© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. CHAPTER P PreparationforCalculus Section P.1 Graphs and Models................................. 2 Section P.2 Linear Models and Rates of Change....................................................11 Section P.3 Functions and Their Graphs........................ 22 Section P.4 Fitting Models to Data............................ 34 Review Exercises ..........................................................................................................37 Problem Solving ...........................................................................................................43 NOT FOR SALE INSTRUCTORUSE ONLY © Cengage Learning. All Rights Reserved. Calculus 10th Edition Larson Solutions Manual Full Download: http://testbanktip.com/download/calculus-10th-edition-larson-solutions-manual/ Download all pages and all chapters at: TestBankTip.com
NOT FOR SALE
CHAPTER P PreparationforCalculus
Section P.1 Graphs and Models
1. 3 2 3 yx
x-intercept:(2,0)
y-intercept:(0,3) Matchesgraph(b).
2. 2 9 yx
x-intercepts: 3,0,3,0
y-intercept:(0,3) Matchesgraph(d).
3. 2 3 yx
x-intercepts: 3,0,3,0
y-intercept:(0,3) Matchesgraph(a).
4. 3 yxx
x-intercepts: 0,0,1,0,1,0
y-intercept:(0,0) Matchesgraph(c).
5.
yx
2 © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
1 2 2
6. 52 yx 7. 2 4 yx 8. 2 3 yx 9. 2 yx x 4 2 0 2 4 y 0 1 2 3 4 x 1 0 1 2 5 2 3 4 y 7 5 3 1 0 1 3 x 3 2 0 2 3 y 5 0 4 0 5 x 0 1 2 3 4 5 6 y 9 4 1 0 1 4 9 x 5 4 3 2 1 0 1 y 3 2 1 0 1 2 3 2 424 2 4 6 y x ( 2, 1) ( 4, 0) (0, 2) (2, 3) (4, 4) 2 4 6 2 4 2 4 8 y x ( 1, 7) (0, 5) (1, 3) (2, 1) (3, 1) (4, 3) , 0 5 2( ( x 2 4 2 6 6 4 646 ( 3, 5)(3, 5) ( 2, 0) (0, 4) (2, 0) y 6 4 2 2 2 2 4 4 6 6 8 10 y x (1, 4) (2, 1) (3, 0) (4, 1) (5, 4) (6, 9) (0, 9) x 2 2 4 6 4 62 ( 3, 1) ( 1, 1) ( 4, 2) ( 2, 0) (0, 2) (1, 3) ( 5, 3) y
INSTRUCTOR
) © Cengage Learning. All Rights Reserved.
USE ONLY ST
3 © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 10. 1 yx 11. 6 yx 12. 2 yx 13. 3 y x 14. 1 2 y x 15. 5 yx (a) 2,2,1.735231.73 yy (b) ,34,3354x 16. 5 5 yxx (a) 0.5,0.5,2.47 y (b) ,41.65,4x and,41,4 x 17. 25yx y-intercept: 2055;0,5 y x-intercept: 55 22 025 52 ;,0 x x x 18. 2 43yx y-intercept: 2 4033;0,3 y x-intercept: 2 2 043 34 x x None. y cannotequal0. x 3 2 1 0 1 2 3 y 2 1 0 1 0 1 2 x 0 1 4 9 16 y 6 5 4 3 2 x 2 1 0 2 7 14 y 0 1 2 2 3 4 x 3 2 1 0 1 2 3 y 1 3 2 3 Undef. 3 3 2 1 x 6 4 3 2 1 0 2 y 1 4 1 2 1 Undef. 1 1 2 1 4 3 23 3 4 2 2 2 1 1 y x ( 3, 2) ( 2, 1) ( 1, 0) (0, 1) (1, 0) (2, 1) (3, 2) y x (0, 6) (1, 5) (4, 4) (9, 3) (16, 2) 4481216 2 4 6 8 2 5101520 2 3 4 5 y x ( 2, 0) ( 1, 1) (0, 2) (2, 2) (7, 3) (14, 4) y x (3, 1) (1, 3) ( 3, 1) ( 1, 3) 1 2 3123 1 2 1 2 3 2, 3 2 ( ( 2, 3 2 ( ( 1123 2 3 4 5 2 3 4 5 1 4 6, () 1 2 4, () 1 2 0, () 1 4 2, () ( 3, 1) ( 1, 1) y x 9 6 9 6 ( 0.5, 2.47) (1, 4) 66 3 5 ( 4.00, 3) (2, 1.73)
Section P.1 Graphs and Models
)
Cengage Learning. All Rights Reserved.
