Comparative Structural Performance Analysis of G+12 Residential Building Under Seismic and Non-Seism

Page 1


International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN:2395-0072

Comparative Structural Performance Analysis of G+12 Residential Building Under Seismic and Non-Seismic Loads Using STAAD.Pro

1M.Tech Student - Department of Civil Engineering, Vikrant Institute of Technology and Management, Gwalior (M.P.), India

2Professer - Department of Civil Engineering, Vikrant Institute of Technology and Management, Gwalior (M.P.), India ***

Abstract: The increasing demand for high-rise residential buildings in seismic-prone urban regions necessitates robust structural design practices that account for both gravity and dynamic loads. This study presents a comparative analysis of a G+12 reinforced concrete (RC) building subjected to seismic and non-seismic load conditions using STAAD.Pro software. The structural model, compliant with Indian Standard codes (IS 456:2000, IS 875:1987, IS 1893:2016), is analyzed under static and dynamic (Response Spectrum Method) load scenarios for Zone IV with soft soil conditions. Key performance parameters displacement, axial force, shear force, bending moment, and slab plate stress are evaluated. Results show that seismic design increases lateral displacement by 180%, axial forces by up to 25.6%, and demands 56% more steel and 15.5% more concrete than non-seismic design, with an overall 33% increase in material cost. The findings underscore the critical role of seismic considerations in improving safety and structural resilience, advocating for performance-based design even in moderately seismic zones.

Keywords: Seismic analysis , Non-seismic analysis , STAAD. Pro , Response spectrum method, High rise building and Dynamic analysis etc.

I. INTRODUCTION

TherapidpaceofurbanizationandpopulationgrowthinIndiaandacrosstheglobehasresultedinanincreaseddemand forhigh-risebuildings,especiallyinmetropolitanandtier-IIcities.Verticalexpansionhasbecomeapreferredsolutionover horizontal sprawl due to the scarcity and premium cost of urban land. Consequently, the construction of multistory reinforcedconcrete(RC) buildingshasemergedasa critical aspectofurban infrastructuredevelopment. These buildings arerequirednotonlytobefunctionallyefficientandaestheticallypleasingbutalsotoensurethesafetyandstabilityofthe occupantsagainstbothstaticanddynamicforces.Amongthese,seismicforcespresentthemostchallengingthreatdueto their unpredictable nature and potential for catastrophic damage. The need for comprehensive structural analysis and robustdesignmethodologiestomitigateearthquake-inducedriskshasneverbeenmoreurgent(Paulay&Priestley,1992; Chopra, 2012).In seismic-prone regions, buildings are often subjected to horizontal ground motions which generate inertial forces, leading to structural deformations, stress concentrations, and even collapse if not designed properly. The structural response to such forces is complex and demands precise evaluation through dynamic analysis techniques that account for time-dependent behavior and load path distribution (IS 1893:2016; Clough & Penzien, 2003). On the other hand,inareasconsiderednon-seismicorlow-riskzones,buildingsareprimarilydesignedconsideringstaticloadssuchas dead loads (self-weight), live loads (occupancy and usage), and environmental loads (wind, snow, etc.). However, in the absence of adequate dynamic analysis, even structures in moderate zones may exhibit significant vulnerability during seismicevents,asdemonstratedinseveralpastearthquakeslikeBhuj(2001),Latur(1993),andNepal-Gorkha(2015).

II. METHODOLOGY

The methodologyadopted to evaluate and compare the structural performance of a G+12 reinforced concrete residential buildingunderseismicandnon-seismicloadingconditions.Theapproachincludesmodelling,analysis,andinterpretation using STAAD.Pro, adhering strictly to Indian Standard codes such as IS 456:2000, IS 875 (Part 1 & 2):1987, and IS 1893 (Part1):2016.Themethodologyisdesignedtoofferauniformplatformforcomparingstructuralbehaviorusingidentical geometry,materialproperties,andboundaryconditionsunderbothloadingscenarios.Themethodologyalsoinvolvesload combination analysis as per IS code recommendations, allowing for a holistic understanding of worst-case stress and deformationoutcomes.Afterstructuralanalysis,themodelisevaluatedformaterialusage specificallysteelandconcrete quantities and corresponding cost implications are derived. The final stage involves side-by-side comparison of key performancemetricsunderbothseismicandnon-seismicconditions.

