21 Essential Tools for Python
Pythonisoneofthemostpopularprogramminglanguages.Itissimple,powerful,anddrivenbya communitythatcontributestoopen-sourceprojects.ThemanyPythonusesarewhythe languageissopopular;youcanbuildsoftware,developwebservices,performdataanalyticsand visualization,andtrainmachinelearningmodelsforfree.
ThelistofPythontoolsmentionedinthispostwillhelpbeginnersstarttheirPythondevelopment journey.ItwillalsohelpdataprofessionalsandPythondevelopersbecomeproductive.So, whateverstageofyourPythonjourneyyou’reat,thesetoolscanhelpyoumakethemostofthe language.
PythonDevelopmentTools
DI SCLOSURE
ThisPost/Pagemaycontainaffiliate links,meaningwhenyouclickthelinks andmakeapurchase,wereceivea commission.

POST
Learn SQL Commands —25 Most Popular SQL Commands
Learn SQL Commands
25 Most Popular SQL Commands

Learn the basics of the 25 most popular SQL commands and how to use them What is SQL? SQL

Learn Power BI Calculate function Tutorial
Learn Power BI Calculate function Tutorial Learn how to use the Power BI CALCULATE function while giving examples of how you can use it The
SQL Joins Cheat Sheet SQL Joins Cheat Sheet
With this SQL Joins cheat sheet, you'll have a handy reference guide to joining data in SQL SQL, also known as St

21 Essential Tools for Python

21 Essential Tools for Python Learn about the essential Python tools for software development, web scraping and development, data analysis a

Creating Synthetic Data with Python Faker Tutorial Creating Synthetic Data with Python Faker Tutorial Generating synthetic data using Python Faker to supplement real world data for applicatio

What is R? The Statistical Computing base for data science
What is R? The Statistical Computing base for data science Learn the history of R programming language and discover why it is the most wid
15 days of Power BI Complete Microsoft Power BI Bootcamp


DevelopmenttoolshelpustobuildfastandreliablePythonsolutions.ItincludesIntegrated DevelopmentEnvironment(IDE),Pythonpackagemanager,andproductiveextensions.These toolshavemadeiteasytotestthesoftware,debug,anddeploysolutionsinproduction.

1.JupyterNotebook
JupyterNotebookisaweb-basedIDEforexperimentingwithcodeanddisplayingtheresults.It isfairlypopularamongdatascientistsandmachinelearningpractitioners.Itallowsthemtorun andtestsmallsetsofcodeandviewresultsinsteadofrunningthewholefile.
TheJupyterNotebookletsusaddadescriptionandheadingusingmarkdownandexportthe resultintheformofPDFand.ipynbfiles.

WhenyoumixscientificcomputationwithPythondevelopment,yougetaJupyterNotebook. Nowadays,teachersareusingitforteachingdatasciencecourses,dataanalystsareusingitto createreports,andmachinelearningengineersareusingexperimentationandbuildinghighperformingmodelarchitecture.

YoucancheckoutafreecloudJupyternotebookontheWorkspacetobuildandshareanalytical reportsanddiscoverourJupytertutorialtolearnhowtouseit.

Itisnotgoinganywhereinthefuture,peoplearebuildingproduction-readysolutionsonit,and techgiantslikeAWSarealsoincorporatingitintothecloudcomputingecosystems.
2.Pip
PipisatoolthatusesPythonPackageIndextoinstallandmanagePythonsoftware.Thereare 393,343projectsforyoutodownloadandinstallwithlightningspeed.ThePythonecosystem worksonit.
Pipisnotjustaninstaller.YoucancreateandmanagePythonenvironments,install dependencies,andinstallpackagesfromthird-partyrepositoriesusingURLs.Learnmoreabout pipbyfollowingthePIPPythonTutorialtutorial.
VSCode
VisualStudioCodeisfree,lightweight,andapowerfulcodeeditor.Youcanbuild,test,deploy, andmaintainalltypesofapplicationswithoutleavingthesoftwarewindow.Itcomeswithsyntax highlighting,codeauto-completing,language,Git,andin-linedebugsupport.Youcanuse extensionstopre-buildsystemsanddeployapplicationstothecloud.
VSCodeisthemostpopularIDEintheworld,anditspopularityismainlyduetofreeextensions thatimproveuserexperience.Theextensionsallowdatascientiststorunexperimentsonthe Jupyternotebook,editmarkdownfiles,integrateSQLserver,collaborateonprojects, autocompletecode,andin-linecodehelp.Insteadofusingmultiplesoftware,youcanuse extensionsandruneverythingfromVSCodesoftwarelikebashterminalandbrowser
PythonWebScrapingTools

Webscrapingallowsdatascientistsandanalyticstocollectdatafromwebsites.Thehardpartof webscrapingistocleandataandconvertitintoareadableandstructuredformat.Inthissection, wewilllearnaboutthemostusedtoolstoperformwebscrapinganddatacleaning.

