Estimation of Radial Distribution Feeder Sections Average Failure Rate for Different Located Future Forecasted EV Charging Stations.
V Swarna Rekha1 , E Vidyasagar21Research Scholar, Department of Electrical Engineering, University College of Engineering, Osmania University, India.

2Professor, Department of Electrical Engineering, University College of Engineering, Osmania University, India ***
Abstract - The number of Electrical vehicles increasing day by day and this increased load results in increase in the magnitude of currents passing through different line sections of the distribution feeder circuit. Due to the increase of the magnitude of current, the resistive losses increase. As a result, the increase in temperature of the feeder section moderates its average failure rate and reliability. In this paper the average failure rate of different line sections of a feeder is calculated for future increased EV charging stations for different possible locations and the total load of Electrical vehicles assumed to be charged from equal rated two charging stations. The four possible locations of charging stations are considered based on the voltage sensitivity factor which indicates strength of load buses. The average failure rate of all sections of the feeder are evaluated and compared for all four different locations of charging stations to meet the future EV demand. This analysis is carried out on IEEE33 test bus system.
Key Words: ElectricalVehicle,VoltageSensitivityFactor,FutureLoadForecast,AverageFailurerate.
1. INTRODUCTION

Theanalysisofadistributionsystemisanimportantareaofactivity,asdistributionsystemsprovidethefinallinkbetweenthe bulkpowersystemandtheconsumers.Sucharadialsystemneedsadequateplanningsothatitcanoperateefficientlyand achievethegreatestpossibleincrementalreliability[1],[2].Themaingoalofanelectricaldistributionnetwork'soperationisto maintain anappropriateoperational state ofits elementstosupplyreliable power toitscustomers.The reliabilityofthe distributionnetworkdependsontheaveragefailurerateandrepairtimeofitsfeedersections.Thereliabilityofdistribution systemsismeasuredintermsofloadpointindicesandsystemindices.Theloadpointreliabilityindicesare(i)averagefailure rate,(ii)averageoutagetime, rs and (iii)averageannualoutagetime, Us..Theindicesarenormallyusedtopredictorassessthe reliabilityofadistributionsystem.[1]Thereliabilityofthedistributionsystemalsodependsontheloadingofthebuses.Oneof theloadsonthedistributionsystemisthetransportationsector,i.e.,integratingelectricalvehicle(EV)chargingstations.
ThetransportationindustryisasignificantcontributortoCO2emissions,causingglobalwarmingandclimatechange.EVsare beingintroducedtoreducethisemission,howevertherisingnumberofEVshasdemandedthedevelopmentofasustainable charginginfrastructure.Theinstallationofchargingstationsincreasestheburdenontheelectricalsystem.Thechargingloadof EVchargingstationswilldecreasethedistributionnetwork'soperationalparameters,suchasvoltagestability,failurerate, powerloss,etc.AlargenumberofstudiesreportstheadverseeffectsofEVchargingloadonvariousdistributionnetwork parameters.[3]-[9].ToevaluatethereliabilityofthefutureEVload,itisForecastedusingHolt’smodel,andtheimpactsofEV chargingstationloadonthefailurerateofthefeedersectionanalysedonFig-1IEEE33standardtest.
Therestofthepaperisorganisedasfollows:SectionIIpresentsabriefreviewofdistributionnetworkloadpointparameters [1].SectionIIIreportsthenumericalanalysisanddiscussesthekeyfindingsofthiswork.SectionIVconcludesthework.

2. METHODOLOGY
To calculate the voltages and currents of radial distribution system load flow analysis is considered by using Backward/forwardsweepmethod.
2.1 Load flow analysis.
Load flow analysis is used to study balanced and unbalanced power systems. Distribution systems are unbalanced. The backward/forwardsweep[10]isaclassicalalgorithmthatdeterminesthebusvoltages,currentspassingthrougheachline. Backwardsweep(BS)istheprocessofsolvingforthecurrentswiththeprovidedvoltages,whileforwardsweep(FS)isthe processofsolvingforthevoltageswiththeprovidedcurrents[11].Fig-2.representstheradialdistributionsystemwithN numberofNodes. Figure2depictsthealgorithmforforwardandreverseloadflow.

Algorithm
Step 1:Initializevoltagesateachnode.
Step 2:InitializeIterationCount,k=1
Step 3:CalculateLoadcurrent.
LoadcurrentsateachNodeiscalculatedbyusingEquation(5)
Step 4:BackwardSweepusedtocalculateBranchcurrents
WhereIn=Loadcurrentatnth nodecalculatedatkthiteration.m=1,2,3…(N-1),n=2,3,4…N


Step 5:Forwardsweep:CalculatingVoltagesateachNodesovoltageatnth node.
Where calculatedfromstep4. foralln=2,3,4…N,m=1,2,3…(N-1)
Step 6:CalculatetheError.
Erroratanyjth nodeisgivenby.
Step 7:CalculatingMaximumerror.
Step 8:CompareerrorvalueswithTolerance.
Thenconvergeandprinttheresults;elseupdatetheiterationcountk=k+1andgotostep(3).

