
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
S Ganapathi Prasad1, K Chakradhar2, P Raja Prakash2, B Sai Kumar2
1 Assistant Professor, Department of Civil Engineering, Bapatla Engineering College, Bapatla, Andhra Pradesh, India
2 B.Tech Student’s, Department of Civil Engineering, Bapatla Engineering College, Bapatla, Andhra Pradesh, India
Abstract - This paper presents the stability analysis of the Masonry dam. The dam structures that were built in past years are analyzed manually. As the years pass because of no proper maintenance the efficiency of the dams may be decreased. For a better understanding of the stability of the dam structure, we are using modern techniques like different software and analysis programs. So to find out the stability of the dam we are using STAAD PRO software for a better understanding of the gravity dam.
Key Words: Stability Analysis, Gravity Dam, Seismic Forces, Hydro-Static forces,Staad Pro
1.INTRODUCTION
Anystructurethatisbuiltwillexperiencenumerousstrengthslikeself-weight,wind,seismic,upliftweightconstrain,andother minorforces.Agravitydamisastrongstructurethatismadeupofconcreteorbrickwork.Itactsasawater-holdingstructure andholdsahugesumofwaterbymakingareservoironitsupstreamside.That’swhyagravitydamisbuiltoverastreamto holdwater.Thecross-segmentofthegravitydamisaroundtriangularandhasapinnacleatbestandmostextremewidthat foot.Differentstrengths are actingonthegravitydamsuchashydrostaticpressure, residuepressure,wavepressure,ice pressure,windpressure,self-weightofthedam,elevatedpressureandseismicforces,etc.Theareaofthedamisoutlinedin suchawaythatitwouldstanduptoallthesepowersactingonitfromdifferentbearingsbeneaththeimpactofitspossessed self-weight.Gravitydamsaremoreovercalledstronggravitydamssincetheyareinflexibleaswellasstrongandnobowing stressesareactuatedatanypointonadamstructure.
1.1 Literature Review
Title of Research Author Objective of Research
Analysis of Pressures on Nagarjuna Spillway
M V S S Giridhar, Madaka Madavi, Ramaraju Anirudh, E RamakrishnaGoud
Design and Stability
Analysis of Gravity Dam using STAAD Pro GauravSharma AbhayJoshi
To determine the pressure forces acting on thedam
Nagarjuna SagarDam
To analyze the gravity dam usingSTAADPro Example Problem
Water pressure is the major pressure rather than the remainingpressures
Mentioned, acquired forces, moments, deflections, element, and node count are used.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
Study on the dam and reservoir, analysis the failures of dam
Dam-reservoir interaction analysis using finite element model
MohithKumarBharati
ManiSharma
Mr.NazrulIslam
M.PasbaniKhiavi
A.R.M.Gharabaghi
K.Abide
Design and Modal Analysis of Gravity Dams by Ansys Parametric Design Language
Analysis of DamBehavior by Statistical Models: Application of the Random Forest Approach
1.2 Objective
ShivaKoshari
MohammadHeydari
To study the reservoir and avoid the failures of the dam
Analysis of Dam reservoir by using Finite ElementMethod
ReviewPaper Highlighted the different generalaspectsofdams,their types,andthecauseoffailure. Andgivingthedatapreviously failedthedamintheworld.
SefidrudDam Comparing responses related to two states of far-field boundary condition and analytical solution one can concludethatonconditionof avoiding extra computational effort.
Analysis of Gravity Dam by using Ansys Parametric DesignLanguage
AhmedBelmokre
Mustapha Kamel
Mihoubi
DavidSantillán
Analysis of Dam by models to Predict the deflections.
Example Problem An efficient procedure is developed to model the geometric shape of concrete gravity dams considering dam-reservoir-foundation rock interactions by employing real values of the geometricvariables.
Tichy Haf archdam
The performance of the RFR model is better than the traditional HST and HTT models, and the ANN approach. The RFR models predict recorded movements at the four pendulums more accurately than the other approaches.
Fromtheabovejournalsthatwehavereferedsaysaboutthepressuredistribution,analysisofdam,forcesactingonthedam, failuresofdametc.Throughthemweconcludedthatthestabilityanalysisofthedamisinfollowingthreecasesandstability requirementsonsliding,overturning,compressionandtension.Wearegoingtoperformstabilityanalysisofamasonrydamby manuallyandusingSTAADProsoftwareanddeterminetheforces,moments,principlestresses,shearstressactingonthe masonrydam.
