International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072
1Anand Yadav, 2Jitendra Kumar, 3Ankush Kumar Jain
1M.Tech Student, 2,3Assistant Professor, Civil Engineering Department Poornima University, Jaipur,India ***
Abstract - Underground structures have recently gained importance all over the world. Successfully completed these projectsarebasedoncarefulandrealisticdesign,onethatisneitheroptimistic,conservative,andconsiderate Itistheneedof themoment Thisarticlepresentsacomparativestudyofmediadesign,suchasTerzhagi'sloadtheory.Quantitativemethods forrockmassquality(Q),androckmassassessmentonBieniawskiandRS2Numericalmodeling.Theresultsshowedthatthe finalsupportmeasuressuchascasting,thickness,rockydome,length,thefrequency,andrequirementsofsteelsupportare better.Basedonengineeringreasoningandanalyticalmethods,PSAsfortunnelshavebeenobtained.
Key Words: RMR, Design, Support measures, Rocks
1.1 Geophysical studies: Geophysicalsurveysallowdistinguishingterrainsandrocksbasedontheirphysicalcharacteristics.The informationgainedfromasurfacegeophysicalsurveycanbeusedtochooseoptimallocationsfortheplacementofboreholes, monitor wells or test pits, as well as to correlate geology between wells and boreholes. The information derived from a geophysical surveycanalso beusedto reducetherisk of drillinginunsuitablearea.Itis veryimportantthattheresults of GeophysicalsurveysshallbeintegratedwiththeresultsofotherGeologicalinvestigationssothataccurateinterpretationofthe Geophysicalsurveyscanbemade.
1.2 Geoelectric survey basics: ResistivityGeophysicalsurveysmeasurevariationsintheelectricalresistivityoftheground,by applyingsmall electriccurrentsacrossarrays ofground electrodes.Thesurveydatais processedtoproducegraphicdepth sectionsofthethicknessandresistivityofsubsurfaceelectricallayers(sampleshowninFigure1).Theresistivitysectionsare correlated with ground interfaces such as soil and fill layers or soil-bedrock interfaces, to provide detailed information on subsurfacegeologyconditions.
Measurementofgroundresistivityinvolvespassinganelectricalcurrentintothegroundusingapairofsteelorcopperelectrodes andmeasuringtheresultingpotentialdifferencewithinthesubsurfaceusingasecondpairofelectrodes.Thesearenormally placedbetweenthecurrentelectrodesasshowninFigure-2.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072
Ingeo-electricalprospectingthebasicpurposeistodeterminetheelectricalresistivity,relativetotheformationsthatmakeupthe subsoil. Theresistivityisaparameterindependentofthegeometricalcharacteristicsoflithologicalformationscoveredandis definedastheelectricalresistanceperunitvolume.
AllLithologyhaveauniquerangeofresistivityvalues,andtheydependonthedegreeofhomogeneity,thedegreeofalterationand, lithoidrocks,degreeoffracturing.Inthecaseofloosesoils,suchasrecentalluvialdeposits,theresistivitydependsonthesize,the fluidcontainedthereinandthequantityofdissolvedsalts.Exceptionstothisrulearetheclaysthat, although compact, always have extremely lowresistivity values,and this is mainly due to thecharacteristicsofthecrystallatticeofthemineralsthat composethemandtheirdegreeofsaturation.
Equipment: ElectricalImagingSetup-TheequipmentusedinthisinvestigationisA.C.resistivitymeterWGMDGD-10.Thisdigital resistivitymeterhasbeendesignedforuseinshallowaswellasdeepresistivitysurvey. Theresistivitymeterisconsistingoftwo unitthatismainunitandmultiplexerunit.Bothunitsarepoweredby48to98Vchargeablebatteries.Currentupto2Ampcanbe sentintothegrounddependingonthesubsurfacegroundconditions.
Thedevelopedpotentialduetoresistanceofferedbysubsurfacehorizonscanbemeasuredbyinstrumentinitsmemorywith resolutionofupto0.001mV.Becausetheinstrumentismicroprocessorbased,byapplyingthecurrentintotheground,the equipmentprovidesthecontinuousapparentresistivityforvariouselectrodesystemswithdifferentarray.60stainlesssteel electrodes,cablesandaccessorieswerealsoused.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072
Figure 3: Instrument used for the 2D resistivity test
Seismicperformancesandresponsesof underground structures subjected to seismic force, a widecollectionof casehistorieswasreviewedfordamageclassification.
Several databases are available worldwide; however, there are no mature classification standards for damage to tunnels.Inthiscontext,adamageclassificationisproposedtoshowpossiblecausesofdamage.
