
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 12 Issue: 11 | Nov 2025 www.irjet.net p-ISSN: 2395-0072
![]()

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 12 Issue: 11 | Nov 2025 www.irjet.net p-ISSN: 2395-0072
Yash Pal1 Dr. Meenal1 Preeti Bhandari2
1 Assistant professor, department of physics, Shri Khushal Das University, Rajasthan
2Research scholar, Department of Life sciences, Desh Bhagat University, Punjab
Abstract
Thetransitiontowardsustainableenergyremainsoneofthemostpressingchallengesofthemodernera.Amongvariousclean energyoptions,greenhydrogen producedthroughtheelectrolysisofwaterusingrenewableenergysources standsoutasa viablealternativetoreducedependenceonfossilfuels.Thispaperinvestigatesthepotentialofgreenhydrogenacrosskey sectorssuchastransportation,industrialmanufacturing,electricitygeneration,andheating,highlightingitssignificancein loweringemissionsfromtraditionallycarbon-intensivedomains.
ThediscussionfurtherreviewsglobalpolicyinitiativesandimplementationstrategiesfromregionsincludingtheEuropean Union,Australia,Japan,theUnitedStates,andCanada,allofwhichareadvancingthegreenhydrogenagenda.Majorobstacles hinderingwidespreadadoptionincludetechnologicalimmaturity,limitedinfrastructure,highproductioncosts,regulatory complexities,andsocietalacceptance
To fully harness the benefits of green hydrogen, this study recommends enhancing research and innovation, expanding infrastructurenetworks,reducingproductionanddistributioncosts,andestablishingcohesivepolicyandregulatorysupport systems.Strengtheningcollaborationamonggovernments,industries,andacademicinstitutionswillbecriticalinaccelerating progress.Overcomingthesebarrierscanpositiongreenhydrogenasafoundationalpillaroftheglobalcleanenergytransition, pavingthewaytowardcomprehensivedecarbonization.
Keywords: Green hydrogen, Sustainable energy, Decarbonization.
Theglobalenergylandscapeisundergoingsignificantpressureduetothedeclineoffossilfuelresources,theriseingreenhouse gas emissions, and the growing demand for environmentally sustainable energy solutions. Addressing these challenges requires innovative pathways to facilitate a transition toward a low-carbon and energy-secure future Among emerging solutions,hydrogenhasgainedprominenceasaversatileandcleanenergycarriercapableoftransformingconventionalenergy systems. It can be applied across multiple sectors ranging from transportation and power generation to industrial operations andproducesonlywaterasitsbyproduct,ensuringminimalenvironmentalimpact.Withinvarioushydrogen productiontechniques,greenhydrogenstandsoutasthemostsustainableform,producedthroughtheelectrolysisofwater powered by renewable energy sources such as solar and wind. This carbon-free process aligns seamlessly with global decarbonizationandclimatemitigationobjectives. Thispaperprovidesanoverviewofthetechnologicalprogress,challenges, andprospectsassociatedwithgreenhydrogen.Itfurtherdiscussesits integrationintocurrentenergyinfrastructuresand evaluatesitspotentialcontributiontowardachievingasustainableandresilientenergyfuture.
“Greenhydrogen”referstohydrogenproducedviawaterelectrolysispoweredentirelybyrenewableenergysources suchas solar,wind,orhydropower whichresultsinzerodirectgreenhousegasemissions. Bycontrast:
 “Greyhydrogen”isderivedfromnaturalgas(primarilymethane)throughsteam-methanereforming,whichemits substantialCO₂becausetheemissionsarereleasedintotheatmosphere.
 “Blue hydrogen” uses the same basic process as grey hydrogen but adds carbon capture and storage (CCS) technologiestocaptureandstoretheCO₂emissions,therebyreducing butnoteliminating itscarbonfootprint.
 “Turquoisehydrogen”isproducedthroughmethanepyrolysis,aprocessthatthermallydecomposesmethanetoyield hydrogenandsolidcarboninsteadofcarbondioxide.SincecarbonisobtainedinsolidformratherthanasCO₂gas,this method offers the potential for reduced emissions. However, it remains an emerging technology, and its overall environmentalimpactdependsonhowthesolidcarbonby-productandenergyrequirementsaremanaged.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 12 Issue: 11 | Nov 2025 www.irjet.net p-ISSN: 2395-0072
ď‚· Production Technologies
ď‚· Water Electrolysis:
o Alkaline Electrolysis: Mature and cost-effective, suitable for large-scale production.
o Proton ExchangeMembrane (PEM) Electrolysis: Offers highefficiencyanddynamicresponsebutathigher costs.
o Solid Oxide Electrolysis: Operates at high temperatures, improving efficiencyandenablingintegration withindustrialprocesses.
