateallthebundlesinthisfamily’schoicesetof“squarefeetofhousing”(onthehorizontalaxis)and“dollarsofmonthlyothergoodsconsumption”(ontheverticalaxis).

Answer:Thefullchoicesetwouldincludeallthebundlesthatareavailablethroughtheprivatemarketplusthebundlethegovernmenthasmade available.Inpanel(a)ofExerciseGraph2.14,theprivatemarketconstraintisdepictedtogetherwiththesinglebundlethatthe government makesavailablethroughpublichousing.(Thatbundlehas$1,125inother monthlyconsumptionbecausethegovernmentcharges$375forthe1,500 squarefootpublichousingapartment.)

ExerciseGraph2.14:(a)PublicHousing;(b)RentalSubsidy

(b) Inrecentyears,thegovernmenthasshiftedawayfromanemphasison publichousingandtowardprovidingpoorfamilieswithadirectsubsidyto allowthemtorentmorehousingintheprivatemarket.Suppose,insteadof offeringthefamilyinpart(a)anapartment,thegovernment offeredtopay halfofthefamily’srentalbill.Howwouldthischangethefamily’sbudget constraint?

31

Answer:Thechangeinpolicyisdepictedinpanel(b)ofthegraph.

(c) Isitpossibletotellwhichpolicythefamilywouldprefer?

Answer:Sincethenewbudgetinpanel(b)containsthepublichousing bundlefrompanel(a)butalsocontainsadditionalbundlesthatwerepreviouslynotavailable,thehousingsubsidymustbeatleastasgoodasthe publichousingprogramfromtheperspectiveofthehousehold.

B: Writedownthemathematicalexpressionforthechoicesetsyoudrewin2.14A(a) and2.14A(b),lettingx1 denotesquarefeetofmonthlyhousingconsumptionand x2 denotedollarsspentonnon-housingconsumption.

Answer:Thepublichousingchoiceset(whichincludestheoptionof notparticipatinginpublichousingandrentingintheprivatemarketinstead)isgiven by

ChoiceSetsandBudgetConstraints 32
(x1, x2) ∈ R2 + | (x1, x2) = (1500,1125)or x2 ≤ 1500 0.5x1 (2.14.i) Therentalsubsidyinpanel(b),ontheotherhand,createsthechoiceset (x1, x2) ∈ R2 + | x2 ≤ 1500 0.25x1 . (2.14.ii)

ChoiceSetsandBudgetConstraints

Exercise2.15

PolicyApplication: TaxingGoods versus LumpSumTaxes: Ihavefinallyconvincedmylocalcongressmanthatmywife’stasteforgritsarenutsandthattheworld shouldbeprotectedfromtoomuchgritsconsumption.Asaresult,mycongressman hasagreedtosponsornewlegislationtotaxgritsconsumptionwhichwillraisethe priceofgritsfrom$2perboxto$4perbox.Wecarefullyobservemywife’sshopping behaviorandnoticewithpleasurethatshenowpurchases10boxesofgritspermonth ratherthanherprevious15boxes.

A: Putting“boxesofgritspermonth”onthehorizontaland“dollarsofotherconsumption”onthevertical,illustratemywife’sbudgetline beforeandafterthe taxisimposed.(YoucansimplydenoteincomebyI.)

Answer:Thetaxraisestheprice,thusresultinginarotationofthe budgetline asillustratedinpanel(a)ofExerciseGraph2.15.Sincenoindicationofan incomelevelwasgivenintheproblem,incomeissimplydenoted I

ExerciseGraph2.15:(a)TaxonGrits;(b)LumpSumRebate

(a) Howmuchtaxrevenueisthegovernmentcollectingpermonthfrommy wife?Illustratethisasaverticaldistanceonyourgraph.(Hint:Ifyou knowhowmuchsheisconsumingafterthetaxandhowmuchinother consumptionthisleavesherwith,andifyouknowhowmuchinotherconsumptionshewouldhavehadifsheconsumedthatsamequantitybefore theimpositionofthetax,thenthedifferencebetweenthese two“otherconsumption”quantitiesmustbeequaltohowmuchshepaidintax.)

Answer:Whensheconsumes10boxesofgritsafterthetax,shepays$40 forgrits.Thisleavesherwith(I 40)tospendonothergoods.Hadshe bought10boxesofgritspriortothetax,shewouldhavepaid$20,leaving herwith(I 20).Thedifferencebetween(I 40)and(I 20)is$20— whichisequaltotheverticaldistanceinpanel(a).Youcanverifythat thisisexactlyhowmuchsheindeedmusthavepaid—thetaxis$2per

33

boxandshebought10boxes,implyingthatshepaid$2times10 or$20in gritstaxes.