Ifthevoltagedifferenceissmallerthanthestatedtolerance,or0.001,convergencecanbeachieved.Atfirst,itisexpectedthat allnodeswillhaveaflatvoltageprofile,or1.0p.u.Theupdatedvoltagesateachnodeareusedtorepeatedlycalculatethe branchcurrents.TheIEEE33radialbusnetworkusestheBackwardForwardsweepmethodtocalculatevoltagesinthenode andcurrentsinthebranches[12].Thistestnetwork'slineandbranchdataweretakenfromreferences[13]
ThissectionexplainsthemethodofcalculatingthestrengthofbusesusingVSF,calculatingthefutureEVloadforecastusing Holt'smodel,andapplyingthefutureforecastedEVloadtodifferentpossiblecasesofbusesobtainedfromVSF.Further,the newfailurerateoffeedersectionsiscalculatedbyconsideringthechangeincurrentsafterapplyingloadindifferentpossible cases.
2.2 Voltage sensitivity factor (VSF).

Thevoltagesensitivityfactor(VSF)istheratioofthechangeinthevoltageataparticularbustothechangeintherealpower loadatthebus.Equation(1)givestheVSFforthenthbusduringthekthinterval.


Where and arethechangeinvoltageandrealpowerloadatnthbus. ThenodevoltagesarecalculatedusingEquation (7).Thisindexisusedtodeterminethestrengthofbus.ItispreferableiftheVSFatabusineachtimeintervalislow.Ahigh VSFvalueshowsthatthevoltagedropssignificantlyevenforaslightchangeinloading,whichsuggeststhebusisweak[14]The loadingmarginofthesystemisdefinedastheloadingforwhichallbusvoltagesfallwithinanacceptablerange[14].
2.3 Holts Model for EV load forecast
Holt'stwo-parametermodel[15],alsoknownaslinearexponentialsmoothing.Itisapopularsmoothingmodelforforecasting data with a trend. Holt's model consists of three distinct equations that collaborate to provide a final forecast. The basic smoothingequation(5)adjuststhelatestsmoothedvaluedirectlyforthetrendofthepreviousperiod.Equation(6)isusedto updatethetrendovertime,wherethetrendisgivenasthedifferencebetweenthetwomostrecentsmoothedvalues.Equation (4)isthenusedtogetthefinalforecast.
TheHoltmodelemploystwoparameters,onefortheoverallsmoothingLt andanotherforthetrendsmoothingequationbt
Theequationforforecast
whereLt andbt representsestimateofthelevelandtrendoftimeseriesrespectivelyattimet.
Ft+1istheforecastfornextyear.
Assumptions
αandβaresmoothingconstantsforlevelandtrendrespectivelywhosevalueslieontheintervalbetween0to1.
InitialestimatesareneededforL1 andb1.SimplechoicesareL1 =Y1 andb1 =0.

2.4 New Average failure rate of feeder sections.
The percentage change in average failure rate ( of a feeder section is assumed to be directly proportional to the percentagechangeincurrentpassingthroughthatcomponentduetoadditionofEVchargingstationstomeetthefutureEV demands.ThecurrentineachbranchiscalculatedusingloadflowanalysisusingEquation3.
Thenewaveragefailurerateiscalculatedas
Where istheincreaseinaveragefailurerateduetoadditionofEVchargingstations
3. CASE STUDY
This section explains how to find the nature of the bus using VSF. After calculating VSF, the strengths of the buses are confirmed,andtheEVloadisforecastedandappliedtothetestbusbyassumingdifferentcases,forthesedifferentcases,the averagefailurerateiscalculatedandanalysed.
3.1 Finding the strength of the Bus using VSF.
VSFofeachbusiscalculatedusing(1)withloadingfactor2,andthebusesarecategorisedintostrongest,strong,moderate,and weakbuses[16].TheVSFofbus14forloadingfactor2is0.1163andishigherincomparisonwithotherbuses.Thus,bus14 wasregardedastheweakestbusofthesystem.Similarly,theVSFofbus2wasleastmakingitthestrongestbusofthesystem. TheVSFvaluesalsosignifythatbus15andbus19werethesecondweakestandsecondstrongestbusrespectively.