NOT FOR SALE Graph INSTRUCTOR USE ONLY S
©
NOT FOR SALE paration parationCalculus Calc
19. 2 2 yxx
y-intercept: 2 002
20. 23 4 yxx
25. 22 40xyxy y
22 0040
21. 2 16 yxx
y-intercept: 2 01600;0,0 y
x-intercepts: 2 016 044
26. 2 21yxx
Note: 33 x is an extraneous solution.
27. Symmetric with respect to the y-axis because
28. 2 yxx No symmetry with respect to either axis or the origin.
4 Chapter PPreparation for Calculus
be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
© 2014 Cengage Learning. All Rights Reserved. May not
2;0,2 y y
2,1;2,0,1,0 xx xx x
x-intercepts: 2 02 021
0;0,0
y
y-intercept: 23040
y
0,2;0,0,2,0 xx xxx x
x-intercepts: 3 04 022
0,4,4;0,0,4,0,4,0 xx xxx x
-intercept:
1;0,1
y
-intercept: 2 011 1;1,0 xx x 23. 2 51 x y x 20 -intercept:2;0,2 501 2 -intercept:0 51 02 4;4,0 yy x x x x x 24. 2 2 3 31 xx y x y-intercept: 2 2 030 301 0;0,0 y y x-intercepts: 2 2 2 3 0 31 3 0 31 0,3;0,0,3,0 xx x xx x x
22. 2 11yxx y
2 0101
y
x
-intercept:
0;0,0 yy y
-intercept:
0;0,0 xx x
x
220400
-intercept: 2
1;0,1 y y x-intercept: 2 2 22 2 2 021 21 41 31 1 3 3 3 33 ;,0 33 xx xx xx x x x x
y
2001
2 2 66.yxx
29. Symmetric with respect to the x-axis because 2 23 8.yyxx
INSTRUCTORUSE
ONLY © Cengage Learning. All Rights Reserved.
NOT FOR SALE P.1Graph Sections
30. Symmetric with respect to the origin because
3 3 3
yxx yxx yxx
31. Symmetric with respect to the origin because
4. xyxy
32. Symmetric with respect to the x-axis because
2 2 10. xyxy
33. 43yx
No symmetry with respect to either axis or the origin.
34. Symmetric with respect to the origin because
xyx xyx
40. 2 3 1 yx
2 3
011, -intercept 011, -intercept yy xxxx
3 22 332
Intercepts: 3 2 0,1,,0
Symmetry:none
41. 2 9 yx
40 40.
2 2
35. Symmetric with respect to the origin because
36.
2 1 x y x is symmetric with respect to the y-axis because
1 xx y xx
37. 3 yxx is symmetric with respect to the y-axis because 3 33 yxxxxxx
38. 3 yx is symmetric with respect to the x-axis because 3 3. yx yx
39. 23 yx 2 3
2302,-intercept 02332,-intercept yy xxxx
Intercepts: 2 3 0,2,,0
Symmetry:none
2 22
909,-intercept 0993,-intercepts yy xxxx
Intercepts:0,9,3,0,3,0 2 2 99 yxx
Symmetry: y-axis
42. 2 221yxxxx 1 2
02010,-intercept 0210,,-intercepts yy xxxx
Intercepts: 1 2 0,0,,0
Symmetry:none
43. 3 2 yx 3
33 022,-intercept 0222,-intercept yy xxxx
Intercepts: 3 2,0,0,2
Symmetry:none
Section P.1Graphs and Models 5
© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
2 2 1 1
x x y x
x y
2
2 2 2 2
1
3
(0, 2) 2 1 x 3 2 1 1 , 0 2 3 y ( ( 1 1 12 2 2 y x 3 2 , 0 () (0, 1) y x (3, 0) (0, 9) ( 3, 0) 2 4 6246 2 2 4 6 10 1 2 3 1 2 3 1 3 5 2 4 (0, 0) 1 2 , 0 () y x y x (0, 2) 2 3123 1 1 3 4 5 3 ( 2, 0)
INSTRUCTORUSE
Cengage Learning. All Rights Reserved.
