A Review study on the Analysis and Design of Underground Tunnel Support by FEM

Page 1

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

A Review study on the Analysis and Design of Underground Tunnel Support by FEM

1Anand Yadav, 2Jitendra Kumar, 3Ankush Kumar Jain

1M.Tech Student, 2,3Assistant Professor, Civil Engineering Department Poornima University, Jaipur,India ***

Abstract - Underground structures have recently gained importance all over the world. Successfully completed these projectsarebasedoncarefulandrealisticdesign,onethatisneitheroptimistic,conservative,andconsiderate Itistheneedof themoment Thisarticlepresentsacomparativestudyofmediadesign,suchasTerzhagi'sloadtheory.Quantitativemethods forrockmassquality(Q),androckmassassessmentonBieniawskiandRS2Numericalmodeling.Theresultsshowedthatthe finalsupportmeasuressuchascasting,thickness,rockydome,length,thefrequency,andrequirementsofsteelsupportare better.Basedonengineeringreasoningandanalyticalmethods,PSAsfortunnelshavebeenobtained.

Key Words: RMR, Design, Support measures, Rocks

1. INTRODUCTION

1.1 Geophysical studies: Geophysicalsurveysallowdistinguishingterrainsandrocksbasedontheirphysicalcharacteristics.The informationgainedfromasurfacegeophysicalsurveycanbeusedtochooseoptimallocationsfortheplacementofboreholes, monitor wells or test pits, as well as to correlate geology between wells and boreholes. The information derived from a geophysical surveycanalso beusedto reducetherisk of drillinginunsuitablearea.Itis veryimportantthattheresults of GeophysicalsurveysshallbeintegratedwiththeresultsofotherGeologicalinvestigationssothataccurateinterpretationofthe Geophysicalsurveyscanbemade.

1.2 Geoelectric survey basics: ResistivityGeophysicalsurveysmeasurevariationsintheelectricalresistivityoftheground,by applyingsmall electriccurrentsacrossarrays ofground electrodes.Thesurveydatais processedtoproducegraphicdepth sectionsofthethicknessandresistivityofsubsurfaceelectricallayers(sampleshowninFigure1).Theresistivitysectionsare correlated with ground interfaces such as soil and fill layers or soil-bedrock interfaces, to provide detailed information on subsurfacegeologyconditions.

Figure 1: Sample Output of data processing: Electrical Resistivity of Subsurface Layers

Measurementofgroundresistivityinvolvespassinganelectricalcurrentintothegroundusingapairofsteelorcopperelectrodes andmeasuringtheresultingpotentialdifferencewithinthesubsurfaceusingasecondpairofelectrodes.Thesearenormally placedbetweenthecurrentelectrodesasshowninFigure-2.

© 2022,
|
Certified Journal | Page1071
IRJET
Impact Factor value: 7.529 | ISO 9001:2008

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

Figure 2: Scheme of Electric Currents across arrays of Ground Electrodes

Ingeo-electricalprospectingthebasicpurposeistodeterminetheelectricalresistivity,relativetotheformationsthatmakeupthe subsoil. Theresistivityisaparameterindependentofthegeometricalcharacteristicsoflithologicalformationscoveredandis definedastheelectricalresistanceperunitvolume.

AllLithologyhaveauniquerangeofresistivityvalues,andtheydependonthedegreeofhomogeneity,thedegreeofalterationand, lithoidrocks,degreeoffracturing.Inthecaseofloosesoils,suchasrecentalluvialdeposits,theresistivitydependsonthesize,the fluidcontainedthereinandthequantityofdissolvedsalts.Exceptionstothisrulearetheclaysthat, although compact, always have extremely lowresistivity values,and this is mainly due to thecharacteristicsofthecrystallatticeofthemineralsthat composethemandtheirdegreeofsaturation.