RequestsmakeiteasyforyoutosendHTTPrequests.Insteadofmanuallyadding authentication,arguments,andconfigurationquerystringstoyourURLs,youcansimplyuse requestsAPIandusethegetJSONmethod.TheRequestsisquiteapopularlibraryamongdata professionalsforscrapingmultiple-pagewebsites.

BeautifulSoupisusedtocleanandextractthedatafromHTMLandXLM.Itisusedtoparse HTMLtextandallowsdatascientiststoconverttextdataintoastructuredtableorpandas dataframe.
Withafewlinesofcode,youcanextractcomplexHTMLdata.Insomecases,youonlyneeda tabletag,andyoucanaccesswholedatawithoutparsingthetext.
LearnmoreaboutBeautifulSoupbyreadingWebScrapingUsingPython BeautifulSouptutorial.
6.Scrapy
Scrapyisanopen-sourceandcollaborativeframeworkforwebscrapingandwebcrawling.Itis fast,simple,andextensibleincrawlingwebsitesofmultiplepagestoextractdatainastructured format.Itisgenerallyusedfordatamining,monitoring,andautomatedtesting.
LearnmoreaboutScrapybyreadingourMakeWebCrawlerinPythontutorial.
PythonWebDevelopmentTools
Pythonhasoneofthebestwebdevelopmentframeworks.Youcancreateawebpage,web application,orwebAPIbytypingafewlinesofcode.Thesetoolsarebeginnerfriendlyanddon't requireyoutomasterlanguageslikeHTML,CSS,andJS.
The Top 8 Most Important
Offer
Learn PCB design Online from anywhere
1000 C Sharp Dot NET (C# NET)
Questions
iOS & Swift Most Important Interview Questions and

interview question answers for IoS, php, andr
books
Introduction to Journalism and Reporting
to Databases and SQL
How to Program in C++
Windows Server 2008 Complete Video Training
Corel Presentations
Application Training
Cisco CCNP Implementing Cisco
Switched Networks
August (72)
July (6)
June (1)
May (3)
April (11)
March (2)
February (6)
January (4)
2021 (31)
2020 (6)
2019 (19)
2018 (54)
7.Flask
Flaskisanopen-sourcewebframeworkforbuildingwebapplicationsandRESTAPI.Itiseasier tolearnthanDjango’sframework,andwithafewlinesofcode,youcanassembleasimpleweb APIthatyoucanrunlocally.
FlaskisbasedontheWSGI(WebServerGatewayInterface)toolkitandJinja2templateengine.It canbeusedtocreatesimpleaswellaslarge-scalewebapplicationssuchasbloggingwebsites, socialmediaapps,portfoliowebpages,machinelearningapplications,andanalyticsDashboard.
LearnmoreaboutFlaskbyreadingourMachineLearningModelsintoAPIswiththePython Flasktutorial.
Batteries
Streamlitisthefastestandeasiestwayofbuildingandsharingwebapplications.Youcancreate adatascienceportfolio,analyticsdashboard,machinelearningwebapplication,educational tutorial,andgeospatialandcomputervisionapplicationswithinafewminutes.Youjustneedto addawidgetthesameasdeclaringvariablesinPython.Noneedtolearnback-enddevelopment, defineroutes,andhandleHTTPrequests,HTML,CSS,andJavaScript.