ONLY ©
44. 3 4 yxx
3 0400,-interceptyy
47. 3 x y
xx xx xxx xx
40 40 220 0,2,-intercepts
3 2
Intercepts:0,0,2,0,2,0
3 33 444 yxxxxxx
Symmetry:origin
45. 5 yxx 0050,-intercept 500,5,-intercepts yy xxxx
Intercepts:0,0,5,0
Symmetry:none
46. 2 25 yx
2 250255,-interceptyy
3 00,-intercept 0,-intercept yyy xx Intercept:(0,0)
Symmetry:origin
40 220 2,-intercepts 044,-intercept
2 2
x x xx xx
250 250 550 5,-intercept
Intercepts:0,5,5,0,5,0
2 2 2525 yxx
Symmetry: y-axis
© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
6 Chapter PPreparation
for Calculus
3 3 x yxy
48. 2 4
2 2
y
2 2
x-axis 49. 8 y x 8
0 8 0Nosolutionno-intercept yy x x Intercepts:none
yy xx Symmetry:origin y x 1 2 3 412 3 4 2 3 ( 5, 0)(0, 0) 1 2 3 412345 2 3 1 2 3 4 6 7 y x (0, 5) (5, 0) ( 5, 0) x 1 2 3 4 2 3 4 2 1 3 4234 (0, 0) y 1 3 3 1 2 5 ( 4, 0) (0, 2) y x (0, 2) y x 22468 2 4 6 8 3 3 1 1 2 1 3 3 ( 2, 0)(2, 0) (0, 0) y x
INSTRUCTOR USE ONLY NSTR 4 1234 5 2345 TNS R S © Cengage
Rights Reserved.
xy
yy yy xx Intercepts:0,2,0,2,4,0
44xyy Symmetry:
Undefinedno-intercept
88
NOT FOR SALE paration parationCalculus Calc
Learning. All
NOT FOR SALE P.1Graphs
Section P.1Graphs and Models 7 ©
Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 50. 2 10 1 y x 2 10 10,-intercept 01 yy 2 10 0Nosolutionno-intercepts 1 x x Intercept:(0,10) 2 2 1010 1 1 y x x Symmetry: y-axis 51. 6 yx 606,-interceptyy 60 6 6,-intercepts x x xx Intercepts: 0,6,6,0,6,0 66 yxx Symmetry: y-axis 52. 6 yx 6066,-interceptyy 60 60 6,-intercept x x xx Intercepts:(0,6),(6,0) Symmetry:none 53. 2 2 9 9 9 yx yx yx 0993,-intercepts 90 90 9,-intercept yy x x xx Intercepts: 0,3,0,3,9,0 2 2 99yxyx Symmetry: x-axis 54. 2 22 4 44 2 x xyy 2 2 2 2 404 1,-intercepts 22 404 4 2,-intercepts yy x x xx Intercepts: 2,0,2,0,0,1,0,1 22 22 4444xyxy Symmetry:originandbothaxes 6 4 2 2 2 12 10 46 (0, 10) y x x 2 2 4 2 6 8 4 6 8 4 2 8468 ( 6, 0) (0, 6) (6, 0) y 2 2 4 4 68 8 y x (0, 6) (6, 0) y x ( 9, 0) (0, 3) (0, 3) 2 4 6 102 2 4 6 2 4 6 y x (0, 1) (2, 0) (0, 1) ( 2, 0) 1 313 2 3 2 3
2014 Cengage Learning. All
INSTRUCTORUSE
© Cengage Learning. All Rights Reserved.
ONLY
NOT FOR SALE
57. 88 4747 x yyx xyyx 847 155 3
58.
xx x
Thecorresponding y-valueis 5. y Pointofintersection:(3,5)
324
Pointofintersection: 2,1
59. 22
Thecorrespondingy-valuesare
Pointsofintersection: 2,2,1,5
Thecorresponding
Pointsofintersection: 1,2,2,1
8 Chapter PPreparation for Calculus
be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
2 2 36 36 6 3 xy yx x y 2 60 2,-intercepts 3 306 6,-intercept yy x xx Intercepts: 6,0,0,2,0,2 2 2 3636xyxy Symmetry: x-axis 56. 2 2 3 4 348 438 2 xy yx yx 2 3 022 4 nosolutionno-intercepts 3408 38 8 3,-intercept y y x x xx Intercept: 8 3,0 2 2 348348 xyxy
x-axis
© 2014 Cengage Learning. All Rights Reserved. May not
55.