International

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN:2395-0072

Table 1 : Summary of Building, Loading, and Analysis Parameters for G+12 RC Structure

Parameter

BuildingType

TotalHeight

PlanDimensions

ConcreteGrade

SteelGrade

StructuralElements

Description

G+12(Ground+12floors)ReinforcedConcrete(RC)ResidentialStructure

36meters(3metersperfloor)

30m×36mrectangularplanwithcentralcorridor

M30(asperIS456:2000)

Fe500(asperIS1786)

RCbeams,columns,slabs,andisolatedfootingfoundation

SoftwareUsed STAAD.Pro

SupportConditions

SeismicZone

SoilType

SeismicZoneFactor(Z)

ImportanceFactor(I)

Fixedsupportsatbasetosimulatesoil-structureinteraction

ZoneIV(HighRisk)

TypeIII–SoftSoil

0.24(IS1893:2016)

1.0(ResidentialBuilding)

ResponseReductionFactor(R) 5(DuctileMomentResistingFrame)

DampingRatio

5%forRCstructures

SeismicLoadApplicationDirections XandZdirections(horizontal)

SeismicAnalysisMethod

StaticLoadTypes

DeadLoadIntensity

LiveLoadIntensity

FloorLoad

LoadCombinations

AnalysisforSeismicLoads

ResponseSpectrumMethod(DynamicAnalysis)

DeadLoad(DL),LiveLoad(LL)

5kN/m²(structuralcomponents)

3kN/m²(occupancyandfurniture)

3kN/m²forfinishesandfixtures

DL+LL,DL+EQx,DL+EQz,DL+LL+EQx+EQz(asperIS456:2000andIS1893:2016)

DynamicAnalysis–ResponseSpectrum(STAAD.Pro)

AnalysisforNon-SeismicLoads StaticLinearAnalysis

KeyPerformanceParameters

Displacement,AxialForce,ShearForce,BendingMoment,PlateStress

Figure 1 3D view of G+12 RC Building

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN:2395-0072

Table 2. Summary of Building, Loading, and Analysis Parameters for G+12 RC Structure

Parameter

BuildingType

TotalHeight

PlanDimensions

Description

G+12(Ground+12floors)ReinforcedConcrete(RC)ResidentialStructure

36meters(3metersperfloor)

30m×36mrectangularplanwithcentralcorridor

ConcreteGrade M30(asperIS456:2000)

SteelGrade

Fe500(asperIS1786)

StructuralElements RCbeams,columns,slabs,andisolatedfootingfoundation

SoftwareUsed STAAD.Pro

SupportConditions

SeismicZone

SoilType

SeismicZoneFactor(Z)

Fixedsupportsatbasetosimulatesoil-structureinteraction

ZoneIV(HighRisk)

TypeIII–SoftSoil

0.24(IS1893:2016)

ImportanceFactor(I) 1.0(ResidentialBuilding)

ResponseReductionFactor(R) 5(DuctileMomentResistingFrame)

DampingRatio 5%forRCstructures

SeismicLoadApplicationDirections XandZdirections(horizontal)

SeismicAnalysisMethod ResponseSpectrumMethod(DynamicAnalysis)

StaticLoadTypes

DeadLoadIntensity

LiveLoadIntensity

FloorLoad

LoadCombinations

DeadLoad(DL),LiveLoad(LL)

5kN/m²(structuralcomponents)

3kN/m²(occupancyandfurniture)

3kN/m²forfinishesandfixtures

DL+LL,DL+EQx,DL+EQz,DL+LL+EQx+EQz(asperIS456:2000andIS1893:2016)

AnalysisforSeismicLoads DynamicAnalysis–ResponseSpectrum(STAAD.Pro)

AnalysisforNon-SeismicLoads StaticLinearAnalysis

KeyPerformanceParameters Displacement,AxialForce,ShearForce,BendingMoment,PlateStress

III. RESULTS AND DISCUSSION

The results obtained from the structural analysis of the G+12 reinforced concrete residential building under seismic and non-seismic loading conditions using STAAD.Pro. The analysis aims to compare how the structure performs in terms of critical response parameters such as displacement, axial force, shear force, bending moment, and plate stress when subjected to dynamic earthquake loads versus static gravitational loads. The comparison is based on the structural behaviorunderthetwoloadingschemes:(i)staticloadcombinationsincludingdeadloadsandliveloads,and(ii)dynamic loadcombinationsthatincorporateseismiceffectsmodeledthroughtheResponseSpectrumMethodasperIS1893(Part 1): 2016. Each load case is evaluated using the same geometry, material properties (M30 concrete and Fe500 steel), boundary conditions (fixed supports), and building configuration to ensure a controlled and consistent comparative framework.

Table 3 Comparison of Mass of Steel and Volume of

and Associated Costs Parameter

Concrete

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN:2395-0072

Displacement

Analysis

Displacementanalysisisacrucialpartofstructural evaluation,particularlyformulti-storeybuildings,asexcessivelateral displacement can lead to cracking, serviceability issues, or even structural failure during earthquakes. This section presents and interprets the displacement results obtained from STAAD.Pro under both seismic and non-seismic load conditions

Table 4 Maximum Displacement under Seismic and Non-Seismic Loads
Figure 2. Displacement Diagram from STAAD.pro Analysis

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN:2395-0072

Axial Force Analysis

Axialforceisacriticalstructuralresponseparameterincolumns,representingtheverticalcompressiveforceduetoboth gravitationalloadsandadditionallateralforceeffectsduringseismicevents.Apreciseevaluationofaxialforceisessential to ensure that columns are adequately designed for compression, stability, and buckling resistance. In this study, the maximumaxialforcesincentralcolumnswereextractedforbothseismicandnon-seismicloadconditionsfromSTAAD.Pro.