Equipment: ElectricalImagingSetup-TheequipmentusedinthisinvestigationisA.C.resistivitymeterWGMDGD-10.Thisdigital resistivitymeterhasbeendesignedforuseinshallowaswellasdeepresistivitysurvey. Theresistivitymeterisconsistingoftwo unitthatismainunitandmultiplexerunit.Bothunitsarepoweredby48to98Vchargeablebatteries.Currentupto2Ampcanbe sentintothegrounddependingonthesubsurfacegroundconditions.

Thedevelopedpotentialduetoresistanceofferedbysubsurfacehorizonscanbemeasuredbyinstrumentinitsmemorywith resolutionofupto0.001mV.Becausetheinstrumentismicroprocessorbased,byapplyingthecurrentintotheground,the equipmentprovidesthecontinuousapparentresistivityforvariouselectrodesystemswithdifferentarray.60stainlesssteel electrodes,cablesandaccessorieswerealsoused.

©
Certified Journal | Page1072
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

Figure 3: Instrument used for the 2D resistivity test

2. LITERATURE REVIEW

Seismicperformancesandresponsesof underground structures subjected to seismic force, a widecollectionof casehistorieswasreviewedfordamageclassification. 

Several databases are available worldwide; however, there are no mature classification standards for damage to tunnels.Inthiscontext,adamageclassificationisproposedtoshowpossiblecausesofdamage. 

Restorationdesigncriteriafor the Tavarayama Tunnel have been developed with reference to therestoration designcriteriafortheTuyaTunnel.Inadditiontothewidthofcracks,crackdistribution,andgeologicalconditions consideredinthetraditionaldesigncriteria,twootheraspectsareincludedinthiscriterion,subsidence/outflowof thepavementduetoearthquakesandgroundwaterleakage.

Theeffectsoftunnelsondrivingperformancewereexaminedwithadrivingsimulatorandstatisticallyverified.The findingsshowthatwhendriversenteredtheroadtunnel,theymovedsidewaysawayfromtheright-handtunnelwall andsloweddownslightly. 

The number of tubes,length,vertical andhorizontal alignment within thetunnel,type ofconstruction and other featuresandfacilitiesofthetunnel)anddriverperformanceinvestigationshouldbeextendedacrossdifferenttraffic configurations(intermsoftrafficvolume,unidirectionalorbi-directional,vehiclepercentageheavy)andotherroad categories, to increase the use of driving simulators in the road design community and to provide practical applicationsintrafficengineering.

©
Journal | Page1073
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified
Xupeng Zhang, Yujing jiang, Kazuhiko Magawa: JAN 2020
Alessandro Calvi, Maria Rosaria De Blasiis, Claudia Guattari: 2012

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

Xueji Wang, Gang Liu: 2016

Theunderwaterfloatisanewkindofcartunnel.Similarprinciplesarederivedfromthedesignandconstructionofthe bridge,referringtothefindingsofpreviousresearchandthesimplificationoftheIyengarrachannel,whencombined withaspecificprojectcontext.Thisincreasestheefficiencyoftheproject, andmakes the planting processand technical complexity in the management environment. Therefore, there are still other issues for further study, including:

Impact of earthquake and underground earthquake, Although the pier can be thought of as a non-slip push-pull pedestalandtheendofanauxiliarypedestal,topreventtheoperationofwater,andsoon.Thecomplexdynamic responseofthesupportingpitsandpiersduringconstructionandoperation,causedbyseaflowontheriverbedand windandviceversa,isnecessaryforfurtherresearchandexperimentation.

Bella Nguyen, Ioannis Brilakis: April 2016

Acomprehensivecompilationofthenatureandscopeofbridgeandtunnelimpactproblems,followedbyprevious practiceandresearch.WehavenotedthateffectiveOHVpreventionmeasuresexistintheformofpassiveandadhoc regimens,butweemphasizethattheyarenotsufficientforacomprehensivesolution.

