DESIGN AND ANALYSIS OF GRAVITY DAM BY USING STAAD PRO

Page 1


International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

DESIGN AND ANALYSIS OF GRAVITY DAM BY USING STAAD PRO

S Ganapathi Prasad1, K Chakradhar2, P Raja Prakash2, B Sai Kumar2

1 Assistant Professor, Department of Civil Engineering, Bapatla Engineering College, Bapatla, Andhra Pradesh, India

2 B.Tech Student’s, Department of Civil Engineering, Bapatla Engineering College, Bapatla, Andhra Pradesh, India

Abstract - This paper presents the stability analysis of the Masonry dam. The dam structures that were built in past years are analyzed manually. As the years pass because of no proper maintenance the efficiency of the dams may be decreased. For a better understanding of the stability of the dam structure, we are using modern techniques like different software and analysis programs. So to find out the stability of the dam we are using STAAD PRO software for a better understanding of the gravity dam.

Key Words: Stability Analysis, Gravity Dam, Seismic Forces, Hydro-Static forces,Staad Pro

1.INTRODUCTION

Anystructurethatisbuiltwillexperiencenumerousstrengthslikeself-weight,wind,seismic,upliftweightconstrain,andother minorforces.Agravitydamisastrongstructurethatismadeupofconcreteorbrickwork.Itactsasawater-holdingstructure andholdsahugesumofwaterbymakingareservoironitsupstreamside.That’swhyagravitydamisbuiltoverastreamto holdwater.Thecross-segmentofthegravitydamisaroundtriangularandhasapinnacleatbestandmostextremewidthat foot.Differentstrengths are actingonthegravitydamsuchashydrostaticpressure, residuepressure,wavepressure,ice pressure,windpressure,self-weightofthedam,elevatedpressureandseismicforces,etc.Theareaofthedamisoutlinedin suchawaythatitwouldstanduptoallthesepowersactingonitfromdifferentbearingsbeneaththeimpactofitspossessed self-weight.Gravitydamsaremoreovercalledstronggravitydamssincetheyareinflexibleaswellasstrongandnobowing stressesareactuatedatanypointonadamstructure.

1.1 Literature Review

Title of Research Author Objective of Research

Analysis of Pressures on Nagarjuna Spillway

M V S S Giridhar, Madaka Madavi, Ramaraju Anirudh, E RamakrishnaGoud

Design and Stability

Analysis of Gravity Dam using STAAD Pro GauravSharma AbhayJoshi

To determine the pressure forces acting on thedam

Nagarjuna SagarDam

To analyze the gravity dam usingSTAADPro Example Problem

Water pressure is the major pressure rather than the remainingpressures

Mentioned, acquired forces, moments, deflections, element, and node count are used.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Study on the dam and reservoir, analysis the failures of dam

Dam-reservoir interaction analysis using finite element model

MohithKumarBharati

ManiSharma

Mr.NazrulIslam

M.PasbaniKhiavi

A.R.M.Gharabaghi

K.Abide

Design and Modal Analysis of Gravity Dams by Ansys Parametric Design Language

Analysis of DamBehavior by Statistical Models: Application of the Random Forest Approach

1.2 Objective

ShivaKoshari

MohammadHeydari

To study the reservoir and avoid the failures of the dam

Analysis of Dam reservoir by using Finite ElementMethod

ReviewPaper Highlighted the different generalaspectsofdams,their types,andthecauseoffailure. Andgivingthedatapreviously failedthedamintheworld.

SefidrudDam Comparing responses related to two states of far-field boundary condition and analytical solution one can concludethatonconditionof avoiding extra computational effort.

Analysis of Gravity Dam by using Ansys Parametric DesignLanguage

AhmedBelmokre

Mustapha Kamel

Mihoubi

DavidSantillán

Analysis of Dam by models to Predict the deflections.

Example Problem An efficient procedure is developed to model the geometric shape of concrete gravity dams considering dam-reservoir-foundation rock interactions by employing real values of the geometricvariables.