Symmetry:
x
34
2 410
2 x
x
x x
4210
xyy
xyy 34410 22 34410 714 2 xx xx
Thecorresponding y-valueis 1. y
2
2,1
xyyx xx xx xx x
2
66 44 64 02 021
xyyx
2for2yx and 5for1.yx
2 2 2
1 31 321
1or2 xyyx yx xx xxx xxxx xx
60. 22
33
0212
y-valuesare 2for1yx and 1for2.yx
y x (6, 0) ( ) 0, 2 ( ) 0, 2 112367 2 3 4 1 2 3 4 y x 226810 2 4 6 2 4 6 ( , 0) 8 3
paration parationCalculus Calc INSTRUCTORUSE ONLY © Cengage Learning. All Rights Reserved.
NOT FOR SALE P.1Graphs
Thecorresponding y-valuesare 2 y for1 x and 1 y for2. x
Pointsofintersection: 1,2,2,1 62. 2222
© Cengage Learning. All Rights Reserved.
Section P.1Graphs and Models 9
website,
© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible
in whole or in part.
xxx xxxx xx
61. 2222 2 2 22 2 55 11 51 521 0224212 1or2 xyyx xyyx xx
2
054
yyx xyyx xx xxx xx xx xx xx
2 22 2 2 2525 315315 25315 25990225 01090200 0920
4or5 x
32 2131 20 210 1,0,2. xxxxx xxx xxx x 64.
2
yx
Analytically, 242 42 2 121 0 011 1,0,1. xxx xx xxx x 65. 2 6 4 yx yxx
Analytically, 2 2 2 64 64 560 320 3,2. xxx xxx xx xx x 66. 236 6 yx yx
Analytically, 2366 23 x x xx 23or23 3or1. xxxx xx 4 6 8 4 (2, 1) y = x2 + 3x − 1 y = x3 2x2 + x 1 (0, 1) ( 1, 5) 33 2 2 (1, 0) ( 1, 0) (0, 1) y = 1 x 2 y = x 4 2x 2 + 1 7 2 4 2 x + 6 y = x 2 4x ( 2, 2) y = (3, )3 4 8 7 1 y = 6 x y = 2x 3+ 6 (1, 5) (3, 3)
Thecorresponding y-valuesare 3 y for4 x and 0 y for5. x Pointsofintersection: 4,3, 5,0 63. 32 2 21 31 yxxx yxx Pointsofintersection: 1,5,0,1,2,1 Analytically, 322
42
21 1 yxx
Pointsofintersection: 1,0,0,1,1,0
Pointsofintersection: 2,2,3,33,1.732
Pointsofintersection:(3,3),(1,5)
INSTRUCTORUSE ONLY
67. (a) Usingagraphingutility,youobtain 2 0.0050.272.7.ytt
(b)
71. 3ykx
(a) 3 1,4:414 kk
(b) 3 1 8 2,1:128kkk
(c) 3 0,0:00canbeanyrealnumber. kk
(d) 3 1,1:111 kkk
t y
(c) 2 For2020, 40. 0.005400.27402.7 21.5
TheGDPin2020willbe$21.5trillion.
68. (a) Usingagraphingutility,youobtain 2 0.2412.640.ytt
(b)
72. 2 4 ykx
(a) 2 1 4
1,1:141 14 k k k
69.
Themodelisagoodfitforthedata.
t y
(c) 2 For2020, 30. 0.243012.63040 554
Thenumberofcellularphonesubscribersin2020 willbe554million.
2.0456003.29 56003.292.04
56001.25 5600 4480 1.25
CR xx xx x x Tobreakeven,4480unitsmustbesold.
70. 2 10,770 0.37 y x
Ifthediameterisdoubled,theresistanceischangedby approximatelyafactorof 1 4 Forinstance, 2026.555 y and 406.36125. y
(b) 2 2,4:442 168 2
k k k
(c) 2 0,0:040 canbeanyrealnumber. k k
3,3:343 912 k k k
(d) 2 93 124
73. Answers may vary. Sample answer: 438yxxx has intercepts at 4,3,and8.xxx
74. Answers may vary. Sample answer: 35 22 4 yxxx has intercepts at 35 22 ,4,and.xxx
75. (a) If (x, y) is on the graph, then so is ,x y by y-axis symmetry. Because ,x y is on the graph, then so is ,x y by x-axis symmetry. So, the graph is symmetric with respect to the origin. The converse is not true. For example, 3yx has origin symmetry but is not symmetric with respect to either the x-axis or the y-axis.