(b) GiventhatIliveintheSouth,thegritstaxturnedouttobeunpopularin mycongressionaldistrictandhasledtothedefeatofmycongressman.His replacementwononapro-gritsplatformandhasvowedtorepealthegrits tax.However,newbudgetrulesrequirehimtoincludeanewwaytoraise thesametaxrevenuethatwasyieldedbythegritstax.Heproposestosimplyaskeachgritsconsumertopayexactlytheamountheorshe paidin gritstaxesasamonthlylumpsumpayment.Ignoringforthemoment thedifficultyofgatheringthenecessaryinformationforimplementingthis proposal,howwouldthischangemywife’sbudgetconstraint?

Answer:Inpanel(b)ofExerciseGraph2.15,thepreviousbudgetunder thegritstaxisillustratedasadashedline.Thegritstaxchangedtheopportunitycostofgrits—andthustheslopeofthebudget(asillustrated inpanel(a)).Thelumpsumtax,ontheotherhand,doesnotalteropportunitycostsbutsimplyreducesincomeby$20,theamountofgritstaxes mywifepaidunderthegritstax.Thischangeisillustratedinpanel(b).

B: StatetheequationsforthebudgetconstraintsyouderivedinA(a)andA(b), lettinggritsbedenotedbyx1 andotherconsumptionbyx2

Answer:Theinitial(before-tax)budgetwas x2 = I 2x1 whichbecomes x2 = I 4x1 aftertheimpositionofthegritstax.Thelumpsumtaxbudget constraint, ontheotherhand,is x2 = I 20 2x1

ChoiceSetsandBudgetConstraints 34

ChoiceSetsandBudgetConstraints

Exercise2.16

PolicyApplication: PublicSchoolsandPrivateSchoolVouchers: Considerasimplemodelofhoweconomiccircumstancesarechangedwhenthe governmententers theeducationmarket.

A: Supposeahouseholdhasanafter-taxincomeof$50,000andconsideritsbudgetconstraintwith“dollarsofeducationservices”onthehorizontalaxisand “dollarsofotherconsumption”onthevertical.Beginbydrawingthehousehold’s budgetline(giventhatyoucaninferapriceforeachofthegoodsontheaxes fromthewaythesegoodsaredefined)assumingthatthehouseholdcanbuyany levelofschoolspendingontheprivatemarket.

Answer:Thebudgetlineinthiscaseisstraightforwardandillustratedinpanel (a)ofExerciseGraph2.16astheconstraintlabeled“privateschoolconstraint”.

ExerciseGraph2.16:(a)PublicSchools;(b)PrivateSchool Voucher

(a) Nowsupposethegovernmentusesitsexistingtaxrevenuesto fundapublicschoolat$7,500perpupil;i.e.itfundsaschoolthatanyonecanattendforfreeandthatprovides$7,500ineducationservices.Illustratehow thischangesthechoiceset.(Hint:Oneadditionalpointwillappearinthe choiceset.)

Answer:Sincepubliceducationisfree(andpaidforfromexistingtaxrevenues—i.e.nonewtaxesareimposed),itnowbecomespossibletoconsumeapublicschoolthatoffers$7,500ofeducationalserviceswhilestill consuming$50,000inotherconsumption.Thisaddsanadditionalbundletothechoiceset—thebundle(7,500,50,000)denoted“publicschool bundle”inpanel(a)ofthegraph.

(b) Continuetoassumethatprivateschoolservicesofanyquantitycouldbe purchasedbutonlyifthechilddoesnotattendpublicschools.Canyou thinkofhowtheavailabilityoffreepublicschoolsmightcausesomechildrentoreceivemoreeducationalservicesthanbeforetheywouldintheabsenceofpublicschools?Canyouthinkofhowsomechildrenmightreceive fewereducationalservicesoncepublicschoolsareintroduced?

35

Answer:Ifahouseholdpurchasedlessthan$7,500ineducationservices forachildpriortotheintroductionofthepublicschool,it seemslikely thatthehouseholdwouldjumpattheopportunitytoincrease bothconsumptionofothergoodsandconsumptionofeducationservicesbyswitchingtothepubliceducationbundle.Atthesametime,ifahouseholdpurchasedmorethan$7,500ineducationservicespriortotheintroduction ofpublicschools,itisplausiblethatthishouseholdwillalsoswitchtothe publicschoolbundle—because,whileitwouldmeanlesseductionserviceforthechild,itwouldalsomeanalargeincreaseinotherconsumption.(Wewillbeabletobemorepreciseonceweintroduceamodelof tastes.)

(c) Nowsupposethegovernmentallowsanoption:eitheraparent cansend herchildtothepublicschoolorshecantakeavouchertoaprivateschool anduseitforpartialpaymentofprivateschooltuition.Assumethatthe voucherisworth$7,500peryear;i.e.itcanbeusedtopayfor upto$7,500 inprivateschooltuition.Howdoesthischangethebudgetconstraint?Do youstillthinkitispossiblethatsomechildrenwillreceivelesseducation thantheywouldifthegovernmentdidnotgetinvolvedatall(i.e.nopublic schoolsandnovouchers)?

Answer:Thevoucherbecomesequivalenttocashsolongasatleast$7,500 isspentoneducationservices.Thisresultsinthebudgetconstraintdepictedinpanel(b)ofExerciseGraph2.16.Sinceonecannotusethe vouchertoincreaseotherconsumptionbeyond$50,000,thevoucherdoes notmakeanyprivateconsumptionabove$50,000possible.However,it doesmakeitpossibletoconsumeanylevelofeducationservicebetween 0and$7,500withoutincurringanyopportunitycostinterms ofother consumption.Onlyoncethefullvoucherisusedand$7,500in educationserviceshavebeenboughtwillthehouseholdbegivingupadollarin otherconsumptionforeveryadditionaldollarineducation services. Itiseasytoseehowthiswillleadsomeparentstochoosemore education fortheirchildren(justasitwastruethattheintroduction ofthepublic schoolbundlegetssomeparentstoincreasetheeducationservicesconsumedbytheirchildren.)Butthereversenolongerappearslikely—if someonechosesmorethan$7,500ineducationservicesinthe absenceof publicschoolsandvouchers,theeffectiveincreaseinhouseholdincome impliedbythevoucher/publicschoolcombinationmakesitunlikelythat suchahouseholdwillreducetheeducationservicesgivento herchild. (Again,wewillbeabletobemorepreciseonceweintroducetastes— andwewillseethatitwouldtakeunrealistictastesforthis tohappen.)

B: Lettingdollarsofeducationservicesbedenotedbyx1 anddollarsofotherconsumptionbyx2,formallydenethechoicesetwithjustthepublicschool(and aprivateschoolmarket)aswellasthechoicesetwithprivateschoolvouchers denedabove.

ChoiceSetsandBudgetConstraints 36

ChoiceSetsandBudgetConstraints

Answer:Therstchoiceset(inpanel(a)ofthegraph)isformallydenedas

,

whiletheintroductionofvoucherschangesthechoicesetto

37
(x1, x2) ∈ R2 + | x2 ≤ 50000 x1 or(x1, x2) = (7500,50000)
(2.16.i)
{(x1, x2) ∈ R2 + | x2 = 50000for x1 ≤ 7500and x2 = 57500 x1 for x1 > 7500 } (2.16.ii)

Exercise2.17

PolicyApplication: TaxDeductionsandTaxCredits: IntheU.S.incometax code,anumberofexpendituresare“deductible”.Formosttaxpayers,thelargest taxdeductioncomesfromtheportionoftheincometaxcodethatpermitstaxpayers todeducthomemortgageinterest(onbothaprimaryandavacationhome).This meansthattaxpayerswhousethisdeductiondonothavetopay incometaxonthe portionoftheirincomethatisspentonpayinginterestontheirhomemortgage(s). Forpurposesofthisexercise,assumethattheentireyearly priceofhousingisinterest expense.

A: TrueorFalse:Forsomeonewhosemarginaltaxrateis33%,thismeansthat thegovernmentissubsidizingroughlyonethirdofhisinterest/housepayments.

Answer:Considersomeonewhopays$10,000peryearinmortgageinterest. Whenthispersondeducts$10,000,itmeansthathedoesnothavetopaythe 33%incometaxonthatamount.Inotherwords,bydeducting$10,000inmortgageinterest,thepersonreduceshistaxobligationby$3,333.33.Thus,thegovernmentisreturning33centsforeverydollarininterestpaymentsmade—effectivelycausingtheopportunitycostofpaying$1inhomemortgageinterest tobeequalto66.67cents.Sothestatementistrue.

(a) Considerahouseholdwithanincomeof$200,000whofacesataxrateof 40%,andsupposethepriceofasquarefootofhousingis$50peryear.With squarefootageofhousingonthehorizontalaxisandotherconsumption onthevertical,illustratethishousehold’sbudgetconstraintwithandwithouttaxdeductibility.(Assumeinthisandtheremainingpartsofthequestionthatthetaxratecitedforahouseholdappliestoallofthathousehold’s income.)