Vision-based methods have so far received little attention as potential solutions to BrTS management problems. Despiteitspotentialimportance,thereislimitedcomputervisionresearchonOHVdetection,andthereisnovisionbasedsystemonthemarket.Ifwecankeepthebenefitsofthelaserbeamsysteminanaffordablesingle-camerasetup, itwilleliminatetheneedforadditionalexternalinfrastructure.Itwillalsoreduceoverallinstallationcostsbyanorder ofmagnitudesmallerthantraditionalsystemsbycreatingtransmitter/receiverpolesandredundantloopsystems.

Kairong Hong: Dec2017

Over the past three decades, Chinese engineers have accumulated a wealth of experience in underwater tunnel construction,havemasteredafullrangeoftechnologiestobuildlongunderwatertunnels,astrongtechnologybase andnewcapabilities.Wenowhavethetechnologicalabilitytobuildunderwatertunnelsforalmostanypurposein complexgeologicalandenvironmentalconditions.

To increase risk control in underwater tunnel construction and project investment, as well as to ensure the operationalsafetyofunderwatertunnels,werecommendinspectingthedeep-seaoperatingplatformatsea,studying underwatertunnelgeologyinspectiontechnologyforstrengtheningandintensivelystudyingdrivingspeedandsafety. underwatertunnelsfromSingleGate,improvedoperationalriskcontroltechnology,ventilationandenergysaving technologyforunderwatertunnels.

3. METHODOLOGY

3.1 Methodology of Drilling: TheworkofcoredrillingiscarriedoutwithLongyear/L&TmakeL-38/Vol-90/Voltasmakeor equivalentmodelsofhydraulicfeed,enginedrivenmachines,mountedonskidsdulyprovidedwithrotaryhead.Adrillingtothe bottomofacorebarrel,whichisturnisattachedtothebottomofastringofhollowdrillrods,isrotatedatahighspeedwitha downwardthrustbythehydraulicdrillingrig.Onrotationwithdownwardthrust,thecoringbitcutsanangularspaceinthestrata andanintactcoreentersthebarrel,toberemovedasasample.

WateriscontinuouslypumpeddownthedrillrodswiththehelpoftriplexwaterpumpsofVoltas/Royalbeammake(modelTD200&TD-400)havingsuitablefeedingcapacityfordrillinguptorequireddepth.Thiswateremergesunderpressurethrough holesinthebitonbarrel.Thedrillingfluid(water)coolsandlubricantsthebitsandcarriedupthecuttingstothesurface.The drillingrigisprovidedwithnecessaryfacilitiestoregulatethespindlespeed,bitpressureandwaterpressureduringcoredrilling togetgoodcorerecovery.Casingpipesofsuitablesizeareloweredintheboreholeendseatedonbedrockorinafirmformationto preventcasinginoftheborehole.Therecoveredcoreispleasedinwoodencoreboxeswithpropermarkingsaccordingtoscaleas perIS:4078-1980.AllthecoredrillingobservationsarerecordedinthefieldregisteredasperIS:5313-1980.

4. MODELING AND ANALYSIS

4.1 Permeability tests: Permeabilityisanimportanthydrologicalparameterrequiredtodeterminetheporosityandfracturenessofrockmass.Methodusedfordeterminationofpermeabilitydependsonthestrata.InsituPermeabilitywasdeterminedby:-

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1074

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

(I)ConstantHeadMethodtestswerecarriedoutinoverburdenasperIS:5529(part-I)-1985.

(II)CyclicSingle/DoublePackertestwerecarriedoutinbedrockasperIS:5529(Part-II)-1985.

4.2 Standard Penetration test: Thestandardpenetrationtest(SPT)isanin-situdynamicpenetrationtestdesignedtoprovide informationonthegeotechnicalengineeringpropertiesofsoil.Thetestusesathick-walledsampletube,withanoutsidediameter of50mmandaninsidediameterof35mm,andalengthofaround650mm.Thisisdrivenintothegroundatthebottomofa boreholebyblowsfromaslidehammerwithamassof63.5kg(140lb)fallingthroughadistanceof760mm(30in).

Thesampletubeisdriven150mmintothegroundandthenthenumberofblowsneededforthetubetopenetrateeach150mm (6in)uptoadepthof450mm(18in)isrecorded.Thesumofthenumberofblowsrequiredforthesecondandthird6in.of penetrationistermedthe"standardpenetrationresistance"orthe"N-value".

Figure 4: SPT Technique

4.3 Analytical Modelling Approach: Duringtheanalyticalmodellingapproach,separatepartialfactorsofsafetywereused forloadsandresistanceofconstructioncomponentsasperthefollowingtable:

Table 1: Partial factors of safety for analytical modelling approach

4.4 Finite-Element Modelling Approach: Withinthefinite-elementmodellingapproachonlythesprayedconcreteliningwas consideredastunnelsupport.

5. CONCLUSION

Duringinvestigationstage,thetunnellingmediawasclassifiedonthebasisofobservationmadebysurfacemapping,drillhole dataandresistivitysurvey.Inordertoachieverealisticvaluesofgroundtypesandgroundbehaviourtypes,detailsofrockmass

©
Journal | Page1075
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified
Abbreviation Factor
Safety Dead
(Rock
γF 1.35 Sprayed
γC 150 Rock
γS F 115
γS 115
Element
of
Loads
mass)
Concrete
Bolts
SkinFriction
RockBolts–SteelTendon

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

characteristicswererecordedfromthesurfaceoutcropandboreholedataandaccordinglyprojectedinthetunnelgrade.However, therearestructurallimitationtoprojectthediscontinuities/share zones at the tunnel grade but affords have been made to justify the geologicaluncertaintiestobeencounteredduringtunnelling.

Asdisplacementsalreadystarttodevelopbeforeexcavationandtheirvelocityislikelytobehighestrightafterexcavation,the importanceoftimely(maximum2-3hafterexcavation)zeroreadingisemphasizedatthispoint.Thefollowingfigureshowsa typicalcourseofdisplacementduringtunneladvance.

Figure5: Excerpt from OEGG guideline “Geotechnical Monitoring in Conventional Tunnelling” 2014

Theobservationofdisplacementmeasurementsisessentialinordertorecognizeshearzonesorsectionswithsqueezingground behaviouratanearlystageinordertoreactbyadaptingthesupportmeasuresaccordingly.Basedontheinitialdisplacement (within24hoursfromzero-reading),thefollowingtableshowsrecommendedthresholdvaluesfortheadaptionofsupportclasses fortheupcomingrounds:

Table 2: Threshold values for initial displacement (first 24h), corresponding support classes

Measured initial displacement* Adapt support class to: >50mm IV-A >65mm IV-B >80mm IV-C >120mm IV-D

Table 3: shows recommended measures for common problems during excavation

Problem Recommended Measures

Low-CoverSections (≤50moverburden)

StiffTunnelSupport(SC-IV-Aor-B),implementinginvertandtemporaryinvertintop heading.Timelycompletionoftunnelprofile(shortdistancebetweenexcavationoftop heading–temporaryinvertandbench–invert,respectively).Ifnecessary,reduce distancebetweenexcavationstages

Wateringresstotunnel Installadequatetunneldrainagesystem(noopenditches,butclosedpipesystem), conveypondedwaterawayfromtunnelface,executedrainagedrillingsindirection ofadvance

Instabilityoftunnelface

Subdivisionofexcavationsteps,immediatesealingoftunnelfacewithshotcrete,if necessary,usewiremeshandgroutedSD-rockboltsforstabilization

Fallingorslidingofwedgesand blocksintunnelroof Usegroutedfore-poling(general)andfrictionanchoredrock-bolts(blocks)

2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |

©
Page1076

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

“Re-start”ofdisplacements Visualobservation,increaseinreadingfrequencyofgeotechnicalmeasurements, drillingofadditional(longer)rockbolts,implementinvert.Takemeasuresasper actionplan.

6. REFERENCES

General papers

1. Xuepeng Zhang Jan 2020 “Mountain tunnel under earthquake force: A review of possible causes of damages and restorationmethods”

2. AlessandroCalvi2012“SustainabilityofRoadInfrastructuresAnEmpiricalStudyoftheEffectsofRoadTunnelon Driving”

3. GangLiu2016“2ndInternationalSymposiumonSubmergedFloatingTunnelsandUnderwaterTunnelStructures Researchonstraitcrossingsolutionofsubmergedfloatingtunnel(Underwatercontinuousgirderbridge)”

4. BellaNguyenApril2016“6thTransportResearchArenaApril18-21,2016,Understandingtheproblemofbridgeand tunnelstrikescausedbyover-heightvehicles”

5. KaironghongDec2017“TypicalUnderwaterTunnelsintheMainlandofChinaandRelatedTunnelingTechnologies”

6. Liangwen wei 2016 “Research on Tunnel Engineering Geological Exploration System Based on Tunnel Seismic PredicationandGround-penetratingRadar”

7. ZhongZhouJan2019“InfluenceZoneDivisionandRiskAssessmentofUnderwaterTunnelAdjacentConstructions”

8. JunYan,WenkangMay2021“ResearchonSurfaceSubsidenceofLong-SpanUndergroundTunnel”

9. NandoliaUsamaJuly2020“ComparativeAnalysisofUnderground&UnderwaterTunnel”

10. Yuanpu Xia July2018 “Entropy-BasedRisk Control of Geological Disasters inMountainTunnelsunder Uncertain Environments”

11. MinYangandGuafengLiFeb2022“FailureCharacteristicsandTreatmentMeasuresofTunnelsinExpansiveRock Stratum”

12. BinGongSep2018“TheSeepageControloftheTunnelExcavatedinHigh-PressureWaterConditionUsingMultiple TimesGroutingMethod”

13. Weixing Qiu March 2022 “A multi-source information fusion approach in tunnel collapse risk analysis based on improvedDempster–Shaferevidencetheory”

14. ChuangangFanAug2021“Experimentalstudy ontheeffectofcanyoncross windontemperaturedistributionof buoyancy-inducedsmokelayerintunnelfires”

15. IrfanAhmadShahandMohammadZaidDec2022“BehaviourofUndergroundTunnelunderStrongGroundMotion”

16. YuWang2021“Calculationofdrainagevolumeduringtunnelconstructionbasedonthecontrolofnegativeeffectsof ecosystem”

17. J.MMolinaGarciapardoFeb2009“PropagationinTunnels:ExperimentalInvestigationsandChannelModelingina WideFrequencyBandforMIMOApplications”

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |

Page1077

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

Standards

1. IS456(2000),Plainandreinforcedconcrete–Codeofpractice

2. IS1786(2008),Highstrengthdeformedsteelbarsandwiresforconcretereinforcement–specification

3. IS1893(reaffirmed2016)Criteriaforearthquakeresistantdesignofstructures –Part1:GeneralProvisionsand Buildings(noinformationontunnels)

4. IS4880(1972,reaffirmed2000)CodeofpracticefordesignoftunnelsconveyingwaterPartI-IV

5. Eurocode0:Basisofstructuraldesign,EN1990:2013-03-15,EuropeanCommitteeofStandardization

6. Eurocode 1: Actions on structures, EN 1991-1-1: 2011-09-01, Part 1-1: General actions – Densities, self- weight, imposedloadsforbuildings,EuropeanCommitteeofStandardization

7. Eurocode2:Designofconcretestructures,EN1992-1-1:2015-02-15,Part1-1:generalrulesandrulesforbuildings, EuropeanCommitteeofStandardization

8. Eurocode7:GeotechnicalDesign,EN1997:2014-11-15,Part1:Generalrules,EuropeanCommitteeofStandardization.

2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |

©
Page1078

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.