Tichy Haf archdam

The performance of the RFR model is better than the traditional HST and HTT models, and the ANN approach. The RFR models predict recorded movements at the four pendulums more accurately than the other approaches.

Fromtheabovejournalsthatwehavereferedsaysaboutthepressuredistribution,analysisofdam,forcesactingonthedam, failuresofdametc.Throughthemweconcludedthatthestabilityanalysisofthedamisinfollowingthreecasesandstability requirementsonsliding,overturning,compressionandtension.Wearegoingtoperformstabilityanalysisofamasonrydamby manuallyandusingSTAADProsoftwareanddeterminetheforces,moments,principlestresses,shearstressactingonthe masonrydam.

2. Methodology

2.1 Weight of Dam: Theweightofthedambodyanditsestablishmentisthemajorstandinguptoconstrain.Theunitlengthof thedamisconsideredinthetwo-dimensionalexaminationofagravitydam.Thecrossareaofthedamispartitionedinto

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

rectanglesandtriangles.Theweightofeachalongwiththeircenterofgravitycanbedecided.Theadduptotheweightofthe damactingatthemiddleofgravityofthedamwillbespokentobytheresultantofallthesedownwardforces.

Self-weightSw=lbh.ρc.g

Whereρcisdensityofmasonry=2300����/m3

2.2 Water Pressure: Waterpressureisalevelconstraintthatactsonthedaminatriangularshape.Nopressureisappliedby thewateratthesurfaceofthereservoirandthewaterappliesthemostextremesumweighttothedamatthefoot(atthetoe).

WaterPressure = ½γw.ℎ2 actson ℎ/3tallnessfromthewaterbase.

2.3 Uplift Pressure: Waterleaksthroughthebreaks,pores,andgapsoftheestablishmentfabric.Becauseofthebreaks,pores, andgapsoftheestablishment,thewaterleaksthroughthefootjointsofthedamstructureandtheestablishmentofthedam. Theupliftpressuredependsonthetallnessofthewater,ifthewaterlevelisgreatestatthatpointtheupliftpressureis too extremeandiftheupliftpressureisleastatthatpointtheupliftpressureismoreoverleast.Theupliftpressureatthetoeis calculatedbyγw.h.

Whereγw=Thicknessofwater9.81kn/m2

2.4 Seismic Pressure Force: Itisduetoessential,auxiliary,rare,andcherishedwavesonearth’soutside.Thewave'smoment increasingvelocitiestoestablishmentscausesdevelopment.Theconcentrationofsoilshakeataputisthedegreeofthequality ofshakingamidseismictremoranditisprosecutedbyanumberconcurringtothealteredMercalliscale(M.S.K).

ForthecalculationofescalatedsoilshudderIndiawasseparatedintofivezonesasperIS1893-1984theyareZone1,Zone2, Zone3,Zone4,andZone5.Afterward,itisreexaminedintofourzonesasperIs1893-2002theyareZone2,Zone3,Zone4,and Zone5.NagarjunaSagardamcomesbeneathZone2.TheseismicdriveiscalculatedbyCm.γh.γw.h

whereCm=Weightcoefficient

γh=Evenseismiccoefficient

γw=Thicknessofwater

h=Statureofthedam

2.5 Silt Pressure: Whenthewaterisstreamedfromtheupstreamsidetothedownstreamside,theresiduegetskeptatthe upstreamsideofthedam.Thepressurecomingfromtheresiduekeptandweightareconsideredinexpansiontotheweight andpressureofwater.Theweightofresidueactsverticallyontheslantandweighsevenly.ItiscomputedbytheRankin’s equation.

SiltpressurePsilt=1/2γsub ℎ2 ka.

Wherekaisthecoefficientoftheresidue=1−sin∅/1+sin∅ ∅Itisthepointoftheinsidegrindingofsoil.

2.6 Wave Pressure: Wavesarecreatedonthesurfaceofthestorebecauseofwind.Thiscausespressureonthedam.Wave weightdependsonthestatureofthewave.