RepresentationforTable1:*Strongest-SG,Strong-S,Moderate-M,Weak-W
Table -1: StrengthofbusesaccordingtoVSFvalues
3.2 Forecasting EV load.
FromthedataaboutnumberofEVsgivenuptotheyear2020[17]andthentheHolt’sModelisusedforforecastingtheEVload upto2030byassumingalpha(α)andbeta(β)as0.2and0.3respectively.Theresultsobtained(percentageofincreasedin numberofEV’s)isusedinestimatingthenumberofEV’sincreasedincaseofIEEE33bustestsystemandvalidatedasshownin Table2.TheloadfortheIEEE33-bussystemiscalculatedfortheyears2023,2025,2030considering5kWfor2wheeler,30 kWfor3wheeler,50kWfor4wheelerandresultsarevalidated.
RepresentationsforTable.2:*2wheeler-(2-W),3wheeler-(3-W),4wheeler-(4-W)
Table -2: Forecasted2,3and4-wheelerEVvehiclesinMillions.
TheEVforecastedloadsfromTable.2areappliedequallyon2assumedlocationsofthebusesontheIEEE33testsystemis showninTable3.

RepresentationforTable3:*Strongest-SG,Strong-S,Moderate-M,Weak-W Table-3: Different locations of charging stations with forecasted EV load.
Table4representstheresultsofchangeinaveragefailurerateofthefeedersectionsfortheyear2023afterapplyingtheload onassumedcases2to5.ThevaluesobtainedinTable4,Table5,Table6areroundedtothreedecimals.
RepresentationsforTable4,Table5,Table6:*Case1(Basecase)-C1,Case2-C2,Case3-C3,Case4-C4,Case5-C5,*Section-(S)
Volume: 10 Issue: 02 | Feb 2023 www.irjet.net
2395-0072
Table-4: Average failure rate of feeder sections with increasing EV load in 2023 for different charging station locations.
Table-5: Average failure rate of feeder sections with increasing EV load in 2025 for different charging station locations.
© 2023, IRJET | Impact Factor value: 8.226 |

Table6.givestheresultsfornewaveragefailurerateoffeedersectionsfortheforecastedloadof2030forcases2to5.
Table-6: Average failure rate of feeder sections with increasing EV load in 2030 for different charging station locations.
FromTable.4,Table.5,Table.6thepercentagechangeoffailureratefortheyears2023,2025,2030withrespecttothebasecase iscalculated.Theeffectedfeedersectionsforcases2to5afterapplicationofEVloadareshowninTable.7.
Table-7: Average failure rate affected greater than 20%, greater than 50%, greater than 100% on sections.
© 2023, IRJET | Impact Factor value: 8.226 |

[
4. CONCLUSION
AveragefailurerateisthebasicindexusedtocalculatethereliabilityparameterSAIFIandisexpressedastheaveragenumber ofoutagesexperiencedbyasystemcustomerduringayear(ortimeperiodunderstudy).Fromtable7,theaveragefailurerate ofthesectionsfortheyear 2030increased.Itisnotedthatcase5isthemostaffectedcase,where23feedersectionsare affectinggreaterthan20%,18feedersectionsareaffectinggreaterthan20%,and14feedersectionsareaffectinggreaterthan 100% of the average failure rate. It is mandatory that the engineers need to compensate the increase in current in the distributionfeedersectionssothattheincreaseinlossescompensatesandtheeffectonthefailurerateofthecomponents correspondingtothatsectionisalsoreduces.Thispaperconcludesthatitisnecessarytoconcentrateonweakersectionsofthe distribution system and observes that choosing proper locations for placing charging stations is necessary to maintain reliability.
Future work.
The current passing through the lines are reduced by placing distributed generators, reconfiguring the network, optimal placementofcapacitorsetc.,therebytheaveragefailurerateofthedistributionsystemreduces.
REFERENCES
1]RoyBillinton,RonaldN.Allan“Reliabilityevaluationofpowersystem”-Secondedition,publishedbyPlenumPress,NewYork in (1986).
[2]Jeenia Bhadra , Tapan Kumar Chattopadhyay “Analysis of distribution network by reliability indices”. International ConferenceonEnergy,PowerandEnvironment:TowardsSustainableGrowth(ICEPE),shillong,India,(2015).