Answer:Asjustdemonstrated,thetaxdeductibilityofhomemortgage interestlowersthepriceofowner-occupiedhousing,andit doessoin proportiontothesizeofthemarginalincometaxrateonefaces.

ExerciseGraph2.17:TaxDeductionsversusTaxCredits

ChoiceSetsandBudgetConstraints 38

ChoiceSetsandBudgetConstraints

Panel(a)ofExerciseGraph2.17illustratesthisgraphicallyforthecase describedinthispart.Witha40percenttaxrate,thehouseholdcould consumeasmuchas0.6(200,000)=120,000inothergoodsifit consumed nohousing.Withapriceofhousingof$50persquarefoot,the pricefalls to(1 0.4)50 = 30undertaxdeductibility.Thus,thebudgetrotatesout tothesolidbudgetinpanel(a)ofthegraph.Withoutdeductibility,the consumerpays$50persquarefoot—whichmakes120,000/50=2,400the biggestpossiblehouseshecanafford.Butwithdeductibility,thebiggest houseshecanaffordis120,000/30=4,000squarefeet.

(b) Repeatthisforahouseholdwithincomeof$50,000whofacesa taxrateof 10%.

Answer:Thisisillustratedinpanel(b).Thehouseholdcouldconsume asmuchas$45,000inotherconsumptionafterpayingtaxes,andthedeductibilityofhousepaymentsreducesthepriceofhousingfrom$50per squarefootto(1 0.1)50 = $45persquarefoot.Thisresultsintheindicatedrotationofthebudgetfromthelowertothehighersolidlinein thegraph.Therotationissmallerinmagnitudebecausetheimpactof deductibilityontheafter-taxpriceofhousingissmaller. Withoutdeductibility,thebiggestaffordablehouseis45,000/50=900squarefeet,while withdeductibilitythebiggestpossiblehouseis45,000/45=1,000square feet.

(c) Analternativewayforthegovernmenttoencouragehomeownershipwould betoofferatax credit insteadofatax deduction.Ataxcreditwouldallow alltaxpayerstosubtractafractionkoftheirannualmortgagepayments directlyfromthetaxbilltheywouldotherwiseowe.(Note:Becareful—a taxcreditisdeductedfromtax payments thataredue,notfromthetaxable income.)Forthehouseholdsin(a)and(b),illustratehowthisalterstheir budgetifk = 0.25.

Answer:ThisisillustratedinthetwopanelsofExerciseGraph2.17 —in panel(a)forthehigherincomehousehold,andinpanel(b)forthelower incomehousehold.Bysubsidizinghousingthroughacreditratherthana deduction,thegovernmenthasreducedthepriceofhousingbythesame amount(k)foreveryone.Inthecaseofdeductibility,thegovernment hadmadethepricesubsidydependentonone’staxrate—withthose facinghighertaxratesalsogettingahighersubsidy.Thepriceofhousing howfallsfrom$50to(1 0.25)50 = $37.50—whichmakesthelargest affordablehouseforthewealthierhousehold120,000/37.5=3,200square feetand,forthepoorerhousehold,45,000/37.5=1,200squarefeet.Thus, thepoorerhouseholdbenefitsmorefromthecreditwhen k = 0.25while thericherhouseholdbenefitsmorefromthededuction.

(d) Assumingthatataxdeductibilityprogramcoststhesameinlosttaxrevenuesasataxcreditprogram,whowouldfavorwhichprogram?

Answer:Peoplefacinghighermarginaltaxrateswouldfavorthedeductibilityprogramwhilepeoplefacinglowermarginaltaxrateswouldfavorthe taxcredit.

39

B: Letx1 andx2 representsquarefeetofhousingandotherconsumption,and let thepriceofasquarefootofhousingbedenotedp.

(a) Supposeahouseholdfacesataxratetforallincome,andsupposetheentireannualhousepaymentahouseholdmakesisdeductible.Whatisthe household’sbudgetconstraint?

Answer:Thebudgetconstraintwouldbe x2 = (1 t )I (1 t )px1

(b) Nowwritedownthebudgetconstraintunderataxcreditasdescribedabove.

Answer:Thebudgetconstraintwouldnowbe x2 = (1 t )I (1 k)px1.

ChoiceSetsandBudgetConstraints 40

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Microeconomics an intuitive approach with calculus 2nd edition thomas nechyba solutions manual by jan.frazier701 - Issuu