(b) Assume that the graph has x-axis and origin symmetry. If (x, y) is on the graph, so is ,x y by x-axis symmetry. Because ,x y is on the graph, then so is ,,x yxy by origin symmetry. Therefore, the graph is symmetric with respect to the y-axis. The argument is similar for y-axis and origin symmetry.
10 Chapter PPreparation
Calculus
duplicated, or posted to a publicly accessible website, in
or in part.
for
© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or
whole
0 0 16 30 5 20 330 30 0 0 400 100
paration for parationCalculus Calc INSTRUCTORUSE ONLY © Cengage Learning. All Rights Reserved.
NOT FOR SALE
76. (a) 3
Interceptsfor:
3 32
-intercept:000;0,0
-intercepts:0111; 0,0,1,01,0
Interceptsfor2:
-intercept:022;0,2
2 2
xx y
-intercepts:02
None.cannotequal0.
(b) Symmetry with respect to the origin for 3 yxx because 3 3 yxxxx
Symmetry with respect to the y-axis for 2 2 yx because 2 2 22.yxx
(c) 32 32 2
xxx xxx xxx xy
2 20 210 26
Point of intersection : (2, 6)
Note: The polynomial 2 1 xx has no real roots.
77. False. x-axis symmetry means that if 4,5 is on the graph, then 4,5 is also on the graph. For example, 4,5 is not on the graph of 2 29, xy whereas 4,5 is on the graph.
True. 44.ff
Section P.2 Linear Models and Rates of Change
Section P.2Linear Models and Rates of Change 11 © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
yxx yy xxxxxxxx
yy
yx
78.
79. True. The x-intercepts are 2 4 ,0. 2 bbac a 80. True. The x-intercept is ,0. 2 b a
1. 2 m 2. 0 m 3. 1 m 4. 12 m 5. 24 6 3 532 m 6. 716 2 213 m x 123567 1 (3, 4) (5, 2) 2 3 4 5 1 2 3 y 1 2 3 4134 1 2 3 5 6 7 y x ( 2, 7) (1, 1) NOT FOR SALE Section P.2Linear Models and Rate INSTRUCTORUSE ONLY © Cengage Learning. All Rights Reserved.
7. 165 , 440 m undefined. Thelineisvertical.
11.
12.
8. 55 0 0 532 m
13. Becausetheslopeis0,thelineishorizontalandits equationis 2. y Therefore,threeadditionalpointsare 0,2,1,2,5,2.
14. Becausetheslopeisundefined,thelineisverticalandits equationis 4. x Therefore,threeadditionalpoints are 4,0, 4,1, 4,2.
15. Theequationofthislineis 731 310. yx yx Therefore,threeadditionalpointsare(0,10),(2,4),and (3,1).
16. Theequationofthislineis 222 22. yx yx
Therefore,threeadditionalpointsare 3,4, 1,0, and(0,2). 17.
12 Chapter P Preparation for Calculus
Cengage
Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
© 2014
Learning. All
21 1 36 2 2 1 13 4 24 m
31 18 44 3 75 3 8 84 m
Thelineishorizontal. 9.
10.
3
yx yx xy y x (4, 6) (4, 1) 1 212356 1 2 3 4 5 6 7 1123456 1 2 3 4 6 1 (3, 5)(5, 5) y x x 1 2 3 2 3 2 3213 y ( ) 3 4 1 6 , ( ) 1 2 2 3 , 1 1 2 1 2 3 1 5 4 1 4 () , 7 8 3 4 () , y x y x m = 2 (3, 4) m = 1 3 2 m = m is undefined. 4 624810 2 2 4 6 8 2 624 2 4 6 ( 2, 5) m = 3 m = 3 m = 0 m = 1 3 y x x 1 1 2 3 4 1 2 4 5 (0, 3) y
4 3 4312 03412
INSTRUCTORUSE
NOT FOR SALE paration Calculus Calc
ONLY © Cengage Learning. All Rights Reserved.