Restorationdesigncriteriafor the Tavarayama Tunnel have been developed with reference to therestoration designcriteriafortheTuyaTunnel.Inadditiontothewidthofcracks,crackdistribution,andgeologicalconditions consideredinthetraditionaldesigncriteria,twootheraspectsareincludedinthiscriterion,subsidence/outflowof thepavementduetoearthquakesandgroundwaterleakage.
Theeffectsoftunnelsondrivingperformancewereexaminedwithadrivingsimulatorandstatisticallyverified.The findingsshowthatwhendriversenteredtheroadtunnel,theymovedsidewaysawayfromtheright-handtunnelwall andsloweddownslightly.
The number of tubes,length,vertical andhorizontal alignment within thetunnel,type ofconstruction and other featuresandfacilitiesofthetunnel)anddriverperformanceinvestigationshouldbeextendedacrossdifferenttraffic configurations(intermsoftrafficvolume,unidirectionalorbi-directional,vehiclepercentageheavy)andotherroad categories, to increase the use of driving simulators in the road design community and to provide practical applicationsintrafficengineering.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072
Theunderwaterfloatisanewkindofcartunnel.Similarprinciplesarederivedfromthedesignandconstructionofthe bridge,referringtothefindingsofpreviousresearchandthesimplificationoftheIyengarrachannel,whencombined withaspecificprojectcontext.Thisincreasestheefficiencyoftheproject, andmakes the planting processand technical complexity in the management environment. Therefore, there are still other issues for further study, including:
Impact of earthquake and underground earthquake, Although the pier can be thought of as a non-slip push-pull pedestalandtheendofanauxiliarypedestal,topreventtheoperationofwater,andsoon.Thecomplexdynamic responseofthesupportingpitsandpiersduringconstructionandoperation,causedbyseaflowontheriverbedand windandviceversa,isnecessaryforfurtherresearchandexperimentation.
Acomprehensivecompilationofthenatureandscopeofbridgeandtunnelimpactproblems,followedbyprevious practiceandresearch.WehavenotedthateffectiveOHVpreventionmeasuresexistintheformofpassiveandadhoc regimens,butweemphasizethattheyarenotsufficientforacomprehensivesolution.
Vision-based methods have so far received little attention as potential solutions to BrTS management problems. Despiteitspotentialimportance,thereislimitedcomputervisionresearchonOHVdetection,andthereisnovisionbasedsystemonthemarket.Ifwecankeepthebenefitsofthelaserbeamsysteminanaffordablesingle-camerasetup, itwilleliminatetheneedforadditionalexternalinfrastructure.Itwillalsoreduceoverallinstallationcostsbyanorder ofmagnitudesmallerthantraditionalsystemsbycreatingtransmitter/receiverpolesandredundantloopsystems.
Over the past three decades, Chinese engineers have accumulated a wealth of experience in underwater tunnel construction,havemasteredafullrangeoftechnologiestobuildlongunderwatertunnels,astrongtechnologybase andnewcapabilities.Wenowhavethetechnologicalabilitytobuildunderwatertunnelsforalmostanypurposein complexgeologicalandenvironmentalconditions.
To increase risk control in underwater tunnel construction and project investment, as well as to ensure the operationalsafetyofunderwatertunnels,werecommendinspectingthedeep-seaoperatingplatformatsea,studying underwatertunnelgeologyinspectiontechnologyforstrengtheningandintensivelystudyingdrivingspeedandsafety. underwatertunnelsfromSingleGate,improvedoperationalriskcontroltechnology,ventilationandenergysaving technologyforunderwatertunnels.
3.1 Methodology of Drilling: TheworkofcoredrillingiscarriedoutwithLongyear/L&TmakeL-38/Vol-90/Voltasmakeor equivalentmodelsofhydraulicfeed,enginedrivenmachines,mountedonskidsdulyprovidedwithrotaryhead.Adrillingtothe bottomofacorebarrel,whichisturnisattachedtothebottomofastringofhollowdrillrods,isrotatedatahighspeedwitha downwardthrustbythehydraulicdrillingrig.Onrotationwithdownwardthrust,thecoringbitcutsanangularspaceinthestrata andanintactcoreentersthebarrel,toberemovedasasample.