Pw=2.4γw.Hw

2.7 Overturning Stability: Theoverturningstabilityiscalculatedbycalculatingtheverticalforceandlevelconstrainactingon thegravitydam.Bytakingmomentsoverthetoe,whichforcesarecontradictingthedamtotopplelikeself-weightthismoment asidealmoments(Mf)andtheforceswhichareattemptingtoupsetthegravitydamlikewaterweight,elevateweight,wave weight,residueweight,etc.,thisminuteascontradictingmoments(Mo).Theupsettingstrengthsoughttobemorethan2,ifitis lessthan2thedamisnotsafe.

Overturningmoment=Mo/Mf.>2

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net

p-ISSN: 2395-0072

2.8 Sliding Force: Slidingwillmisfortunethestabilityofthegravitydam.Overabundanceslidinghappensamidthetimeof seismictremor.Slidingconstraintsalludetothewithdrawalbetweenthedamestablishmentandshake.Itiscalculatedbythe frictionaldriveandlevelpowersonthedam,itoughttonotbelessthan1.5.

Slidingforce=frictionalforce/flatconstrainondam>1.5

2.9 Compression and Tension: Forthemostpart,damstructuresarebuiltbyutilizingmaterialslikeconcreteandstonework. Thecompressionandtensionareverytypicalandthesedependontheforcesactingonit.Concurringwiththematerialutilized forthedevelopmentofstructurethevaluesofcompressionandtensionvary.

Formulaeutilizedforthecalculationofcompressionandtension:

•AtHeel=ΣV/B(1-6e/B)

•Attoe=ΣV/B(1+6e/B)

whereΣV=WholeofVerticalForces

B=Basewidthofdam

e=Unpredictability(b/2-x)

3. STAAD Procedure

OpenSTAADprosoftwareandselectthenewprojectfile.Nowselectthespaceoptionandgivelengthunitsinmetersandforce unitsinkilonewtons.Nowselecttheaddnewbeamoptionandthenclickfinish.Nowaddnodepointsandgivedimensionsto drawthecross-sectionofthegravitydam.Bygivingthenodenumbersjointhenodepointstooneanother.Nowassignsupport at the ends of the gravity dam by selecting the support option in the general tab. Give the support as fixed on both ends supports.Nowselectloadanddefinitionandgivedeadloadandliveloadforthegravitydam.Assigntheself-weightofthedam indeadloadandhydrostaticforceontheupstreamsideandupliftpressurefromthedownwardasliveload.Also,assignthe materialofthegravitydamasmasonryandgiveitsdensity.Nowselectthetranslationalrepeatoptiongivetheglobaldirection asZ--theaxisandgivestepspacing.Nowselectthefour-nodeplateoptionandjointhenodesofthedamsectionbyjoiningfour nodes.Likewise,joinalltheremainingplatesusingthefour-nodeplateoption.Nowselectallthecross-sectionsandselectthe platecursor.Nowperformanalysistogettheresultofthegravitydam.Afterperformingarunanalysisgotothepostprocessing tabtofindthestressesandmomentsinthegravitydam.

4. Case Study

NagarjunaSagarDamistheworld’sbiggestbrickworkdamwhichisbuiltoverTheStreamKrishna.Thedamisbuiltbetween 1955to1967.ThedaminterfacesthePalnaduareaofAndhraPradeshandtheNalgondaareaofTelangana.Thedammakesa watersupplywherethewateriscollectedanditisprovidedtotheencompassinglocalenamedPalnadu,Guntur,Nalgonda, Prakasam, Khammam, Krishna, and parts of West Godavari. The provided water is utilized for both water systems and householdpurposes.Itismoreoverasourceofelectriceraforthenationalgrid.

The net capacity of the store behind the dam is up to 11.472 billion cubic meters, its successful capacity is 6.92 cubic kilometers.Itis124meters(407ft)staturefromitsestablishmentand1600meters(5200ft)longwith26surgedoors.The estimateofeachsurgedooris13metersinwidthand14metersinstature.ItisworkedbybothAndhraPradeshandTelangana states.