Shear Force Analysis

Shear force is a critical design parameter for beams, especially in multi-storey buildings where sudden changes in load transferoccurbetweenverticalandhorizontalmembers.Highshearforces,ifnotproperlyaccountedfor,canleadtobrittle

Table 5 Maximum Axial Forces in Columns (kN)
Figure 3. Axial Force Distribution in Columns

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN:2395-0072

failureofbeamsections.Thissectionanalyzesandcomparesthemaximumshearforcevaluesinbeamsunderseismicand non-seismicloadconditionsfortheG+12RCresidentialbuilding.

Table 6 Maximum Shear Forces in Beams (kN)

Bending Moment Analysis

Bending moment is a fundamental parameter in the flexural design of beams, reflecting the rotational effect caused by applied loads. In high-rise structures, bending moments are influenced by both vertical gravitational forces and lateral forces arising from seismic activity. This section presents a comparative evaluation of maximum bending moments in beamsunderseismicandnon-seismicloadconditionsusingSTAAD.Pro.

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page204

Figure 4. Shear Force Diagram from STAAD.pro Analysis

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN:2395-0072

7 Maximum Bending Moments in Beams (kN-m)

Plate Stress Distribution Analysis

Plate stress in slabs is a crucial parameter in structural analysis as it governs the design of horizontal load-transferring elementsinmulti-storeybuildings.Slabsareresponsiblefordistributingbothverticalandlateralforcestothebeamsand columns, and their performance under varying load types must be carefully assessed to ensure structural integrity. This section examines the variation in maximum plate stress across floors under seismic and non-seismic loading conditions usingresultsfromSTAAD.Pro.

Table
Figure 5. Bending Moment Diagram for Seismic and Non-Seismic Loads

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

8 Maximum Plate Stress in Slabs (MPa) Floor

IV. Conclusion

ThisstudypresentedacomparativeassessmentofaG+12reinforcedconcrete(RC)residentialbuildingunderseismicand non-seismicloadingconditionsusingSTAAD.Pro.TheanalysiswascarriedoutwithstrictadherencetoIS456:2000,IS875 (Part1&2):1987,andIS1893(Part1):2016.Basedonthefindings,severalkeyobservationswerenoted:

 Seismic loadingsignificantly increaseslateral displacement,withup to180% greatertop-floordriftcomparedto staticloading.

 Axial,shear,andbendingforcesinstructuralmembersincreasedacrossalllevelsunderseismicdesign.

 Platestressinslabsshowedaconsistentriseof20–26%underseismicconditions.

 Seismicdesignresultedin56%moresteelusage,15.5%moreconcrete,anda33%increaseintotalmaterialcost.

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN:2395-0072 © 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page206

Table
Figure 6. Plate Stress Contour in STAAD.pro Model

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN:2395-0072

 Despite the increase in material and cost, seismic provisions ensured improved structural behavior, code compliance,andenhancedsafety

V. REFERENCES

1. Agarwal,P.,&Shrikhande,M.(2007). Earthquake Resistant Design of Structures.PHILearningPvt.Ltd.

2. Ahmad, E., Khan, R., & Rafi, M. M. (2025). Comparative study of seismic vs. non-seismic analysis for G+12 structures. International Journal of Civil Engineering Research, 13(2), 111–126. https://doi.org/10.1007/s40940025-00299

3. Ali, M. M., & Moon, K. S. (2007). Structural developments in tall buildings: Current trends and future prospects. Architectural Science Review,50(3),205–223.https://doi.org/10.3763/asre.2007.5027

4. Asma, F., & Aranas, M. P. (2024). Impact of load combinations on reinforced concrete design under seismic and staticconditions. Structures,52,1021–1035.https://doi.org/10.1016/j.istruc.2024.01.012

5. Beroza, G. C., Ide, S., & Koketsu, K. (2021). Structural responses to earthquake ground motion. Seismological Research Letters,92(1),25–33.https://doi.org/10.1785/0220200056

6. Chopra,A.K.(2012). Dynamics of Structures: Theory and Applications to Earthquake Engineering (4thed.).Pearson Education.