WateriscontinuouslypumpeddownthedrillrodswiththehelpoftriplexwaterpumpsofVoltas/Royalbeammake(modelTD200&TD-400)havingsuitablefeedingcapacityfordrillinguptorequireddepth.Thiswateremergesunderpressurethrough holesinthebitonbarrel.Thedrillingfluid(water)coolsandlubricantsthebitsandcarriedupthecuttingstothesurface.The drillingrigisprovidedwithnecessaryfacilitiestoregulatethespindlespeed,bitpressureandwaterpressureduringcoredrilling togetgoodcorerecovery.Casingpipesofsuitablesizeareloweredintheboreholeendseatedonbedrockorinafirmformationto preventcasinginoftheborehole.Therecoveredcoreispleasedinwoodencoreboxeswithpropermarkingsaccordingtoscaleas perIS:4078-1980.AllthecoredrillingobservationsarerecordedinthefieldregisteredasperIS:5313-1980.
4.1 Permeability tests: Permeabilityisanimportanthydrologicalparameterrequiredtodeterminetheporosityandfracturenessofrockmass.Methodusedfordeterminationofpermeabilitydependsonthestrata.InsituPermeabilitywasdeterminedby:-
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072
(I)ConstantHeadMethodtestswerecarriedoutinoverburdenasperIS:5529(part-I)-1985.
(II)CyclicSingle/DoublePackertestwerecarriedoutinbedrockasperIS:5529(Part-II)-1985.
4.2 Standard Penetration test: Thestandardpenetrationtest(SPT)isanin-situdynamicpenetrationtestdesignedtoprovide informationonthegeotechnicalengineeringpropertiesofsoil.Thetestusesathick-walledsampletube,withanoutsidediameter of50mmandaninsidediameterof35mm,andalengthofaround650mm.Thisisdrivenintothegroundatthebottomofa boreholebyblowsfromaslidehammerwithamassof63.5kg(140lb)fallingthroughadistanceof760mm(30in).
Thesampletubeisdriven150mmintothegroundandthenthenumberofblowsneededforthetubetopenetrateeach150mm (6in)uptoadepthof450mm(18in)isrecorded.Thesumofthenumberofblowsrequiredforthesecondandthird6in.of penetrationistermedthe"standardpenetrationresistance"orthe"N-value".
Figure 4: SPT Technique
4.3 Analytical Modelling Approach: Duringtheanalyticalmodellingapproach,separatepartialfactorsofsafetywereused forloadsandresistanceofconstructioncomponentsasperthefollowingtable:
Table 1: Partial factors of safety for analytical modelling approach
4.4 Finite-Element Modelling Approach: Withinthefinite-elementmodellingapproachonlythesprayedconcreteliningwas consideredastunnelsupport.
Duringinvestigationstage,thetunnellingmediawasclassifiedonthebasisofobservationmadebysurfacemapping,drillhole dataandresistivitysurvey.Inordertoachieverealisticvaluesofgroundtypesandgroundbehaviourtypes,detailsofrockmass
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072
characteristicswererecordedfromthesurfaceoutcropandboreholedataandaccordinglyprojectedinthetunnelgrade.However, therearestructurallimitationtoprojectthediscontinuities/share zones at the tunnel grade but affords have been made to justify the geologicaluncertaintiestobeencounteredduringtunnelling.
Asdisplacementsalreadystarttodevelopbeforeexcavationandtheirvelocityislikelytobehighestrightafterexcavation,the importanceoftimely(maximum2-3hafterexcavation)zeroreadingisemphasizedatthispoint.Thefollowingfigureshowsa typicalcourseofdisplacementduringtunneladvance.
Figure5: Excerpt from OEGG guideline “Geotechnical Monitoring in Conventional Tunnelling” 2014
Theobservationofdisplacementmeasurementsisessentialinordertorecognizeshearzonesorsectionswithsqueezingground behaviouratanearlystageinordertoreactbyadaptingthesupportmeasuresaccordingly.Basedontheinitialdisplacement (within24hoursfromzero-reading),thefollowingtableshowsrecommendedthresholdvaluesfortheadaptionofsupportclasses fortheupcomingrounds:
Table 2: Threshold values for initial displacement (first 24h), corresponding support classes
Measured initial displacement* Adapt support class to: >50mm IV-A >65mm IV-B >80mm IV-C >120mm IV-D
Table 3: shows recommended measures for common problems during excavation
Problem Recommended Measures
Low-CoverSections (≤50moverburden)
StiffTunnelSupport(SC-IV-Aor-B),implementinginvertandtemporaryinvertintop heading.Timelycompletionoftunnelprofile(shortdistancebetweenexcavationoftop heading–temporaryinvertandbench–invert,respectively).Ifnecessary,reduce distancebetweenexcavationstages
Wateringresstotunnel Installadequatetunneldrainagesystem(noopenditches,butclosedpipesystem), conveypondedwaterawayfromtunnelface,executedrainagedrillingsindirection ofadvance
Instabilityoftunnelface
Subdivisionofexcavationsteps,immediatesealingoftunnelfacewithshotcrete,if necessary,usewiremeshandgroutedSD-rockboltsforstabilization
Fallingorslidingofwedgesand blocksintunnelroof Usegroutedfore-poling(general)andfrictionanchoredrock-bolts(blocks)
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
“Re-start”ofdisplacements Visualobservation,increaseinreadingfrequencyofgeotechnicalmeasurements, drillingofadditional(longer)rockbolts,implementinvert.Takemeasuresasper actionplan.