Foradatascientistandanalyst,itisthegatewaytotheworldofwebdevelopment.Thatiswhy mostdatascientistusesStreamlittodemonstratefinancialreports,research,andmachine learningconcepts.CheckouttheStreamlittutorialtobuildyourfirstwebapplicationinafew minutes.
FastAPI
FastAPIisawebframeworkforcreatinghigh-performancewebAPIs.SimilartoStreamlit,it requiresafewlinesofcodetobuildproduction-readywebapplications.Afterdeployingtheweb app,youcanaccessitusingtheGUIinterfaceorsendHTTPrequests.
Itisfast,Intuitive,androbust.Youcandeploythemachinelearningmodelhassle-free.Itisalso usedforInternalcrisismanagementandauthenticationmanagementforwebapplications.
PythonDataAnalysisTools
Dataanalysistoolsallowuserstoingest,clean,andmanipulatedataforstatisticalanalysis. Everydataprofessionalmustunderstandthecorefunctionalityofthesetoolstoperformdata analysis,machinelearning,dataengineering,andbusinessintelligencetasks.
10.pandas
pandasisagatewayintotheworldofdatascience.Thefirstthingyoulearnasabeginneristo loadaCSVfileusingread_csv().pandasisanessentialtoolforalldataprofessionals.
Youcanloadadataset,cleanit,manipulateit,calculatestatistics,createvisualizations,andsave thedataintovariousfileformats.ThepandasAPIissimpleandintuitive.Youcanloadandsave CSVandtextfiles,MicrosoftExcel,SQLdatabases,andthefastHDF5fileformat.
LearnmoreaboutpandasbytakingourDataManipulationwithpandascourse.
Numpy
NumPyisafundamentalPythonpackageforscientificcomputations,andmostmoderntoolsare builtuponit.Asadatascientist,youwillusetheNumpyarrayformathematicalcalculationsand datawrangling.Itprovidesmultidimensionalarrayobjectstoperformfastoperationssuchas logical,shapemanipulation,sorting,selection,basicstaticsoperation,andrandomsimulation.
Numpywillhelpyouunderstandthefundamentalsofmathematicsindatascienceandhowto convertcomplexequationsintoPythoncode.Youcanuseittocreatemachinelearningmodels, customizedstaticalformulas,scientificsimulations,andperformadvanceddataanalyticstasks.
LearnmoreaboutNumPybytakingourIntroductiontoNumPycourse.
SQLAlchemy
SQLAlchemyisaPythonSQLtoolkitforyoutoaccessandmanagerelationaldatabases.Ituses ObjectRelationalMappertoprovidepowerfulfeaturesandflexibilityofSQL.
Thistoolisnecessaryfordatascientistsandanalyticswhoareusedtoperformdataprocessing andanalyticsinPython.YoucaneitheruseSQLscriptstoperformdataanalysisoruseanobjectbasedapproachwhereyoucanuseanintuitivePythonAPItoperformsimilartasksineffective ways.
LearnmoreaboutSQLAlchemybytakinganIntroductiontoDatabasescourseonDataCamp.
Daskisanessentialtoolforprocessingbigdataorfiles.Itusesparallelcomputingtoperform similartasksbylibrarieslikeNumPy,pandas,andscikit-learn.
Runningasimplelogicalfunctiononalargedatasetof4GBwilltakeatleast10minutes.Even withbettermachines,youcannotimproveprocessingtimestoafewseconds.Daskusesdynamic taskschedulingandparalleldatacollectiontoachievefastresultswiththesamemachine.
TheAPIissimilartopandasandscikit-learn.Itisflexible,nativetoPython,itcanscaleup(1000 core)anddown(singlecore),andprovidesrapidfeedbackanddiagnosticstoaidhumans.
LearnmoreaboutDaskbytakingourParallelProgrammingwithDaskcourse.
PythonDataVisualizationTools
Datavisualizationgiveslifetodataanalysis.Ifyouwanttoexplainthingstonon-technical executives,youneedtotelladatastorybydisplayingabarchart,lineplot,scatterplot,heat maps,andhistograms.Thevisualizationtoolshelpdataanalyticscreateinteractive,colorful,and cleanvisualizationwithfewlinesofcode.
14.Matplotlib
Matplotlibisagatewaytotheworldofdatavisualization.Youwilllearnaboutitinmanydata visualizationintroductions.


WithMatplotlib,youcancreatefullycustomizablestatic,animated,andinteractivevisualizations. It’sintuitive,andyoucanuseittoplot3D,multilevel,anddetailedvisualization.Thereare hundredsofexamplesofdifferentvisualizationsavailableinthegallery.

YoucanlearnmoreaboutMatplotlibinourDataVisualizationwithMatplotlibcourse..
15.Seaborn
Seabornisahigh-levelinterfacebasedonMatplotlibforcreatingattractivestatisticalgraphics. SimilartoMatplotlib,youcanproduceinteractivevisualizationbytypingasinglelineofcode.
Itishighlyadaptableandworkswonderswhenyouarenewtodatavisualization.Forcustomizing, youcanalwaysusematplotlibtocreatemultiplegraphs,editaxis,title,orevencolors.Insome cases,seabornwillcalculateeverythingforyouanddisplaydistplot,violinplot,residplot,implot, jointplot,andboxplot.
LearnmoreaboutSeabornbytakingaDataVisualizationwithSeaborncourseonDataCamp.

16.Plotly
WhenyouwantthefeaturesofTableauorPowerBI,youusethePlotlyPythonlibrarytodisplay interactiveandpublication-qualitygraphs.Youcanzoomintoagraph,isolateasinglebar,filter things,andevenanimateittoyourneeds.
Itcomeswithcustomcontrolsandallowsyoutoanimateyourvisualizationsandworkondata transformation.PlotlyalsocontainsJupyterwidgets,3Dcharts,AIcharts,financialcharts,and scientificcharts.
PlotlyisthebesttooltocreatedataanalyticsJupyter-basedreports.Insteadofcreatingmultiple staticplots,youcanmakeoneandaddcustomcontrolstoexploreandexplaindatainsights.
YoucandiscoverhowtoutilizePlotlywithourDataVisualizationwithPlotlycourse.
Pandas-profiling
Pandas-profilingisanAutoEDAtoolforcreatingexploratorydataanalyticsreportswithasingle lineofcode.Thereportincludescolumntypes,missingvalues,uniquevalues,quantilestatistics, descriptivestatistics,histogram,correlation,textanalysis,andfileandimageanalysis.