ď‚· Emerging Technologies: Photoelectrochemical and thermochemical splitting methods show promise for future green hydrogen production.
ď‚· Energy Sources
Renewable energy sources such as solar, wind, and hydropower are pivotal for green hydrogen production, ensuring sustainabilityandalignmentwithdecarbonizationgoals.
Oliveira, A.M., Beswick, R.R. and Yan, Y., 2021 et al Ahydrogeneconomyhaslongbeenpromotedasaground-breaking aspectofalow-carbonfuture.Thereremainsconsiderabledebateregardingthefutureofhydrogen,withsomeexpressing concernoverlimiteddemandwhileothersoverlookitsinherentchallenges.Thisstudyaddressesthegapbypresentingaclear definition of the “hydrogen economy” and outlining a strategic vision in which hydrogen is primarily employed for decarbonizationinsectorslackingviablealternatives.Athree-phaseroadmapisproposedforintegratinghydrogenintothe industrialsectorasachemicalfeedstock,thetransportationsectorforlong-distanceandheavy-dutyvehicles,thebuilding sectorforheatingapplications,andthepowersectorforseasonalenergystorage.Thefindingssuggestthatwhilehydrogen maynotdominatetheglobalenergylandscape,anestimatedannualdemandof2.3Gtcouldenablethedecarbonizationof approximately18%ofenergy-relatedactivities.Overtime,hydrogencanserveasavitalcomplementtorenewableelectricity andformacornerstoneofafullyrenewableenergyfuture.
Panchenko, V.A., Daus, Y.V., Kovalev, A.A., Yudaev, I.V. and Litti, Y.V., 2023 et al Thisarticleprovidesa review ofthe presentstateofhydrogen-productiontechnologiesandassessestheoutlookforthedevelopmentofgreenhydrogenusing renewableenergyinleadingnations.Itexploresthehydrogen-energypotentialofregionsincludingAustralia,theEuropean Union,India,Canada,China,Russia,theUnitedStates,SouthKorea,SouthAfrica,Japan,andNorthAfrica,emphasisingtheir capacity for hydrogen production via fossil-fuel routes and renewable pathways. Quantitative forecasts for future green hydrogenoutputandexporttrendsarediscussed,alongsideadvancedhydrogentechnologies.Greenhydrogenishighlightedas aroutetoreducedependenceonfossilfuels,cutgreenhouse-gasemissions,enhanceenergysovereignty,andsupportglobal environmentalsustainability.
Squadrito, G., Maggio, G. and Nicita, A., 2023 et al Thispaperpresentsacriticalreviewofrecentstudiesandinstitutional reportstoassessthecurrentstatusofgreenhydrogendevelopment.Itexaminesandcomparesthespecificadvantagesand limitationsofvariousgreenhydrogenproductionmethods suchasbiomasspyrolysis,gasification,andwaterelectrolysis. Particular emphasis is placed on electrolysis, which is identified as the most promising approach for large-scale and decentralizedhydrogenproduction.
Zhou, Y., Li, R., Lv, Z., Liu, J., Zhou, H. and Xu, C., 2022 et al Thisarticlecomprehensivelyconsidersthenewenergyrevolution and the relevant plans of various countries, focuses on the principles, development status and research hot spots, and summarizesthedifferentgreenhydrogenproductiontechnologiesandpaths.Furthermore,drawingonanevaluationofthe existingchallengesandbottlenecksingreenhydrogenproduction,alongwithanoverviewofglobalprogressinthehydrogen energysector,thispaperexplorestheongoingdevelopmentandfutureprospectsofgreenhydrogentechnologies.
Kourougianni, F., Arsalis, A., Olympios, A.V., Yiasoumas, G., Konstantinou, C., Papanastasiou, P. and Georghiou, G.E., 2024 et al Theglobalenergysectoriscurrentlyundergoingafundamentaltransformationasitshiftsawayfromfossilfuels towards renewable energy sources. In this context, green hydrogen is identified as a highly promising energy vector for reducingthecarbonfootprintofenergysystems.Thisreviewpaperexaminesrecentdevelopmentsingreenhydrogenenergy systems(GHES),payingparticularattentiontotechno-economicfactorsspanningindividualcomponents,wholetechnologies, andbroadersystemintegrations.First,thepapersummarisesthetechnologicalbasesandlatestadvancementsinhydrogen generation,storageanduse.Next,itpresentsanin-depthlookatmodelingandexperimentalstudiesofintegratedGHES,with applicationsinbothstationaryandtransportsectors.Finally,thepaperdiscussestheprincipaltechnicalbarriers,influential

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 12 Issue: 11 | Nov 2025 www.irjet.net p-ISSN: 2395-0072
factors,andfutureresearchdirections emphasisingthatsmartintegrationofGHESwithotherenergytechnologiesiskeyto increasingresourceefficiency,systemflexibility,resilienceandenergysecurity.