Section P.2 Linear Models and Rates of Change 13 © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 18. Theslopeisundefinedsothelineisvertical. 5 50 x x 19. 2 3 32 023 yx yx x y 20. 4 40 y y 21. 233 239 311 0311 yx yx yx xy 22. 3 5 42 52036 35140 yx yx xy 23. (a) 1 Slope 3 y x (b) BythePythagoreanTheorem, 22230101000 101031.623feet. x x 24. (a) (b) Theslopesare:295.8293.0 2.8 54 298.6295.8 2.8 65 301.6298.6 3.0 76 304.4301.6 2.8 87 307.0304.4 2.6 98
(c) Average rate of change from 2004 to 2009: 307.0293.014 945 2.8millionperyr (d) For2020,20and162.8293.0337.8million. Equivalently,112.8307.0337.8. ty y 1 2 3 41 1 2 3 4 5 1 (−5, −2) y x x 1234 1 2 3 4 (0, 0) y 12 1 2 3 1 2 3 5 (0, 4) y x y x (3, 2) 1 1 2123456 2 3 4 5 1 2 3 12 1 2 3 1 2 4 5 ( 2, 4) y x 10 ft 30 ft x y t 456789 290 295 300 305 310 Year (4 ↔ 2004) Population (in millions) (4, 293) (5, 295.8) (6, 298.6) (7, 301.6) (8, 304.4) (9, 307)
Thepopulationincreasedleastrapidlyfrom2008to2009.
P.2 Linear Models and Rate INSTRUCTORUSE
© Cengage Learning. All Rights Reserved.
NOT FOR SALE Section
ONLY
25. 43yx
Theslopeis 4 m andthe y-interceptis 0,3.
26. 1 1 xy yx
Theslopeis 1 m andthe y-interceptis(0,1).
27. 1 5
520 4 xy yx
Therefore,theslopeis 1 5 m andthe y-interceptis (0,4).
28. 6 5
6515 3 xy yx
Therefore,theslopeis 6 5 m andthe y-interceptis 0,3.
29. 4 x
Thelineisvertical.Therefore,theslopeisundefinedand thereisno y-intercept.
30. 1 y
Thelineishorizontal.Therefore,theslopeis 0 m and the y-interceptis 0,1. 31.
© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
© Cengage Learning. All Rights Reserved.
14 Chapter
PPreparation for Calculus
3
32. 4 x 33. 21yx 34. 1 3 1 yx 35. 3 2 3 1 22 21yx yx 36. 134 313 yx yx 37. 230 23 xy yx x 1 2 312345 2 4 5 6 1 2 y 1235 1 2 1 2 3 y x x 2 112 1 3 1 y 3 3 4 3 2 2 2 1 1 y x (0, 1) x 1 2 1 3 4 2 2 3 4 3 4234 y 48 8 12 16 4 8 12 16 y x 1 x 32 1 2 3 1 2 y
y
INSTRUCTORUSE
NOT FOR SALE paration parationCalculus Calc
ONLY
Section P.2Linear Models and
of Change 15 © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 38. 1 2 260 3 xy yx 39. 80 2 40 020 2 02 m yx yx xy 40. 72 9 3 123 m 232 232 34 034 yx yx yx xy 41. 808 253 m 8 05 3 840 33 83400 yx yx xy 42. 624 1 314 m 211 21 30 yx yx xy 43. 835 660, m undefined Thelineishorizontal. 6 60 x x 44. 22 0 0 312 m 2 20 y y 45. 7311 11 244 11 2 0 22 m 311 0 42 113 24 02243 yx yx xy 46. 31 18 44 3 75 3 8 84 m 185 434 1233240 3212370 yx yx xy 10 8 6 2 4 6 2 4 y x y x 2 4246 2 4 6 8 (4, 8) (0, 0) 4 6246 4 4 6 8 y x ( 2, 2) (1, 7) 1 2 3 4 5 2 6 7 8 9 x 146789 123 (5, 0) (2, 8) y 12 3 1 3 2 4 1 3 2 5 7 6 (1, 2) ( 3, 6) y x y x 2248 2 2 4 6 8 (6, 3) (6, 8) 1 1 4 3 11234 y x (1, 2)(3, 2) x 1 2 1 3 4 2 1 3 4234 y ( ) 3 4 0, ( ) 1 2 7 2 , 1 1 2 1 2 3 1 5 4 1 4 () , 7 8 3 4 ( ) y x
e INSTRUCTORUSE ONLY © Cengage Learning. All Rights Reserved.