2.1 Weight of Dam: Theweightofthedambodyanditsestablishmentisthemajorstandinguptoconstrain.Theunitlengthof thedamisconsideredinthetwo-dimensionalexaminationofagravitydam.Thecrossareaofthedamispartitionedinto
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
rectanglesandtriangles.Theweightofeachalongwiththeircenterofgravitycanbedecided.Theadduptotheweightofthe damactingatthemiddleofgravityofthedamwillbespokentobytheresultantofallthesedownwardforces.
Self-weightSw=lbh.ρc.g
Whereρcisdensityofmasonry=2300����/m3
2.2 Water Pressure: Waterpressureisalevelconstraintthatactsonthedaminatriangularshape.Nopressureisappliedby thewateratthesurfaceofthereservoirandthewaterappliesthemostextremesumweighttothedamatthefoot(atthetoe).
WaterPressure = ½γw.ℎ2 actson ℎ/3tallnessfromthewaterbase.
2.3 Uplift Pressure: Waterleaksthroughthebreaks,pores,andgapsoftheestablishmentfabric.Becauseofthebreaks,pores, andgapsoftheestablishment,thewaterleaksthroughthefootjointsofthedamstructureandtheestablishmentofthedam. Theupliftpressuredependsonthetallnessofthewater,ifthewaterlevelisgreatestatthatpointtheupliftpressureis too extremeandiftheupliftpressureisleastatthatpointtheupliftpressureismoreoverleast.Theupliftpressureatthetoeis calculatedbyγw.h.
Whereγw=Thicknessofwater9.81kn/m2
2.4 Seismic Pressure Force: Itisduetoessential,auxiliary,rare,andcherishedwavesonearth’soutside.Thewave'smoment increasingvelocitiestoestablishmentscausesdevelopment.Theconcentrationofsoilshakeataputisthedegreeofthequality ofshakingamidseismictremoranditisprosecutedbyanumberconcurringtothealteredMercalliscale(M.S.K).
ForthecalculationofescalatedsoilshudderIndiawasseparatedintofivezonesasperIS1893-1984theyareZone1,Zone2, Zone3,Zone4,andZone5.Afterward,itisreexaminedintofourzonesasperIs1893-2002theyareZone2,Zone3,Zone4,and Zone5.NagarjunaSagardamcomesbeneathZone2.TheseismicdriveiscalculatedbyCm.γh.γw.h
whereCm=Weightcoefficient
γh=Evenseismiccoefficient
γw=Thicknessofwater
h=Statureofthedam
2.5 Silt Pressure: Whenthewaterisstreamedfromtheupstreamsidetothedownstreamside,theresiduegetskeptatthe upstreamsideofthedam.Thepressurecomingfromtheresiduekeptandweightareconsideredinexpansiontotheweight andpressureofwater.Theweightofresidueactsverticallyontheslantandweighsevenly.ItiscomputedbytheRankin’s equation.
SiltpressurePsilt=1/2γsub ℎ2 ka.
Wherekaisthecoefficientoftheresidue=1−sin∅/1+sin∅ ∅Itisthepointoftheinsidegrindingofsoil.
2.6 Wave Pressure: Wavesarecreatedonthesurfaceofthestorebecauseofwind.Thiscausespressureonthedam.Wave weightdependsonthestatureofthewave.
Pw=2.4γw.Hw
2.7 Overturning Stability: Theoverturningstabilityiscalculatedbycalculatingtheverticalforceandlevelconstrainactingon thegravitydam.Bytakingmomentsoverthetoe,whichforcesarecontradictingthedamtotopplelikeself-weightthismoment asidealmoments(Mf)andtheforceswhichareattemptingtoupsetthegravitydamlikewaterweight,elevateweight,wave weight,residueweight,etc.,thisminuteascontradictingmoments(Mo).Theupsettingstrengthsoughttobemorethan2,ifitis lessthan2thedamisnotsafe.
Overturningmoment=Mo/Mf.>2
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net
p-ISSN: 2395-0072
2.8 Sliding Force: Slidingwillmisfortunethestabilityofthegravitydam.Overabundanceslidinghappensamidthetimeof seismictremor.Slidingconstraintsalludetothewithdrawalbetweenthedamestablishmentandshake.Itiscalculatedbythe frictionaldriveandlevelpowersonthedam,itoughttonotbelessthan1.5.
Slidingforce=frictionalforce/flatconstrainondam>1.5
2.9 Compression and Tension: Forthemostpart,damstructuresarebuiltbyutilizingmaterialslikeconcreteandstonework. Thecompressionandtensionareverytypicalandthesedependontheforcesactingonit.Concurringwiththematerialutilized forthedevelopmentofstructurethevaluesofcompressionandtensionvary.