[3]Wang,Z.;Yang,L.“Delinkingindicatorsonregionalindustrydevelopmentandcarbonemissions”,:Beijing–Tianjin–Hebei economicbandcase.Ecol.Indic.(2015),48,41–48.
[4]Wang,Q.;Rongrong,L.;Rui,J.“DecouplingandDecompositionAnalysisofCarbonEmissionsfromIndustry:ACaseStudy fromChina”.Sustainability(2016),10,1059–1076.
[5]Blesl,M.;Das,A.;Fahl,U.;Remme,U.”RoleofenergyefficiencystandardsinreducingCO2emissionsinGermany”:An assessmentwithTIMES.EnergyPolicy(2007),35,772–785.
[6] Geske, M.; Komarnicki, P.; Stötzer, M.; Styczynski, Z.A. “Modeling and simulation of electric car penetration in the distributionpowersystem”, Casestudy.InProceedingsoftheInternationalSymposiumonModernElectricPowerSystems, Wroclaw,Poland,1September (2011);pp.1–6.
[7] Zhang, C.; Chen, C.; Sun, J.; Zheng, P.; Lin, X.; Bo, Z. “Impacts of electric vehicles on the transient voltage stability of distributionnetworkandthestudyofimprovementmeasures”.InProceedingsoftheIEEEAsiaPacificPowerandEnergy EngineeringConference(APPEEC),HongKong,China,7–10,December (2014);pp.1–6.
[8]Staats,P.T.;Grady,W.M.;Arapostathis,A.;Thallam,R.S.“Astatisticalanalysisoftheeffectofelectricvehiclebatterycharging ondistributionsystemharmonicvoltages”.IEEETrans.PowerDeliv. (1998),13,640
646.
[9]Basu,M.;Gaughan,K.;Coyle,E.“HarmonicdistortioncausedbyEVbatterychargersinthedistributionsystemsnetworkand itsremedy”.InProceedingsofthe39thInternationalUniversitiesPowerEngineeringConference,Bristol,UK,6–8September (2004);pp.1–6.
[10]“NPTEL’s_loadflowanalysis-Backward/forwardsweep”,ElectricalDistributionSystemAnalysisbyDr.GaneshKumbhar, Department of Electrical Engineering, IIT Roorkee or https://www.youtube.com/watch?v=kxm0Prghn64&ab_channel=IITRoorkee.July, (2018)
[11]Dharmakeerthi,C.H.;Mithulananthan,N.;Saha,T.K.“Impactofelectricvehiclefastchargingonpowersystemvoltage stability”.Int.J.Electr.PowerEnergySyst. (2014),57,241–249.
[12]Ul-Haq,A.;Cecati,C.;Strunz,K.;Abbasi,E.“Impactofelectricvehiclechargingonvoltageunbalanceinanurbandistribution network”.Intell.Indus.Syst. (2015),1,51–60.
[13]J.A.MichlineRupa,S.Ganesh“powerflowanalysisforradialdistributionsystemusingforwardbackwardmethod.”World AcademyofScience,EngineeringandTechnologyInternationalJournalofElectricalandComputerEngineering, (2014) Vol:8, No:10.
[14]Rahman,M.M.;Barua,S.;Zohora,S.T.;Hasan,K.;Aziz,T.“Voltagesensitivity-basedsiteselectionforPHEVchargingstation incommercialdistributionsystem”.InProceedingsoftheAsiaPacificPowerandEnergyEngineeringConference,HongKong, China,8–11December (2013);pp.1–6.

[15]“NPTEL’slectureon”Holt’sModelforforecasting”byProf.G.Srinivasan,DepartmentofManagementStudies,IITMadras, canbefoundatSwayamCentralorYouTube,https://www.youtube.com/watch?v=e1yUVLKhcko&list=WL&index=36.

[16]SanchariDeb,KariTammi,KarunaKalita IandPinakeshwarMahanta “Impact of Electric Vehicle Charging Station Load on Distribution Network” Energies 2018, 11(1),178; https://doi.org/10.3390/en11010178.
[17]DeutshceGesellschaftfur,“Status quo analysis of various segments of electric mobility and low carbon passenger road transport in India” conducted by Deutshce Gesellschaft fur Internationale Zusammenarbeit (GIZ) GmbH, Federal MinistryfortheEnvironment,NatureConservationandNuclearSafety,andNITIAyog,India.
BIOGRAPHIES
V Swarna Rekha Research Scholar in Electrical & Electronics Engineering Department, University college of engineering,OsmaniaUniversity,Hyderabad

HehasdoneB.tech.inElectricalEngineering from DVR college of Engineering and Technology (JNTU(H)). and M. E. from University College of Engineering and Technology,OsmaniaUniversity Herresearch includesPowerQuality,DistributionSystem. She can be contacted at email: swarna.vaddemoni@gmail.com
Dr EVidyasagarcurrentlyworkingProfessor in Electrical & Electronics Engineering Department, University college of engineering,OsmaniaUniversity,Hyderabad
He has done his Bachelor’s Degree in Electrical and Electronics Engineering. Master’sDegreeinElectricalEngineeringand Doctorate Degree from JN.T. University, Hyderabad. His main research directions include Distribution Reliability, Power Quality, Deregulated Power Systems, Smart Grid,DistributionSystem.Hecanbecontacted atemail:vidyasagar.e@uceou.edu