Itisquiteahelpfultoolwhenyouhavelesstimetoexplore.Forexample,duringtechnicaltests, preparationforteammeetings,andparticipatinginthecompetition.
PythonMachineLearningTools
Machinelearningtoolsareusedfordataprocessing,dataaugmentation,andbuilding,training, andvalidationofmachinelearningmodels.Thesetoolsprovideacompleteecosystemtoperform anytaskfromimageclassificationtotimesseriesforecasting.
Scikit-learnisanopen-sourcetoolforperformingpredictiveanalysis.ItisbuiltonNumpy,Scipy, andmatplotlib.Scikit-learnhasmademachinelearningaccessibletoeveryone.Itisbeginner friendly,andtheinterfaceisdesignedtomatchtheneedsofprofessionals.
Scikit-learnallowsyoutoperformclassification,regression,clustering,dimensionalityreduction, datapreprocessing,andfeatureextractions.Itismostlyusedfortabulardataandexecutingdata augmentationfordeeplearningmodels.Italsoallowsyoutostreamlinemultipleprocesseswith thehelpofmachinelearningpipelines.
Learnmoreaboutscikit-learnbytakingourSupervisedLearningwithscikit-learncourse.
Keras
Kerasisadeeplearningframeworkforprocessingunstructureddataandtrainingitonneural networks.ItisbuiltontopofTensorFlow2toprovideGPUandTPUacceleration.WithKeras,you candeployyourmodelsontheserver,browser,android,andembeddedsystems.
KerasAPIoffersyouamodelinterface,neuralnetworklayers,callbacksAPI,optimizers,metrics, dataloaders,pre-trainedmodels,modeltuning,andAPIforcomputervisionandnaturallanguage processing.Theinterfaceissimple,fast,andpowerful.Itisbeginnerfriendlyandagatewaytothe worldofdeepneuralnetworks.
LearnmoreaboutKerasbytakingourDeepLearningwithKerascourseorcheckingout ourKerasdeeplearningtutorial.
PyTorch
PyTorchisanopen-sourcedeeplearningframeworkforresearchersandmachinelearning practitioners.ItprovidesamoredirectdebuggingexperiencethanKeras,whileallowingyouto createyourcustomtrainer,lossfunction,andmetrics.
ThekeyfeaturesofPyTorcharemodelservingandproductionsupport,distributedtraining,a robustecosystem,andcloudsupport.
PyTorchprovidesdedicatedsupportforNLP,computervision,audio,andtabulardata.Withafew linesofcode,youcanloadpre-trainedmodelsandfinetunethemonanewbutsimilardataset.
Itisthefutureofdeeplearningapplications,andmodernmachinelearningresearchisdrivenby theTorchecosystem.
CheckoutourDeepLearningwithPyTorchcoursetolearnmoreabouttheapplicationsof PyTorch.
OpenCV
OpenCVisacomputervisionframeworkfordevelopingreal-timeapplications.Youcanuseitto processimages,visualizethemwithlabelsandsegmentation,augmentimagesandvideosfor improvingmachinelearningperformance,andviewreal-timeresultswithlabels.Itisanessential toolforperformingimageprocessingandtrainingdeeplearningmodelsforcomputervisiontasks.
LearnmoreaboutOpenCVbytakinganImageProcessingcourseonDataCamp.
Conclusion
These21essentialPythontoolsarenecessaryforsoftwareandwebdevelopment,webscraping, dataanalyticsandvisualization,andmachinelearning.Evenifyouarenotadataprofessional, youmustunderstandthefunctionalitiesofthesetoolstomakethemostoutofthedevelopment experience.
IfyouarenewtoPythonandbecomeaprofessionalPythondeveloperinnotime,checkout thePythonProgrammercareertrack.Andifyouareinterestedinstartingadatasciencecareer, checkoutDataScientistwithPythoncareertrack.
CoursesforPython
Levelupyourdatascience skillsbycreatingvisualizations usingMatplotliband manipulatingDataFrameswith pandas.
IntermediatePython 4Hours
HugoBowne-Anderson CourseInstructorContinuetobuildyourmodern DataScienceskillsbylearning aboutiteratorsandlist comprehensions.
PythonDataScience Toolbox(Part2) 4Hours
HugoBowne-Anderson CourseInstructor