Rates
NOT FOR SALE Section P.2Linear Models and Rat
16 Chapter PPreparation for Calculus © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 47. 3 30 x x 48. b m a 1 b yxb a b xyb a xy ab 49. 1 23 3260 xy xy 50. 1 2 2 3 3 1 22 32 320 xy xy xy xy 51. 1 12 1 3 1 33 xy aa aa a axy 30 xy 52. 1 34 1 1 1 11 xy aa aa a axy 10 xy 53. 1 2 92 1 2 94 1 2 52 5 2 xy aa aa a a a 55 22 1 2 2 1 55 25 250 xy xy xy xy 54. 2 3 1 2 1 2 2 3 4 3 xy aa aa a a 44 33 1 4 3 3340 xy xy xy 55. Thegivenlineisvertical. (a) 7, x or 70 x (b) 2, y or 20 y 56. Thegivenlineishorizontal. (a) 0 y (b) 1, x or 10 x 124 1 2 1 2 (3, 0) y x y x (0, b) (a, 0) paration parationCalculus Calc INSTRUCTORUSE
© Cengage Learning. All Rights
ONLY
Reserved.
753 834 24214030 040249
63. Theslopeis250. 1850when2. 25021850 2501350
Vt Vt t
64. Theslopeis4.50. 156when2.
Vt Vt t
4.52156
4.5147
65. Theslopeis1600. 17,200when2. 1600217,200
Vt Vt t
160020,400
66. Theslopeis5600. 245,000when2. 56002245,000
Vt
t
Section P.2 Linear Models and Rate Rat INSTRUCTORUSE ONLY © Cengage Learning. All Rights Reserved.
P.2
and
of Change 17 © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 57. 2 2 1 xy yx m (a) 512 52 30 yx yx xy (b) 512 52 70 yx yx xy 58. 7 7 1 xy yx m (a) 213 23 10 yx yx xy (b) 213 23 05 yx yx xy 59. 3 2 423 2 2 xy yx m (a) 122 124 023 yx yx xy (b) 1 2 12 222 240 yx yx xy 60. 748 478 7 2 4 7 4 xy yx yx m (a) 175 246
2424 24124235 4224230 yx yx yx xy (b)
2442410 yx yx xy
5 3 5 3
yx m
yx yx xy
2440530 yx yx xy 62. 37 44 3 4 347 437 xy yx yx m (a) 3 4 3 4 54 53 420312 3480 yx yx yx xy
4 3 16 4 33 54 5 315416
yx yx yx xy
Section
Linear Models
Rates
1735
145 276 42212420
61.
530 xy
(a)
(b) 733 854 40352418
(b)
04331
5600256,200 Vt
NOT FOR SALE
10 1 21 202 213
67. 1 2 12
m m mm
Thepointsarenotcollinear.
6410 707 1147 505
71. Equationsofaltitudes: ab yxa c xb
68. 1 2 12
m m mm
Thepointsarenotcollinear.
69. Equationsofperpendicularbisectors: 22 22
cabab yx c cabba yx c
Settingtheright-handsidesofthetwoequationsequal andsolvingfor x yields 0. x Letting 0 x ineitherequationgivesthepointof intersection: 222 0,. 2 abc c
Thispointliesonthethirdperpendicularbisector, 0. x
72. Theslopeofthelinesegmentfrom , 33 bc to 22
70. Equationsofmedians: 3 3
c yx b c yxa ab c yxa ab
Solvingsimultaneously,thepointofintersectionis 33,. bc
18 Chapter PPreparation for Calculus
Rights
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
© 2014 Cengage Learning. All
Reserved.
ab b c
ab yxa c Solvingsimultaneously,thepointofintersectionis 22 ,.
ab b c is: 22 1 222 222 3 3 333 33 232 abcc m bb abccabc bbc Theslopeofthelinesegmentfrom , 33 bc to 222 0, 2 abc c is: 222 2 2222 222 12 23 03 33326 33 32 abccc m b abcccabc bbc mm Therefore,thepointsarecollinear. ( a, 0) (a, 0) (b, c) y x ab + 2 c 2 () , ba 2 c 2 () , ab + 2 c 2 () , ba 2 c 2 () , (0, 0) y x ( a, 0)(a, 0) (b, c) ( a, 0) (a, 0) (b, c) y x
paration parationCalculus Calc INSTRUCTORUSE ONLY © Cengage Learning. All Rights Reserved.