1. Energy Storage and Grid Stabilization
Theapplicationofgreenhydrogenasanenergystoragemediumforsurplusrenewablepoweriswellestablished.Through electrolysis,excesselectricitygeneratedfromsolarorwindsourcescanbeconvertedintohydrogen,stored,andsubsequently reconvertedintoelectricityusingfuelcellsorturbinesduringperiodsofhighdemandorlowrenewableoutput.Forinstance, ITMPowerdemonstrateshowPEMelectrolyserscontributetogridstabilizationbyabsorbingexcessrenewableenergyand deliveringpowerwhenrequired.Additionally,theInternationalRenewableEnergyAgency(IRENA)reportsemphasizethat green hydrogen serves as an effective means of seasonal energy storage, providing dispatchable electricity to balance fluctuationsinrenewablegeneration.
2. Transportation
Green hydrogen is increasingly being utilized in the transportation sector, particularly in areas where battery-electric technologyencounterschallengessuchaslong-rangetravelorheavypayloads.AccordingtotheU.S.EnvironmentalProtection Agency(EPA),hydrogenfuelcellelectricvehicles(FCEVs)generateelectricityonboardbyconvertinghydrogen,producingonly waterandheatasby-products.Moreover,pilotprojectsinvolvingheavy-dutyhydrogentrucks suchasthoseconductedby TataMotorsinIndia demonstratethetechnology’sadvantagesinenablingextendedrangeandrapidrefuelling,reinforcingits suitabilityforlong-distanceandheavy-dutytransportapplications.
3. Industrial Applications
Theassertionthatgreenhydrogenfacilitatesindustrialdecarbonization particularlyinsectorssuchassteel,cement,and chemicals is well supported. Industry reports highlight that green hydrogen can substitute carbon-intensive fuels and feedstocks in these energy-demanding processes, significantly reducing CO₂ emissions. Notably, hydrogen-based direct reducediron(DRI)technologiesarebeingdevelopedasacleaneralternativeforsteelproduction,underscoringhydrogen’s growingroleintransformingheavyindustriestowardlow-carbonoperations.
4. Power Generation
Theperspectivethatgreenhydrogenplaysaroleinpowergeneration throughdirectuseinturbinesorhydrogenco-firing iswellsubstantiated.AccordingtoreportsfromtheInternationalRenewableEnergyAgency(IRENA),hydrogenintegrationin thepowersectorenablesflexibleelectricitygenerationandservesasaneffectivemeansofseasonalenergystorage,helpingto balancesupplyanddemandinsystemsdominatedbyvariablerenewablesources.
1. Technological Innovations
Research and Development for Enhanced Electrolyzer Performance and Cost Reduction: OngoingR&Deffortsarevitalto improving electrolyzer efficiency, reducing production costs, and enabling large-scale, cost-effective generation of green hydrogen.
Advancement of Hydrogen Storage and Transport Technologies: Progressinstorageanddistributionmethods suchas high-pressuregascompression,liquefiedhydrogen,anddedicatedpipelineinfrastructure iscriticaltoloweringlogistical costsandensuringthesafeandefficienttransportofhydrogen.
2. Economic Measures
Investments and Financial Incentives for Green Hydrogen Development: Both public and private sector funding, supportedbytargetedsubsidies,areessentialtoacceleratetheestablishmentofgreenhydrogeninfrastructureandoffsethigh initialdeploymentcosts.
Implementation of Carbon Pricing Policies: Introducingcarbonpricinginstruments suchascarbontaxesorcap-and-trade systems canenhancethecompetitivenessofgreenhydrogencomparedtofossil-basedenergysources,therebyencouraging itswidespreadadoption.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 12 Issue: 11 | Nov 2025 www.irjet.net p-ISSN: 2395-0072
Investments and Financial Incentives for Green Hydrogen Development: Both public and private sector funding, supportedbytargetedsubsidies,areessentialtoacceleratetheestablishmentofgreenhydrogeninfrastructureandoffsethigh initialdeploymentcosts.
Implementation of Carbon Pricing Policies: Introducingcarbonpricinginstruments suchascarbontaxesorcap-and-trade systems canenhancethecompetitivenessofgreenhydrogencomparedtofossil-basedenergysources,therebyencouraging itswidespreadadoption.