Formulaeutilizedforthecalculationofcompressionandtension:
•AtHeel=ΣV/B(1-6e/B)
•Attoe=ΣV/B(1+6e/B)
whereΣV=WholeofVerticalForces
B=Basewidthofdam
e=Unpredictability(b/2-x)
3. STAAD Procedure
OpenSTAADprosoftwareandselectthenewprojectfile.Nowselectthespaceoptionandgivelengthunitsinmetersandforce unitsinkilonewtons.Nowselecttheaddnewbeamoptionandthenclickfinish.Nowaddnodepointsandgivedimensionsto drawthecross-sectionofthegravitydam.Bygivingthenodenumbersjointhenodepointstooneanother.Nowassignsupport at the ends of the gravity dam by selecting the support option in the general tab. Give the support as fixed on both ends supports.Nowselectloadanddefinitionandgivedeadloadandliveloadforthegravitydam.Assigntheself-weightofthedam indeadloadandhydrostaticforceontheupstreamsideandupliftpressurefromthedownwardasliveload.Also,assignthe materialofthegravitydamasmasonryandgiveitsdensity.Nowselectthetranslationalrepeatoptiongivetheglobaldirection asZ--theaxisandgivestepspacing.Nowselectthefour-nodeplateoptionandjointhenodesofthedamsectionbyjoiningfour nodes.Likewise,joinalltheremainingplatesusingthefour-nodeplateoption.Nowselectallthecross-sectionsandselectthe platecursor.Nowperformanalysistogettheresultofthegravitydam.Afterperformingarunanalysisgotothepostprocessing tabtofindthestressesandmomentsinthegravitydam.
NagarjunaSagarDamistheworld’sbiggestbrickworkdamwhichisbuiltoverTheStreamKrishna.Thedamisbuiltbetween 1955to1967.ThedaminterfacesthePalnaduareaofAndhraPradeshandtheNalgondaareaofTelangana.Thedammakesa watersupplywherethewateriscollectedanditisprovidedtotheencompassinglocalenamedPalnadu,Guntur,Nalgonda, Prakasam, Khammam, Krishna, and parts of West Godavari. The provided water is utilized for both water systems and householdpurposes.Itismoreoverasourceofelectriceraforthenationalgrid.
The net capacity of the store behind the dam is up to 11.472 billion cubic meters, its successful capacity is 6.92 cubic kilometers.Itis124meters(407ft)staturefromitsestablishmentand1600meters(5200ft)longwith26surgedoors.The estimateofeachsurgedooris13metersinwidthand14metersinstature.ItisworkedbybothAndhraPradeshandTelangana states.
BeneaththeadministeringofNizamtheBritishengineersdidthestudyingworkforthedamovertheKrishnaStreaminthe year1903.ThedevelopmentoftheextensionwasintroducedbyPrimeServeJawaharlalNehruon10thDecember1955.Raja VasireddyRamagopalaKrishnaMaheswaraPrasadgivenonehundredandtenmillionGBPin1952and22,000ha(55,000 sectionsofland)ofarriveforthedevelopmentoftheextend.ThedamwasbuiltunderthedesignadministrationofKanuri LakshmanaRao.
ThewaterfromthesupplywasdischargedintotheclearedoutandrightbankcanalsbyPrimeServeIndiraGandhion4th Eminent1967.ThedamwaschosenfortheadvancementofawateraerodromebeneathUDANConspirein2022.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
Table – 1: SpecificationsofDam
Specifications
Theslopeonthedownstreamside 1in0.75
Theslopeontheupstreamside 1in20
Fig -1: CrossSectionofaGravityDam(Source:GVGopalRaoarticle,GoogleImage)
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
4.1 Design of dam structure
5. Calculations & Results
TABLE 2. STABILITY CALCULATIONS
Whenthereservoirisempty,asitweretheweightofthedamwillbeactingasaforce.Otherforcesnamelywater pressureandupliftwillbezero.Theresultingforce∑V1andresultingmoment∑M1forthiscasehasbeenworkedoutinTable 1.
Positionofresultantfromtoe: Itsdistancefromthecenteris
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
Normalcompressivestressatheel:
Principalstressattoe:
Principalstressatheel:
Shearstressatthetoe:
Shearstressatheel:
Notethattherecannotbeanyslidingoroverturningwhenthereservoirisempty.
Case 2. Reservoir full with no uplift: In some cases, values of stresses at the toe and heel are worked out without consideringupliftastheverticalpowersaremostextremeinthiscase.
Thevaluesofverticalforces∑V2andmoments∑M2havebeenworkedoutinTable1wherethe∑V2and∑M2speak totheentiretyofverticalforcesandentiretyofmomentsofallforceswhenthereservoirisfullbutwhenupliftisnotacting.