7. Clough,R.W.,&Penzien,J.(2003). Dynamics of Structures (3rded.).Computers&Structures,Inc.

8. Fan, H., Liu, X., & Wang, W. (2023). Deformation behavior of RC columns under combined loadings. Engineering Structures,291,115339.https://doi.org/10.1016/j.engstruct.2023.115339

9. Fawzy, M., Shehata, M., & Ahmed, M. (2022). Seismic behavior of multi-story buildings with soft soil foundation. Soil Dynamics and Earthquake Engineering,157,107211.https://doi.org/10.1016/j.soildyn.2022.107211

10. Florido, F. M., Lopez, A., & Garcia, J. (2016). Load redistribution in multi-story RC buildings under seismic loads. Earthquake Engineering and Structural Dynamics,45(10),1567–1584.https://doi.org/10.1002/eqe.2714

11. Ghosh, S., & Kharel, G. (2007). Performance of RC frames with shear walls under seismic loads. International Journal of Civil and Structural Engineering,8(1),45–53.

12. Hamid, Y., & Mander, J. B. (2012). Seismic assessment of reinforced concrete buildings. Journal of Structural Engineering,138(3),443–455.https://doi.org/10.1061/(ASCE)ST.1943-541X.0000463

13. Hasan, A., Mehta, R., & Kumar, R. (2023). Response spectrum generation for seismic analysis of RC buildings. Earthquake Spectra,39(1),87–105.https://doi.org/10.1177/87552930221121002

14. IS456:2000. Plain and Reinforced Concrete – Code of Practice.BureauofIndianStandards.

15. IS 875 (Part 1 & 2):1987. Code of Practice for Design Loads (Other than Earthquake) for Buildings and Structures BureauofIndianStandards.

16. IS1893(Part1):2016. Criteria for Earthquake Resistant Design of Structures.BureauofIndianStandards.

17. IS 13920:2016. Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces. Bureau of Indian Standards.

18. Jones,B.A.,Wang,Y.,&Li,Q.(2016).Earthquake-inducedshearfailuremechanismsinconcretebeams. Structural Concrete,17(4),599–612.https://doi.org/10.1002/suco.201500145

19. Kashani, M. M., Belarbi, A., & Saliba, N. (2022). Finite element modeling of reinforced concrete buildings. Engineering Structures,260,114222.https://doi.org/10.1016/j.engstruct.2022.114222

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN:2395-0072

20. Khan,F.R.,&Sbarounis,J.A.(1964).Interactionofshearwallsandframes. Journal of the Structural Division,90(3), 285–335.

21. Mandal, A., & Deb, A. (2018). Nonlinear seismic analysis of multistory RC buildings. Journal of Earthquake Engineering,22(7),1245–1268.https://doi.org/10.1080/13632469.2016.1248839

22. Mehta, R., Patel, V., & Sharma, K. (2015). Cost-performance analysis of seismic vs. non-seismic designs. Indian Concrete Journal,89(3),45–52.

23. Naeim,F.(2001). The Seismic Design Handbook (2nded.).Springer.https://doi.org/10.1007/978-1-4615-0575-7

24. NDMA. (2010). National Disaster Management Guidelines: Management of Earthquakes. National Disaster ManagementAuthority,Govt.ofIndia.

25. Paulay,T.,&Priestley,M.J.N.(1992). Seismic Design of Reinforced Concrete and Masonry Buildings.Wiley.

26. Priestley,M.J.N.,Calvi,G.M.,&Kowalsky,M.J.(2007). Displacement-Based Seismic Design of Structures.IUSSPress.

27. Ramesh,S.,&Divya,B.(2017).ComparisonofRCframebuildingsunderZoneIVseismicconditions. Asian Journal of Civil Engineering,18(2),245–259.

28. Rathi,S.,&Bhole,S.D.(2017).Comparativestudyonbuildingswithandwithoutshearwalls. International Journal of Innovative Research in Science and Engineering,3(4),65–72.

29. Sharanya, S., & Rajashekhar, P. (2009). Dynamic analysis of G+15 RC buildings using STAAD.Pro. International Journal of Civil Engineering Research and Development,1(2),19–26.

30. Sharma, S., & Agarwal, A. (2020). Drift control in low and mid-rise RC buildings. International Journal of Earthquake Engineering,7(1),55–66.

31. Sil, B. (2024). Material selection in seismic design of RC buildings. Construction and Building Materials, 330, 127310.https://doi.org/10.1016/j.conbuildmat.2022.127310

32. Singh, K., & Goyal, A. (2016). Seismic response of RC frames as per IS 1893:2016. Journal of Civil Structural Engineering,10(1),98–104.

33. STAAD.ProTechnicalManual.(2023). Bentley Systems Inc.

34. Yu, C., Yang, Y., & Zhang, L. (2024). Parametric seismic response study of high-rise buildings. Earthquake Engineering and Structural Dynamics,53(1),135–152.https://doi.org/10.1002/eqe.3799

2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.