Investments and Financial Incentives for Green Hydrogen Development: Both public and private sector funding, supportedbytargetedsubsidies,areessentialtoacceleratetheestablishmentofgreenhydrogeninfrastructureandoffsethigh initialdeploymentcosts.
Implementation of Carbon Pricing Policies: Introducingcarbonpricinginstruments suchascarbontaxesorcap-and-trade systems canenhancethecompetitivenessofgreenhydrogencomparedtofossil-basedenergysources,therebyencouraging itswidespreadadoption.
Greenhydrogenisexpectedtoplayacrucialroleinachievingglobalnet-zeroemissionsbyprovidingcleanalternativesfor hard-to-decarbonizesectorssuchasheavyindustry,long-haultransport,andenergystorage.Widespreadadoptionofgreen hydrogencansignificantlyreducecarbonemissionsandsupportdecarbonizationgoals.Additionally,innovationsinhybrid systemsthatcombinehydrogenwithrenewableenergysourceslikesolarandwindenhanceenergygeneration,storage,and gridstability,improvingoverallefficiency.Exploringhydrogeneconomymodels,suchashydrogenhubsandexportmarkets, canpromoteregionalself-sufficiency,reducetransportationcosts,andunlockeconomicopportunities.Collaborative effortsin research,policy,andinvestmentareessentialtoharnessgreenhydrogen’spotentialanddriveasustainable,low-carbonfuture.
Greenhydrogenholdstremendouspotentialasasustainableenergysolution,offeringzero-carbonemissionsandcontributing toglobaldecarbonizationefforts.Itsabilitytoreplacefossilfuelsinhard-to-abatesectors,suchasindustryandlong-haul transport, makes it a key driver of a sustainable energy future. To realize this potential, strong collaboration across governments,industries,andresearchinstitutionsisessential.Investments,supportivepolicies,andtechnologicalinnovation areneededtoovercomebarrierssuchascost,infrastructure,andstoragechallenges.Agreenhydrogen-drivenfuturecan ensure energy security, reduce reliance on fossil fuels, and support global net-zero targets. By fostering research, policy development,andinvestment,wecanacceleratethetransitiontoalow-carbon,resilient,andeconomicallyprosperousworld.
1) Oliveira,A.M.,Beswick,R.R.andYan,Y.,2021.Agreenhydrogeneconomyforarenewableenergysociety.Current OpinioninChemicalEngineering,33,p.100701.
2) Panchenko, V.A.,Daus,Y.V., Kovalev,A.A., Yudaev,I.V.andLitti, Y.V., 2023. Prospectsfortheproductionof green hydrogen:Reviewofcountrieswithhighpotential.InternationalJournalofHydrogenEnergy,48(12),pp.4551-4571.
3) Squadrito,G.,Maggio,G.andNicita,A.,2023.Thegreenhydrogenrevolution.RenewableEnergy,216,p.119041.
4) Zhou,Y.,Li,R.,Lv,Z.,Liu,J.,Zhou,H.andXu,C.,2022. Greenhydrogen:Apromisingwaytothecarbon-freesociety. ChineseJournalofChemicalEngineering,43,pp.2-13.
5) Taibi,E.,Miranda,R.,Carmo,M.andBlanco,H.,2020.Greenhydrogencostreduction.
6) Kourougianni,F.,Arsalis, A., Olympios, A.V., Yiasoumas, G.,Konstantinou, C., Papanastasiou, P. and Georghiou, G.E., 2024. A comprehensive review of green hydrogen energy systems. Renewable Energy,p.120911.
7) Ma, N., Zhao, W., Wang, W., Li, X. and Zhou, H., 2024. Large scale of green hydrogen storage: Opportunities and challenges.InternationalJournalofHydrogenEnergy,50,pp.379-396.
8) Liu,W.,Wan,Y.,Xiong,Y.andGao,P.,2022.GreenhydrogenstandardinChina:Standardandevaluationoflow-carbon hydrogen,cleanhydrogen,andrenewablehydrogen.InternationalJournalofHydrogenEnergy,47(58),pp.2458424591.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 12 Issue: 11 | Nov 2025 www.irjet.net p-ISSN: 2395-0072
9) ClarkII,W.W.andRifkin,J.,2006.Agreenhydrogeneconomy.EnergyPolicy,34(17),pp.2630-2639.
10) .Hassan,Q.,Abdulateef,A.M.,Hafedh,S.A.,Al-samari,A.,Abdulateef,J.,Sameen,A.Z.,Salman,H.M.,Al-Jiboory,A.K., Wieteska, S. and Jaszczur, M., 2023. Renewable energy-to-green hydrogen: A review of main resources routes, processesandevaluation.InternationalJournalofHydrogenEnergy,48(46),pp.17383-17
© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page15