Positionofresultantfromtoe:
Itsdistancefromthecenteris
Normalcompressivestressatthetoe:
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
Normalcompressivestressatheel:
Principalstressattoe:
Principalstressatheel:
Shearstressatthetoe:
Shearstressatheel:
Herethereisnoupliftpressureinthiscondition.Hence,thefactorofsafetyagainstslidingandoverturningisnot workedout.Theseareconsideredwhenupliftpressureacts
Case 3. Reservoir full with uplift: Valuesofverticalforces∑V3 andmoments∑M3 havebeenworkedoutinTable1.
Positionofresultantfromtoe:
Itsdistancefromthecenteris
Normalcompressivestressatthetoe:
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
Normalcompressivestressatheel:
Principalstressattoe:
Principalstressatheel:
Shearstressatthetoe:
Shearstressatheel:
Calculation of Factor of Safety:
ThefactorofSafetyagainstOverturning= = =2.16>1.5
ThefactorofSafetyagainstSliding= = =0.53<2
ShearFrictionFactor= = =5.40>4
SafetyagainstslidingaccordingtoIS6512-1984: Taking and forloadcombinationB, Hencesafe.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
Case-4: Stability check of a dam by considering seismic forces
TABLE
THEIR
Inertial force due to the earthquakeontheweight ofthedam The inertial forceacting at C.G. is considered tobeacting upwards
From(IS1893-1984)
Where,
∝ovariesfrom0.02to0.08
∝h variesfrom0.04to0.16forZone(II)toZone(V)
Therefore,∝o =0.02(ZoneII)
∝h =2x0.02=0.04
Verticalseismicco-efficient(∝v)=0.5∝h =0.5x0.04=0.02
Fortheworstconditionconsiderthat:
(a)Horizontalearthquakeaccelerationactsupstream.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
(b)Verticalearthquakeaccelerationactsdownwards.
HydrodynamicpressureduetowatercausedbyearthquakescanbefoundinZanger'sformula.Sincetheslopeisupto middledepth,theapproximatevalueofecanbefoundbyjoiningtheheeltotheupstreamedge, or Atbase
Therefore,34
Totalpressure
Momentduetothisforceatthebase, kN-m
Calculationofforcesandmomentsduetoinertialearthquakeforceisdoneinthetabularform(Table2).ThisTableis tobepreparedincontinuationofthepreviousTable(Table1)madewithoutconsideringearthquakeforces.
Valuesofverticalforces∑V4 andmoment∑M4 havebeenworkedoutintheTable3.
Positionofresultantfromtoe:
Hencetheresultantdoesnotliewithinthemiddlethird.Itsdistancefromthecenteris
i.e.,theresultantfallstotherightofthecenter.
Normalcompressivestressatthetoe:
Normalcompressivestressatheel:
Principalstressatthetoeis
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
Principalstressatheel:
Shearstressattoe:
Shearstressatheel:
Calculations of Factor of Safety:
The factor of Safety against Overturning = = = 1.96> 1.5
The factor of Safety against Sliding = = = 0.47 < 2
Shear Friction Factor = = = 4.95 > 4
Safety against sliding according to IS 6512-1984:
Taking and for load combination B, Hence safe.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
Table-4: NodePointsTableinSTAAD
DamwithNodePoints
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
Supports
DamwithitsSelf-Weight
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
DamstructureActingforcesonit
Fig-12: AnimationofmaxabsolutepressureonagateofdamDeadload
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
Fig-13: AnimationofmaxabsolutepressureonagateofdamLiveload
NodeDisplacementTable
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
Table 5: SummaryofForcesandMoments
6. Discussions
Frommanualcalculationshencethestabilityanalysisofthedamisok.
FromSTAADtheobtainedmomentsaregiveninTable5above.
InSTAADweperformedanalysisforasinglegatewidthof13mandheight106.7m.
Fromfigure-11representstheforces(WaterPressure,UpliftPressure,Self-Weight)actingononegatewidthofthe dam.
Figure12&13istheanimationofpressuredistributiononthedamduetoforcesactingonit.
Figure14showsthedisplacementofthedamduetovariouspressuresactingonit.
7. Conclusions
ThispaperpresentsthestabilityanalysisofamasonrydaminbothmanuallyandbyusingSTAADPro.Inmanualcalculations thestabilityanalysisagainstwaterpressure,upliftpressureandseismicpressureisok.InSTAADProweperformedanalysis foronegatewidthofdamandobtainedresultsareshownintheabovefiguresandtables.Asweconcludethatbyusingnew techniqueandsoftware’sitiseasytoperformanalysiscomparingtomanualproceduresandtheresultsareaccurate,therebyit iseasytoanalyseordesignofanycomplicatedstructurebyusingadvancedsoftware’swhichreducetimeandhumaneffort.
[1] VLotfi.Seismicanalysisofconcretegravitydamsbydecoupledmodalapproachinthetimedomain.Electron.J.Struct.Eng. 2003;3,102-16.
[2] HMirzabozorg,ARKhaloo,MGhaemianandBJalalzadeh.Non-uniformcrackinginsmearedcrackapproachforseismic analysisofconcretedamsin3Dspace.Int.J.Earth.Eng.Seism.2007;2,48-57.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
[3] MAkkoseandESimsek.Non-linearseismicresponseofconcretegravitydamstonear-faultgroundmotionsincluding dam-water-sediment-foundationinteraction.Appl.Math.Model.2010;34,3685700.
[4] H Mirzabozorg, MR Kianoush and M Varmazyari. Nonlinear behavior of concrete dams and effect of input spatially variation.Struct.Eng.Mech.2010;35,365-79
[5] MAHariri-Ardebili,H MirzabozorgandMGhaemian.Seismicperformanceevaluationofhigharchdams considering reservoirfluctuation.In:Proceedingofthe6thInternationalConferenceinDamEngineering,Lisbon,Portugal,2011.
[6] AFathi.2004,Dynamicanalysisofweightconcretedamsbyusingacombinationoffiniteelementsmethodandboundary elementmethod.M.Sc.AmirKabir,UniversityofTechnology,Iran.
[7] Agullo,L.,Mirambell,E.,andAguado,A.(1996).“Amodelfortheanalysisofconcretedamsduetoenvironmentalthermal effects.” International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 6, No. 4, pp. 25-36, DOI: 10.1108/09615539610123423.
[8] J.Jia,M.Lino,F.Jin,C.Zheng,Thecementedmaterialdam:anew,environmentallyfriendlytypeofdam,Engineering,2(4) (2016)
[9] SS Tarek, VV Tolstikov, World experience in the construction of gravity dams from particularly lean concrete mix. ConstructionMaterialsandProducts,4(2)(2021)
[10] RNOrishchuk,Clay-cement-concretediaphragm–justifyingcalculationfornew-builtconstructions,MagazineofCivil Engineering,89(5)(2019)
[11] HMWestergaard,WaterPressuresonDamsduringEarthquakes,Proc.Am.soc.Civ.Engs.,vol.57.9(1931)
[12] ChenS,HeQ,CaoJ(2018)Seepagesimulationofhighconcrete-facedrockfilldamsbasedongeneralizedequivalent continuummodel.WaterScienceandEngineering131(3):250-257,DOI:10.1016/j.wse.2018.10.004
[13] MettuRajeshReddy,M.NageshwarRao(2017)on“DesignofAnalysisofGravitDam-ACaseStudyAnalysisUsingStaadPro”.Volume2,Issue4
[14] ReviewonSeismicDesignofConcreteGravityorRCCDams[1]IS6512(1984):CriteriaforDesignofSolidGravityDams [2]IS1893–1(2002):CriteriaforEarthquakeResistantDesignOfStructures.
[15] TSubramani,D.Ponnuvel(2012)on“stabilityanalysisofgravitydamusingStaadpro”
[16] Miss.MeghnaS.Bhalodkar(2014)on“Seismic&StabilityAnalysisofGravityDam”
[17] Mr.ManojNallanathel,Mr.B.Ramesh,andAB.PavanKumarRaju(2018)on“StabilityAnalysisOfConcreteGravityDam”. InternationalJournalofPureandAppliedMathematics,volume119No.17
[18] JayP.Patel,R.Chhava(2015)on“AnalysisofConcreteGravityDamby3dSolidElementModellingUsingStaadPro”
[19] Moftakhar, H. R. Ghafouri (2011) on “Comparison of stability Criteria for Concrete Dams in Different Approximate MethodsBasedonFiniteElementAnalysis”
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072
Mr.S.GanapathiPrasad, AssistantProfessor, DepartmentofCivilEngineering, BapatlaEngineeringCollege, Bapatla.
Mr.K.Chakradhar, B.techStudent, DepartmentofCivilEngineering, BapatlaEngineeringCollege, Bapatla.
Mr.P.RajaPrakash, B.techStudent, DepartmentofCivilEngineering, BapatlaEngineeringCollege, Bapatla.
Mr.B.SaiKumar, B.techStudent, DepartmentofCivilEngineering, BapatlaEngineeringCollege, Bapatla.