,
NOT FOR SALE
Section P.2Linear Models and Rat Sectione
73. 4 axby
(a) Thelineisparalleltothe x-axisif 0 a and 0. b
(b) Thelineisparalleltothe y-axisif 0 b and 0. a
(c) Answerswillvary. Sample answer: 5 a and 8. b
584 54 xy yxx
5 11 882
(d)Theslopemustbe 5 2 Answerswillvary. Sample answer: 5 a and 2. b
524 542 xy yxx
5 1 22
(e) 5 2 a and 3. b
5 2 34 568 xy xy
12 So,0.0715,00020003050. WW
Whensalesexceed$15,000,thecurrentjobpaysmore.
(c) No,ifyoucansell$20,000worthofgoods,then 12 WW (Note: 12 3400and 3300when 20,000.) WWs
78. (a)
74. (a) Lines c, d, e and f havepositiveslopes.
(b) Lines a and b havenegativeslopes.
(c) Lines c and e appearparallel. Lines d and f appearparallel.
(d) Lines b and f appearperpendicular. Lines b and d appearperpendicular.
75. Findtheequationofthelinethroughthepoints(0,32) and(100,212). 1809 1005
m FC FC or
320 32
9 5 9 5
1 9 5160 591600 CF FC For 72,22.2.FC
76. 0.51200 For137,0.51137200$269.87. Cx xC
Section P.2Linear Models and Rates of Change 19 © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
1 2
Newjoboffer:0.052300 Ws Ws
12
0.02300 15,000 WW ss s s
77. (a)
Currentjob:0.072000
(b) Usingagraphingutility,thepointofintersectionis(15,000,3050).
Analytically, 0.0720000.052300
175675 3.86years x x x 0 0 6 1000 0 1500 3500 20,000 (15,000, 3050)
Depreciationperyear: 875 5 $175 875175 yx where 05. x (b) 8751752$525 y (c) 200875175
INSTRUCTORUSE ONLY © Cengage Learning. All Rights Reserved.
NOT FOR SALE
79. (a) Twopointsare(50,780)and(47,825). Theslopeis 82578045 15. 47503 m 7801550 15750780151530 px pxx or 1 1530 15 x p
(b) If 855, p then 45 x units.
(c) If 795, p then 1 153079549 15 x units
80. (a) 18.913.97 yx quizscore,testscorexy
(b)
(c) If 17, x 18.913.971786.4. y
(d) Theslopeshowstheaverageincreaseinexamscore foreachunitincreaseinquizscore.
(e) Thepointswouldshiftverticallyupward4units. Thenewregressionlinewouldhavea y-intercept 4greaterthanbefore: 22.913.97. yx
81. Thetangentlineisperpendiculartothelinejoiningthe point(5,12)andthecenter(0,0).
82. Thetangentlineisperpendiculartothelinejoiningthe point 4,3 andthecenterofthecircle,(1,1). Slopeofthelinejoining(1,1)and 4,3 is
Slopeofthelinejoining(5,12)and(0,0)is 12 5
2014
Learning.
20 Chapter PPreparation for Calculus
©
Cengage
All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
yx
Theequationofthetangentlineis 5 125 12 5169 1212 5121690. yx
xy
134 143 Tangentline: 3 34 4 3 6 4 03424 yx yx xy 83. 20 xy 22 12112 11 552 2 2 d 84. 22 423310 7 43100 5 43 xyd 85. Apointontheline 1 xy is(0,1).Thedistance fromthepoint(0,1)to 50 xy is 22 10115 15 4 22. 22 11 d 86. Apointontheline
1,1 to 34100 xy is 2 2 314110 3410 9 55 34 d 0 0 1600 50 0 0 20 100 x y (5, 12) (0, 0) 4 4816 8 8 16 8 x y 2 624 2 6 2 4 (1, 1) (4, 3)
341 xy is 1,1.The distancefromthepoint
paration parationCalculus Calc INSTRUCTORUSE ONLY © Cengage Learning. All Rights Reserved.
Full Download: http://testbanktip.com/download/calculus-10th-edition-larson-solutions-manual/ Download all pages and all chapters at: TestBankTip.com
Calculus 10th Edition Larson Solutions Manual