BeneaththeadministeringofNizamtheBritishengineersdidthestudyingworkforthedamovertheKrishnaStreaminthe year1903.ThedevelopmentoftheextensionwasintroducedbyPrimeServeJawaharlalNehruon10thDecember1955.Raja VasireddyRamagopalaKrishnaMaheswaraPrasadgivenonehundredandtenmillionGBPin1952and22,000ha(55,000 sectionsofland)ofarriveforthedevelopmentoftheextend.ThedamwasbuiltunderthedesignadministrationofKanuri LakshmanaRao.

ThewaterfromthesupplywasdischargedintotheclearedoutandrightbankcanalsbyPrimeServeIndiraGandhion4th Eminent1967.ThedamwaschosenfortheadvancementofawateraerodromebeneathUDANConspirein2022.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Table – 1: SpecificationsofDam

Specifications

Theslopeonthedownstreamside 1in0.75

Theslopeontheupstreamside 1in20

Fig -1: CrossSectionofaGravityDam(Source:GVGopalRaoarticle,GoogleImage)

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

4.1 Design of dam structure

Fig-2: CrossSectionofDam
Fig-3: UpliftPressureDiagram

5. Calculations & Results

TABLE 2. STABILITY CALCULATIONS

Case 1. Reservoir Empty Condition

Whenthereservoirisempty,asitweretheweightofthedamwillbeactingasaforce.Otherforcesnamelywater pressureandupliftwillbezero.Theresultingforce∑V1andresultingmoment∑M1forthiscasehasbeenworkedoutinTable 1.

Positionofresultantfromtoe: Itsdistancefromthecenteris

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Normalcompressivestressatheel:

Principalstressattoe:

Principalstressatheel:

Shearstressatthetoe:

Shearstressatheel:

Notethattherecannotbeanyslidingoroverturningwhenthereservoirisempty.

Case 2. Reservoir full with no uplift: In some cases, values of stresses at the toe and heel are worked out without consideringupliftastheverticalpowersaremostextremeinthiscase.

Thevaluesofverticalforces∑V2andmoments∑M2havebeenworkedoutinTable1wherethe∑V2and∑M2speak totheentiretyofverticalforcesandentiretyofmomentsofallforceswhenthereservoirisfullbutwhenupliftisnotacting.

Positionofresultantfromtoe:

Itsdistancefromthecenteris

Normalcompressivestressatthetoe:

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Normalcompressivestressatheel:

Principalstressattoe:

Principalstressatheel:

Shearstressatthetoe:

Shearstressatheel:

Herethereisnoupliftpressureinthiscondition.Hence,thefactorofsafetyagainstslidingandoverturningisnot workedout.Theseareconsideredwhenupliftpressureacts

Case 3. Reservoir full with uplift: Valuesofverticalforces∑V3 andmoments∑M3 havebeenworkedoutinTable1.

Positionofresultantfromtoe:

Itsdistancefromthecenteris

Normalcompressivestressatthetoe:

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Normalcompressivestressatheel:

Principalstressattoe:

Principalstressatheel:

Shearstressatthetoe:

Shearstressatheel:

Calculation of Factor of Safety:

ThefactorofSafetyagainstOverturning= = =2.16>1.5

ThefactorofSafetyagainstSliding= = =0.53<2

ShearFrictionFactor= = =5.40>4

SafetyagainstslidingaccordingtoIS6512-1984: Taking and forloadcombinationB, Hencesafe.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Case-4: Stability check of a dam by considering seismic forces

TABLE

3. ADDITIONAL FORCES AND

THEIR

MOMENTS DUE TO EARTHQUAKE

Inertial force due to the earthquakeontheweight ofthedam The inertial forceacting at C.G. is considered tobeacting upwards

From(IS1893-1984)

Where,

∝ovariesfrom0.02to0.08

∝h variesfrom0.04to0.16forZone(II)toZone(V)

Therefore,∝o =0.02(ZoneII)

∝h =2x0.02=0.04

Verticalseismicco-efficient(∝v)=0.5∝h =0.5x0.04=0.02

Fortheworstconditionconsiderthat:

(a)Horizontalearthquakeaccelerationactsupstream.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

(b)Verticalearthquakeaccelerationactsdownwards.

HydrodynamicpressureduetowatercausedbyearthquakescanbefoundinZanger'sformula.Sincetheslopeisupto middledepth,theapproximatevalueofecanbefoundbyjoiningtheheeltotheupstreamedge, or Atbase

Therefore,34

Totalpressure

Momentduetothisforceatthebase, kN-m

Calculationofforcesandmomentsduetoinertialearthquakeforceisdoneinthetabularform(Table2).ThisTableis tobepreparedincontinuationofthepreviousTable(Table1)madewithoutconsideringearthquakeforces.

Valuesofverticalforces∑V4 andmoment∑M4 havebeenworkedoutintheTable3.

Positionofresultantfromtoe:

Hencetheresultantdoesnotliewithinthemiddlethird.Itsdistancefromthecenteris

i.e.,theresultantfallstotherightofthecenter.

Normalcompressivestressatthetoe:

Normalcompressivestressatheel:

Principalstressatthetoeis

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Principalstressatheel:

Shearstressattoe:

Shearstressatheel:

Calculations of Factor of Safety:

The factor of Safety against Overturning = = = 1.96> 1.5

The factor of Safety against Sliding = = = 0.47 < 2

Shear Friction Factor = = = 4.95 > 4

Safety against sliding according to IS 6512-1984:

Taking and for load combination B, Hence safe.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Table-4: NodePointsTableinSTAAD

DamwithNodePoints

Fig-4:

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Supports

DamwithitsSelf-Weight

Fig-5: Damwith
Fig-6:

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Fig-7: DamwithitsProperty
Fig-8: TotalLengthofDam

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net

Fig-9: RenderedviewofDam
Fig-10: Renderedviewofagate

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

DamstructureActingforcesonit

Fig-12: AnimationofmaxabsolutepressureonagateofdamDeadload

Fig-11:

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Fig-13: AnimationofmaxabsolutepressureonagateofdamLiveload

NodeDisplacementTable

Fig-14:

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Table 5: SummaryofForcesandMoments

6. Discussions

 Frommanualcalculationshencethestabilityanalysisofthedamisok.

 FromSTAADtheobtainedmomentsaregiveninTable5above.

 InSTAADweperformedanalysisforasinglegatewidthof13mandheight106.7m.

 Fromfigure-11representstheforces(WaterPressure,UpliftPressure,Self-Weight)actingononegatewidthofthe dam.

 Figure12&13istheanimationofpressuredistributiononthedamduetoforcesactingonit.

 Figure14showsthedisplacementofthedamduetovariouspressuresactingonit.

7. Conclusions

ThispaperpresentsthestabilityanalysisofamasonrydaminbothmanuallyandbyusingSTAADPro.Inmanualcalculations thestabilityanalysisagainstwaterpressure,upliftpressureandseismicpressureisok.InSTAADProweperformedanalysis foronegatewidthofdamandobtainedresultsareshownintheabovefiguresandtables.Asweconcludethatbyusingnew techniqueandsoftware’sitiseasytoperformanalysiscomparingtomanualproceduresandtheresultsareaccurate,therebyit iseasytoanalyseordesignofanycomplicatedstructurebyusingadvancedsoftware’swhichreducetimeandhumaneffort.

REFERENCES

[1] VLotfi.Seismicanalysisofconcretegravitydamsbydecoupledmodalapproachinthetimedomain.Electron.J.Struct.Eng. 2003;3,102-16.

[2] HMirzabozorg,ARKhaloo,MGhaemianandBJalalzadeh.Non-uniformcrackinginsmearedcrackapproachforseismic analysisofconcretedamsin3Dspace.Int.J.Earth.Eng.Seism.2007;2,48-57.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

[3] MAkkoseandESimsek.Non-linearseismicresponseofconcretegravitydamstonear-faultgroundmotionsincluding dam-water-sediment-foundationinteraction.Appl.Math.Model.2010;34,3685700.

[4] H Mirzabozorg, MR Kianoush and M Varmazyari. Nonlinear behavior of concrete dams and effect of input spatially variation.Struct.Eng.Mech.2010;35,365-79

[5] MAHariri-Ardebili,H MirzabozorgandMGhaemian.Seismicperformanceevaluationofhigharchdams considering reservoirfluctuation.In:Proceedingofthe6thInternationalConferenceinDamEngineering,Lisbon,Portugal,2011.

[6] AFathi.2004,Dynamicanalysisofweightconcretedamsbyusingacombinationoffiniteelementsmethodandboundary elementmethod.M.Sc.AmirKabir,UniversityofTechnology,Iran.

[7] Agullo,L.,Mirambell,E.,andAguado,A.(1996).“Amodelfortheanalysisofconcretedamsduetoenvironmentalthermal effects.” International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 6, No. 4, pp. 25-36, DOI: 10.1108/09615539610123423.

[8] J.Jia,M.Lino,F.Jin,C.Zheng,Thecementedmaterialdam:anew,environmentallyfriendlytypeofdam,Engineering,2(4) (2016)

[9] SS Tarek, VV Tolstikov, World experience in the construction of gravity dams from particularly lean concrete mix. ConstructionMaterialsandProducts,4(2)(2021)

[10] RNOrishchuk,Clay-cement-concretediaphragm–justifyingcalculationfornew-builtconstructions,MagazineofCivil Engineering,89(5)(2019)

[11] HMWestergaard,WaterPressuresonDamsduringEarthquakes,Proc.Am.soc.Civ.Engs.,vol.57.9(1931)

[12] ChenS,HeQ,CaoJ(2018)Seepagesimulationofhighconcrete-facedrockfilldamsbasedongeneralizedequivalent continuummodel.WaterScienceandEngineering131(3):250-257,DOI:10.1016/j.wse.2018.10.004

[13] MettuRajeshReddy,M.NageshwarRao(2017)on“DesignofAnalysisofGravitDam-ACaseStudyAnalysisUsingStaadPro”.Volume2,Issue4

[14] ReviewonSeismicDesignofConcreteGravityorRCCDams[1]IS6512(1984):CriteriaforDesignofSolidGravityDams [2]IS1893–1(2002):CriteriaforEarthquakeResistantDesignOfStructures.

[15] TSubramani,D.Ponnuvel(2012)on“stabilityanalysisofgravitydamusingStaadpro”

[16] Miss.MeghnaS.Bhalodkar(2014)on“Seismic&StabilityAnalysisofGravityDam”

[17] Mr.ManojNallanathel,Mr.B.Ramesh,andAB.PavanKumarRaju(2018)on“StabilityAnalysisOfConcreteGravityDam”. InternationalJournalofPureandAppliedMathematics,volume119No.17

[18] JayP.Patel,R.Chhava(2015)on“AnalysisofConcreteGravityDamby3dSolidElementModellingUsingStaadPro”

[19] Moftakhar, H. R. Ghafouri (2011) on “Comparison of stability Criteria for Concrete Dams in Different Approximate MethodsBasedonFiniteElementAnalysis”

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

BIOGRAPHIES

Mr.S.GanapathiPrasad, AssistantProfessor, DepartmentofCivilEngineering, BapatlaEngineeringCollege, Bapatla.

Mr.K.Chakradhar, B.techStudent, DepartmentofCivilEngineering, BapatlaEngineeringCollege, Bapatla.

Mr.P.RajaPrakash, B.techStudent, DepartmentofCivilEngineering, BapatlaEngineeringCollege, Bapatla.

Mr.B.SaiKumar, B.techStudent, DepartmentofCivilEngineering, BapatlaEngineeringCollege, Bapatla.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.