1. Xuepeng Zhang Jan 2020 “Mountain tunnel under earthquake force: A review of possible causes of damages and restorationmethods”
2. AlessandroCalvi2012“SustainabilityofRoadInfrastructuresAnEmpiricalStudyoftheEffectsofRoadTunnelon Driving”
3. GangLiu2016“2ndInternationalSymposiumonSubmergedFloatingTunnelsandUnderwaterTunnelStructures Researchonstraitcrossingsolutionofsubmergedfloatingtunnel(Underwatercontinuousgirderbridge)”
4. BellaNguyenApril2016“6thTransportResearchArenaApril18-21,2016,Understandingtheproblemofbridgeand tunnelstrikescausedbyover-heightvehicles”
5. KaironghongDec2017“TypicalUnderwaterTunnelsintheMainlandofChinaandRelatedTunnelingTechnologies”
6. Liangwen wei 2016 “Research on Tunnel Engineering Geological Exploration System Based on Tunnel Seismic PredicationandGround-penetratingRadar”
7. ZhongZhouJan2019“InfluenceZoneDivisionandRiskAssessmentofUnderwaterTunnelAdjacentConstructions”
8. JunYan,WenkangMay2021“ResearchonSurfaceSubsidenceofLong-SpanUndergroundTunnel”
9. NandoliaUsamaJuly2020“ComparativeAnalysisofUnderground&UnderwaterTunnel”
10. Yuanpu Xia July2018 “Entropy-BasedRisk Control of Geological Disasters inMountainTunnelsunder Uncertain Environments”
11. MinYangandGuafengLiFeb2022“FailureCharacteristicsandTreatmentMeasuresofTunnelsinExpansiveRock Stratum”
12. BinGongSep2018“TheSeepageControloftheTunnelExcavatedinHigh-PressureWaterConditionUsingMultiple TimesGroutingMethod”
13. Weixing Qiu March 2022 “A multi-source information fusion approach in tunnel collapse risk analysis based on improvedDempster–Shaferevidencetheory”
14. ChuangangFanAug2021“Experimentalstudy ontheeffectofcanyoncross windontemperaturedistributionof buoyancy-inducedsmokelayerintunnelfires”
15. IrfanAhmadShahandMohammadZaidDec2022“BehaviourofUndergroundTunnelunderStrongGroundMotion”
16. YuWang2021“Calculationofdrainagevolumeduringtunnelconstructionbasedonthecontrolofnegativeeffectsof ecosystem”
17. J.MMolinaGarciapardoFeb2009“PropagationinTunnels:ExperimentalInvestigationsandChannelModelingina WideFrequencyBandforMIMOApplications”
Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072
1. IS456(2000),Plainandreinforcedconcrete–Codeofpractice
2. IS1786(2008),Highstrengthdeformedsteelbarsandwiresforconcretereinforcement–specification
3. IS1893(reaffirmed2016)Criteriaforearthquakeresistantdesignofstructures –Part1:GeneralProvisionsand Buildings(noinformationontunnels)
4. IS4880(1972,reaffirmed2000)CodeofpracticefordesignoftunnelsconveyingwaterPartI-IV
5. Eurocode0:Basisofstructuraldesign,EN1990:2013-03-15,EuropeanCommitteeofStandardization
6. Eurocode 1: Actions on structures, EN 1991-1-1: 2011-09-01, Part 1-1: General actions – Densities, self- weight, imposedloadsforbuildings,EuropeanCommitteeofStandardization
7. Eurocode2:Designofconcretestructures,EN1992-1-1:2015-02-15,Part1-1:generalrulesandrulesforbuildings, EuropeanCommitteeofStandardization
8. Eurocode7:GeotechnicalDesign,EN1997:2014-11-15,Part1:Generalrules,EuropeanCommitteeofStandardization.
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |