Mental Illness Prediction based on Speech using Supervised Learning

Page 1

Mental Illness Prediction based on Speech using Supervised Learning

1Assistant Professor, Dept. of Information Science & Engineering, National Institute of Engineering, Mysuru, Karnataka, India

2Student, Dept. of Information Science & Engineering, National Institute of Engineering, Mysuru, Karnataka, India ***

Abstract - This research presents a novel approach to accurately detect depression using voice-based analysis and machine learning algorithms. The main objective is to create a model that predicts whether an individual is experiencing depression using their audio inputs. The platform allows users to provide voice recordings, which are analysed using various acoustic features. By employing a supervised learning algorithm, the model effectively classifies the recordings as indicative of mental illness or not, thereby achieving high accuracy in predicting depression from voice recordings. The findings of this research demonstrate the potential of voice-based analysis and machine learning algorithms in early diagnosis and treatment of depression. By accurately identifying individuals who may be experiencing depression, the model enables the recommendation of necessary support and intervention. The study offers valuable perspectives and a practical tool for clinicians and researchers in the domain of mental health, offering a new avenue for improved mental health assessment and intervention. Harnessing the strength of voice analysis, this approach contributes to enhancing the well-being of individuals affected by depression.

Key Words: Machine Learning; Speech Based Detection; Depression; Convolutional neural network; Mental Illness

Prediction

1. INTRODUCTION

Mental health conditions affect a substantial portion of the global population, with approximately 450 million individualsexperiencingsuchchallengesworldwide.Amongtheseconditions,depressivedisordersbeingamajorcontributor totheworldwideburdenofdiseasesandareprojectedtobecomethesecondleadingcause.Depression,aprevalentandsevere mentalillness,manifestsaspersistentfeelingsofsadnessandalackofenthusiasmindailyactivities.Detectingandpredicting thepresenceofmentalillness,particularlydepression,posesaformidablechallenge.

Untreateddepressioncanhaveprofoundconsequences,includingdiminishedmotivation,persistentsadness,andlow self-esteem.Physicalhealthissuessuchasweightfluctuations,fatigue,andbodilypainscanalsoarise.Additionally,depression canimpairanindividual'sabilitytofunctioneffectively,impactingwork,education,andtheabilitytoderivepleasurefrom previouslyenjoyedactivities.Furthermore,individualswithdepressionmaybeatanincreasedriskofdevelopingco-occurring mentalhealthconditionslikeanxietyandsubstanceabuse.Inseverecases,depressioncanleadtosuicidalideationorattempts. Timelyinterventionandsupportareveryimportantwhendealingwithdepression.Astheadagegoes,"Preventionisbetterthan cure,"emphasizingtheneedandimportanceofearlydetectioncanhavefar-reachingimplications,includingescalationofthe disorder.

Thecomplexityofmentalillnessmakespredictionandidentificationchallenging.Overthepastfewyears,therehas beengrowinginterestinutilizingspecificallyintherealmofsupervisedmachinelearningtechniques,todiscernandforecast mentalhealthconditionsbasedonspeechpatterns.Supervisedlearningentailstrainingamodelusinglabelleddatatolearn parameters thataccuratelyclassifyaudio samplesas indicative of a mental illnessor not. Subsequently, the model can be deployed to effectively predict mental illness in new audio samples. Such an approach holds promise for delivering more accurate and timely diagnoses, enabling improved treatment and ultimately enhancing the quality of life for individuals grapplingwithmentalhealthdisorders.

Supervised learning models based on speech analysis offer an avenue to identify psychological conditions by scrutinizingspeechpatterns.Individualswithdepressionexhibitdistinctivecharacteristics,includingreducedspeakingspeed, diminishedintonation,lowervoiceintensity,diminishedvariationsinspeechfeatures,andincreasedpauses.Additionally, alterationsinvoicebandwidth,amplitude,energy,andothervocalattributescanbeobserved.Leveragingthesefeatures,the modelistrainedandevaluated,yieldingpreciseandreliableoutcomes.

Inthispaper,wedelveintotherealmofmental illnesspredictionusingsupervisedlearningalgorithmsandvoice analysis. We explore the potential of speech-based models to discern and predict depression, aiming to influence the

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page300

advancementofearlydetectionandinterventionstrategies.Thisvoice-basedanalysiswillhelpinimprovingmentalhealth assessmenttherebyenhancingoverallwell-beingoftheindividualsaffectedbydepression.

Thefollowingsectionofthispaperwillexplorethetechnicalelementsofthismodelsuchasdatapreparation,Feature Extraction,modelarchitectureusedtopredictdepressionfromthespeech.Italsodiscussesaboutthesuggestionsprovidedby theplatformfornearbyhospitalsbasedontheprediction.Byexaminingtheintricaterelationshipbetweenspeechpatternsand mentalhealth,weaimtoilluminatetheadvancementsachievedinthedevelopmentofpracticaltoolsthathavethepotentialto assistclinicians,researchers,andindividualsintheirpursuitofenhancedmentalwell-being.

2. BACKGROUND STUDY

Thecurrentlandscapeofmentalillnesspredictionrevolvesaroundthedevelopmentofquestionnaire-basedscreening systems. These systems aim to incorporate a range of risk factors related to mental health, encompassing demographic information, psychosocial stressors, and clinical history, to develop all-encompassing questionnaires that can accurately predicttheexistenceofmentaldisorders.Toenhancetheaccuracyofthesequestionnaires,researchershaveexploredthe integrationofmachinelearningtechniques.

The process of mental illness prediction through questionnaires involves the careful design of an appropriate questionnairethatcoversessentialaspectsoftheperson'smentalhealth,includingemotionalwell-being,copingstrategies,and lifestylefactors.Oncethequestionnaireiscompletedbytheuser,theresponsesaresubjectedtoevaluationandanalysis.This assessmentphaseaimstodecipherwhethertheindividualexhibitssignsofmentalillnessordistressbasedontheirprovided answers.Subsequently,thefindingsareanalyzed,consideringtheresponsestodeterminethelikelihoodofthepersonhavinga mentalillness.Inthedepressiondetectionmodel[2]builtbyMariyamBegom,AnamikaAhmed,Md.MuzahidulIslamRahi, RaihanSultana,MdTahmidurRahmanUllas,Md.Ashraful Alam,PhD, theyhaveputforwarda model thatincorporatesa conventionalpsychologicalassessmentalongsidetheutilizationofmachinelearningtechniquestodiagnoseandassessvarious levelsofmentaldisordersusingquestionaries.Thisaccomplishmentwasattainedthroughtheutilizationofalgorithmssuchas Lineardiscriminantanalysis,ConvolutionalNeuralNetwork[5],KNearestNeighborClassifier[9],Supportvectormachine[6] andLinearRegressiononthetwodatasetsofanxietyanddepression.Theirmodelhasachievedthehighestaccuracyof96.8% fordepressionand96%foranxietyusingtheCNN[5]algorithm.

However, while questionnaire-based systems may appear to offer results that show great potential, they are not without their limitations. Traditional approaches, such as relying solely on questionnaires, can be time-consuming and resource intensive. The subjective interpretation of responses introduces a degree of uncertainty, potentially leading to inaccuracies in predicting mental illness. Furthermore, questionnaires may have inherent limitations, encompassing a predeterminedsetofanswersthatmaynotcapturethecomplexityofanindividual'smentalstate.Biasescanalsoariseifthe questionsarepoorlyformulatedorifrespondentsprovideincompleteorinaccurateinformation.Moreover,questionnaires maynotbeeasilyaccessibletoindividualswithcertaindisabilitiesorspecificmentalhealthconditions.Additionally,language barrierscanhinderaccurateunderstandingandresponseprovision,potentiallyunderminingthereliabilityofthepredictions. Consideringthesechallenges,thereisapressingneedtoexploreinnovativemethodologiesthatcanovercomethelimitationsof questionnaire-basedsystems.

Thispaperaimstotackletheseissuesbyproposinganalternativeapproachthatutilizesacousticfeaturesinspeech analysistoenhancetheefficiencyandaccuracyofmentalillnessprediction.Byleveragingstate-of-the-artmachinelearning algorithms, we strive to develop a more reliable and accessible system that can help in early detection and intervention, ultimatelyleadingtoimprovedpsychologicalwell-beingresultsforindividuals.Themodelproposedemploysmachinelearning algorithmsandoffersa user-friendlyplatform thatallowsaudio inputfrom individualsseeking assessment. Through the examinationoftheseinputs,thealgorithmsascertainwhetherthepersonisexperiencingdepressionornot.Ininstanceswhere depression is detected, appropriate recommendations are made, including referrals to nearby psychologists or self-help groups.

Inthedepressiondetectionmodel[1]builtbyB.Yalamanchili,N.S.Kota,M.S.Abbaraju,V.S.S.NadellaandS.V.Alluri, usespotentialofacousticcues,suchasspeechpatterns,prosody,andvoicequalitytoindicatedepression.Themethodology sectiondescribesthedatacollectionprocess,preprocessingstepsperformedontheaudiodatatoprepareitforextractionof thefeatures.Theauthorsdiscusstheperformancemetrics,includingspecificity,sensitivity,andoverallaccuracy,totestthe models'effectiveness.TheauthorsofthispaperhaveusedSMOTE[7]analysistoremoveclassimbalanceandsuccessfully achieved93%accuracyusingSVM[6]algorithm.Theextractionacousticfeaturesfromtheaudiois doneusingCOVAREP toolboxandthenthefeaturesarefused.Thus,thisstudyhashelpedtoobtainDepressionClassificationModel(DCM).

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page301

3. METHODOLOGY

Thispaperproposesa“MentalIllnessPredictionModel”usingasupervisedlearningmethodology.Fig.1represents thedesignflowoftheproposedmodel.Largeamountofdatacollectedfromdepressedandnon-depressedpeopleissegmented toremoveunwanteddisturbancesandnoisespresent.Thesegmenteddatawillthenbegiventoanalgorithmtoextractthe features.Afterextractingthefeature,thedatashouldbeclassifiedtogetaccurateresults.Fortheclassification,convolutional neuralnetworks(CNNs[5])areused.Therefore,thedataisvisuallyrepresentedasspectrograms.Theclassificationprocess involvesclassbalancing,modellingthearchitecture,andtrainingthemodel.

3.1 Dataset Collection

The Man-machine conversation dataset serves as an important resource for studying and analyzing interactions betweenhumansandvariousmachineinterfaces,suchaschatbotsandvirtualassistants.Thisextensivedatasetencompassesa broadspectrumofconversationaldata,incorporatingbothnaturallanguagedialoguesandstructuredinformation,suchasuser intentlabels.OneprominentdatasetwithinthiscollectionistheDAIC-WOZ[10],whichisspecificallydesignedfortraining modelsinthedomainofman-machineconversations.Itcomprisesrecordingsofaudioconversationsbetweenindividualsanda virtualinterviewernamedEllie,withatotalof189sessions.Fig.2.showsthevirtualinterviewwithEllie.Thesesessionshave anaveragedurationofapproximately16minutes,offeringsubstantialdataforanalysisandinvestigation.

Toensureathoroughunderstandingofthedataset'scontent,theUSCInstituteofCreativeTechnologiesplayeda crucialroleincompilingtheDAIC-WOZdataset.TheInstitutereleasedthisdatasetaspartofthe2016Audio/VisualEmotional ChallengeandWorkshop(AVEC2016).Thedatasetisuniqueinthatitincludesindividualsrepresentingbothdepressedand non-depressed populations. Prior to every interview session, participants were required to complete a psychiatric questionnaireknownasthePHQ-8.Basedontheresponsesprovided,abinaryclassificationwasderivedtoindicatewhether

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page302
Fig.1DesignFlow Fig.2.VirtualinterviewwithEllie

theparticipantwasclassifiedasdepressedornotdepressed.Thisbinary"truth"classificationaddssignificantvaluetothe dataset, enabling researchers and professionals to explore and develop various depression prediction models using the collectedaudiorecordings.

3.2 Data Preparation

For speech segmentation, the required acoustic features were extracted from the speech signals using pyAudioAnalysis.Thesefeatures,suchasenergy,pitch,duration,andspectralcontent,facilitatedthedivisionofspeechsignals intodistinctsegments.Thelibrary'srobustalgorithmsforpitchdetection,energydetection,spectralanalysis,andtemporal analysiswereemployedforaccuratesegmentationofthespeechdata.Furthermore,speakerdiarizationwasperformedusing thespeakeridentificationcapabilitiesofferedbypyAudioAnalysis.Thisaidedtodifferentiateparticipantspeechinputwiththat oftheinterviewer. TheintegrationofpyAudioAnalysisintotheprojectprovidedreliablespeechsegmentationandspeaker diarization. The library's comprehensive set of features and algorithms empowered the extraction of meaningful speech segmentsandtheaccurateidentificationofdistinctspeakerswithintherecordings. TABLE

AUDIO

AUDIOFILESAFTERSEGMENTATION

ThedurationofafewaudiofilesintheaudiodatasetbeforesegmentationisshowninTABLE1.Thetimedurationpost removalofsilenceandinterviewervoicehassubsequentlyreducedwhichisshownintheTABLE2.

3.3 Feature Extraction

Speechfeatureextractioninvolvesretrievingmeaningfulinformationfromspeechsignalstoclassifyspeechcontentor understandspokenwords.Acousticfeatureextractionfromspeechincludesextractingvariousfeatureslikepitch,energy, spectralfeatures,formants,andprosodicfeatures.Pitchrepresentsthefrequencyofsoundproducedandhelpsidentifythe speaker's vocal range. Energy indicates the speaker's loudness. Spectral features describe energy distribution across the frequencyspectrum,enablingvoicequalityidentification.Therearevariousmethodsforacousticfeatureextraction.This researchhasemployedMel FrequencyCepstral Coefficient[8]s(MFCC)whichtransformsspeechsignalsintocoefficients representingshort-termpowerspectrum,widelyusedinspeechprocessingtasks. Further,convolutionalneuralnetworks (CNNs[5])withspectrogramshavebeenemployed,whichgiveavisualrepresentationoffrequencyspectrumvariationsover time.Spectrograms,createdusingaspectrograph,arewidelyusedinsoundengineering,speechrecognition,andlinguistics. Theyhelpanalyzesignalfrequencies,detectpatternsandchanges,andstudylanguagestructuresandmusicalcompositions.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page303
1
FILESBEFORESEGMENTATION NameOfAudioFiles Duration 301_AUDIO.wav 10:42minutes 302_AUDIO.wav 13:42minutes 303_AUDIO.wav 12:38minutes
2
TABLE
NameOfAudioFiles Duration P301_no_silence.wav 07:50minutes P302_no_silence.wav 05:16minutes P303_no_silence.wav 10:03minutes

ThisresearchutilizestheShort-timeFourierTransform(STFT)techniquetocomputethespectrogram.TheSTFTisa well-knownsignalprocessingtechniquethatanalyzesasignal'sfrequencycontentovershort,overlappingtimewindows.The STFTusesappropriateparameterstocomputethespectrogrammatrix.Thisspectrogrammatrixisthenreshapedandflipped to correspond the desired orientation for visualization. The resulting spectrogram matrix is subsequently employed for additional processing purposes. Since the convolutional neural network (CNN [5]) models cannot process audio, the spectrogrammatricesareusedasinputtothemodel.Thus,Spectrogramsarespecificallyusefulinscenarioswheretemporal andfrequencyinformationiscrucial,astheyprovideacompactandvisuallyintuitiverepresentationoftheaudiodata.The logarithmicscalingappliedtothefrequencyaxisimprovestheperceptualdepictionofthespectrogram,aligningitwithhuman auditoryperception.Thescript'sflexibilityallowsforexperimentationwithdifferentwindowsizes,overlapfactors,andscaling factors,enablinguserstoadaptthespectrogramgenerationprocesstotheirspecificrequirements.

3.4 Classification of Spectrograms

Classificationofspectrogramsfocusesonbuildingdictionariesforthedepressedandnon-depressedclassesusingthe correspondingsegmentedmatrixspectrogramrepresentation.ThisclassificationusesPHQ-8valuestocreatedepressedand non-depresseddictionaries.ThePHQ-8valuesarederivedfromtheTruthDatasetprovidedbyTheUniversityofCalifornia. ThisdatasetencompassesthePatientHealthQuestionnaire-8(PHQ-8)binaryscorevalues,coupledwithpredefinedvalues indicatingthedepressionstatusofindividuals.

3.TruthDataset

IntheFig.3,thePHQ-8valuesareindicatedinbinarywhere0indicatesnon-depressedand1indicatesdepressed. VariousotherrepresentationlikePHQ-8scoreisalsoprovided.ThePHQ-8scorelessthan10indicatesnon-depressedand greater than 10 indicates depressed. Based on this, the two distinct dictionaries are created in which one specifically customizedforindividualswhoexhibitedsignsofdepressionandanotherforthosewhodidnot,arethenemployedforthe purposeofclassificationtasks,suchastrainingaConvolutionalNeuralNetwork(CNN[5])toclassifyspectrogramsaseither depressedornon-depressed.

3.5 Training and Testing data

Thepre-processingofourdatasetisdonebyemployingdiverseprocedures.Wesplitourdatasetintotrainingand testing sets through the utilization of random sampling. This technique involves randomly dividing the dataset into

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page304
Fig.2.SampleSpectrogram Fig.

representativesubsets.Thisensuresunbiasedsplitofthedatasetandevaluatingtheperformanceofourmodel.Thus,ithelps inobtainingreliableresults.Thetrainingandtestingdatasetisensuredtohavebalancednumberofbothdepressedandnondepressedsamples.Thetestsamplesizeissetto0.2,whiletrainsamplesizeis0.8.Thetrainingsampleisallocatedwithlarger portionofthedatatoensurethemodellearnsthepatterns,relationships,andfeaturesfromthedatainput.

3.6 Model Architecture

Thisproposedsystemusesadeeplearningneuralnetworkcalledconvolutionalneuralnetwork,orCNN[5].Themodel uses6-layerCNNasshowninFig.4.The6-layerconvolutionalneuralnetworkmodelconsistsoftwoconvolutionallayers,two max-poolinglayersandtwofullyconnectedlayers.Thefirstlayerinthearchitectureisaconvolutionallayerthatisusedto detectpatternsinimagesandvideos.Thefirstlayerisfollowedbyapoolinglayerwheremaxpoolingtechniqueisused.Itis usedtoreducethesizeoftheinputwhilepreservingtheimportantfeaturesoftheinput.Convolutionallayerandpoolinglayer arerepeatedonceagainasthirdandfourthlayer.Thesubsequentpairoflayerscomprisefullyconnectedlayers,whereeach neuronisconnectedtoeveryneuronintheprecedinglayer.Inafullyconnectedlayer,theoutputofaneuronisdeterminedby theweightedsumofinputsreceivedfromthepreviouslayer.Theseweightsareadjustedduringthetrainingphaseofthe neuralnetworktominimizethediscrepancybetweenthepredictedoutputandtheactualoutput.

Fig.4.Layersofarchitecture

Duringthepre-processstage,normalizationisperformedtopreparethespectrogramsamplesforinputintotheCNN [5]model.Bynormalizingthedata,modelcanlearnfromconsistentandstandardizedfeatures,whichenhancesitsabilityto classify normal and depressed participants accurately. This normalized data is then reshaped as per expected input dimensions,thespectrogramsamplesarepreparedina format suitable forfeedingintotheCNN [5]model.This ensures compatibilitybetweenthemodelarchitectureandthedata,enablingeffectivetrainingandevaluationofthemodel.

3.7 Results and Accuracy

Theeffectivenessofthetrainedmodelhasbeenevaluatedusingvariousassessmentcriterialikeaccuracy, precision,recall,andF1-score.Thesemetricsprovideacomprehensiveunderstandingofthemodel'sperformanceinclassifying normalanddepressedparticipants.Withthenumberofepochs21andbatchsizeof7,thetrainedmodelhasachievedto provideaccuracyof67%.Whilewiththenumberofepochs36andbatchsizeof6,thetrainedmodelhasachievedtoprovide accuracyof71%.BelowfiguresFig.5.1,5.2and5.3showmodelaccuracy,modellossandROCcurveofmodeltrainedwith batchsizeof6andnumberofepochs36respectively.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page305
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page306
Fig5.1ModelAccuracyofTrainedModelwith71%accuracy Fig5.2ModelLossofTrainedModelwith71%accuracy Fig5.3ROCcurveofTrainedModelwith71%accuracy

3.8 Graphical User Interface

Thesystemisdesignedtoassessthementalstatusofuserswhoprovideaudiorecordingsinthe.wavformatfilesand theircorrespondinglocationinformation.Whenauserwantstochecktheirmentalstatus,theyuploadtheaudiofilealongwith theirenteredlocation.Theaudiofileundergoespre-processingtoensureoptimalinputforthemodel.Thepre-processedaudio isthenpassedthroughatrainedmodeltodeterminethepresenceofdepression.

Ifthemodeldetectssignsofdepression,thesystemproceedstothenextstep.Itutilizesanopen-sourceandfreely availableAPItoretrievenearbyhospitalsbasedonthelatitudeandlongitudecalculatedfromtheuser'senteredlocation.This APIhelpsidentifysuitablehealthcarefacilitiesintheuser'svicinitythatspecializeinmentalhealthtreatment.Byleveraging thisAPI,thesystemguaranteesthatusersareprovidedwithrelevantandaccessibleresourcesfortheircondition.

In the case where the user is deemed healthy based on the model's analysis, the system delivers a message of congratulationsfortheirmentalwell-being.Nofurtheractionsaretakenabouthospitalrecommendationssincetheuserdoes notrequireimmediatementalhealthcare.Thisoutcomeactsasapositivereinforcementfortheuser,motivatingthemto continueprioritizingtheirmentalhealthandwell-being.

Overall, the system's design encompasses audio pre-processing, model analysis for depression detection, and integrationwithanopen-sourceAPItoobtainnearbyhospitalrecommendations.Bycombiningthesecomponents,thesystem efficientlyevaluatesauser'smentalstatus,offersappropriatesupportifdepressionisdetected,andprovidesencouragement forthosewhoarementallyhealthy.

4. CONCLUSION

Thisstudysuggeststhatspeechanalysisholdssignificantpromiseasatoolforpredictingmentalillness.Whilethe currentlevelofprecisioninspeechanalysismaynotbesufficientformakingdefinitivediagnosticdecisions,itcanstillprovide valuableinsightsintoanindividual'smentalstate.Byanalyzingvariousaspectsofspeech,suchastone,pitch,andlinguistic patterns,researchersandclinicianscanidentifypotentialindicatorsofmentalhealthissues.Thisearlydetectioncanbecrucial inallowinghealthcareprofessionalstointervenesoonerandprovidemoreeffectivecare.Therefore,furtherexplorationof speechanalysisinthecontextofmentalillnesspredictionisacompellingavenueforresearch.

5. ACKNOWLEDGEMENT

Wewouldliketousethisopportunitytoshowoursinceregratitudetoeveryonewhohelpedus,directlyorindirectly, tofinishthisproject.WeappreciateTheNationalInstituteofEngineering,Mysuru,Karnataka,India,forgivingusthechance andthetoolsweneededtodothisresearchsuccessfully.Additionally,itgivesusgreatpleasuretothankNandiniBM,Assistant professorintheDepartmentofInformationScience&EngineeringatNIEMysuruwhoservedasourprojectguidethroughout. Andweappreciateherconsistententhusiasmandsupport.

6. REFERENCES

[1]B.Yalamanchili,N.S.Kota,M.S.Abbaraju,V.S.S.NadellaandS.V.Alluri,"Real-timeAcousticbasedDepressionDetection using Machine Learning Techniques," 2020 International Conference on Emerging Trends in Information Technology and Engineering(ic-ETITE),2020,pp.1-6,doi:10.1109/ic-ETITE47903.2020.394

[2] A. Ahmed, R. Sultana, M. T. R. Ullas, M. Begom, M. M. I. Rahi and M. A. Alam, "A Machine Learning Approach to detect Depression and Anxiety using Supervised Learning," 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering(CSDE),2020,pp.1-6,doi:10.1109/CSDE50874.2020.9411642.

[3]D.Shi,X.Lu,Y.Liu,J.Yuan,T.PanandY.Li,"ResearchonDepressionRecognitionUsingMachineLearningfromSpeech,"2021 InternationalConferenceonAsianLanguageProcessing(IALP),2021,pp.52-56,doi:10.1109/IALP54817.2021.9675271.

[4]R.KataryaandS.Maan,"PredictingMentalhealthdisordersusingMachineLearningforemployeesintechnicalandnontechnical companies," 2020 IEEE International Conference on Advances and Developments in Electrical and Electronics Engineering(ICADEE),2020,pp.1-5,doi:10.1109/ICADEE51157.2020.9368923.

[5] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural network," 2017 International ConferenceonEngineeringandTechnology(ICET),Antalya,Turkey,2017,pp.1-6,doi:10.1109/ICEngTechnol.2017.8308186.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page307

[6] S. Ghosh, A. Dasgupta and A. Swetapadma, "A Study on Support Vector Machine based Linear and Non-Linear Pattern Classification,"2019InternationalConferenceonIntelligentSustainableSystems(ICISS),Palladam,India,2019,pp.24-28,doi: 10.1109/ISS1.2019.8908018.

[7]G.A.Pradipta,R.Wardoyo,A.Musdholifah,I.N.H.SanjayaandM.Ismail,"SMOTE[7]forHandlingImbalancedDataProblem: AReview,"2021SixthInternationalConferenceonInformaticsandComputing(ICIC),Jakarta,Indonesia,2021,pp.1-8,doi: 10.1109/ICIC54025.2021.9632912.

[8]Z.K.AbdulandA.K.Al-Talabani,"MelFrequencyCepstralCoefficientanditsApplications:AReview,"inIEEEAccess,vol.10, pp.122136-122158,2022,doi:10.1109/ACCESS.2022.3223444.

[9]K.Taunk,S.De,S.VermaandA.Swetapadma,"ABriefReviewofNearestNeighborAlgorithmforLearningandClassification," 2019InternationalConferenceonIntelligentComputingandControlSystems(ICCS),Madurai,India,2019,pp.1255-1260,doi: 10.1109/ICCS45141.2019.9065747.

[10]DatasetTitle:TheDistressAnalysisInterviewCorpus(DAIC)WOZDatasetLink:http://dcapswoz.ict.usc.edu/Accessed:18th November2022.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page308

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.