Neutrosophic Sets and Systems, Vol. 22, 2018
168
University of New Mexico
Extension of Soft Set to Hypersoft Set, and then to Plithogenic Hypersoft Set Florentin Smarandache1 1
Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA. E-mail: smarand@unm.edu
Abstract. In this paper, we generalize the soft set to the hypersoft set by transforming the function F into a multi-attribute function. Then we introduce the hybrids of Crisp, Fuzzy, Intuitionistic Fuzzy, Neutrosophic, and Plithogenic Hypersoft Set. Keywords: Plithogeny; Plithogenic Set; Soft Set; Hypersoft Set; Plithogenic Hypersoft Set; Multi-argument Function.
1 Introduction We generalize the soft set to the hypersoft set by transforming the function F into a multi-argument function. Then we make the distinction between the types of Universes of Discourse: crisp, fuzzy, intuitionistic fuzzy, neutrosophic, and respectively plithogenic. Similarly, we show that a hypersoft set can be crisp, fuzzy, intuitionistic fuzzy, neutrosophic, or plithogenic. A detailed numerical example is presented for all types. 2 Definition of Soft Set [1] Let đ?’° be a universe of discourse, đ?’Ť(đ?’°) the power set of đ?’°, and A a set of attributes. Then, the pair (F, đ?’°), where đ??š: đ??´ â&#x;ś đ?’Ť(đ?’°) (1) is called a Soft Set over đ?’°. 3 Definition of Hypersoft Set Let đ?’° be a universe of discourse, đ?’Ť(đ?’°) the power set of đ?’°. Let đ?‘Ž1 , đ?‘Ž2 , ‌ , đ?‘Žđ?‘› , for đ?‘› ≼ 1, be n distinct attributes, whose corresponding attribute values are respectively the sets đ??´1 , đ??´2 , ‌ , đ??´đ?‘› , with đ??´đ?‘– ∊ đ??´đ?‘— = ∅, for đ?‘– ≠đ?‘—, and đ?‘–, đ?‘— ∈ {1, 2, ‌ , đ?‘›}. Then the pair (đ??š, đ??´1 Ă— đ??´2 Ă— ‌ Ă— đ??´đ?‘› ), where: đ??š: đ??´1 Ă— đ??´2 Ă— ‌ Ă— đ??´đ?‘› â&#x;ś đ?’Ť(đ?’°) (2) is called a Hypersoft Set over đ?’°. 4 Particular case For đ?‘› = 2, we obtain the Γ–Soft Set [2]. 5 Types of Universes of Discourses 5.1. A Universe of Discourse đ?’°đ??ś is called Crisp if ∀đ?‘Ľ ∈ đ?’°đ??ś , x belongs 100% to đ?’°đ??ś , or x’s membership (Tx) with respect to đ?’°đ??ś is 1. Let’s denote it x(1). 5.2. A Universe of Discourse đ?’°đ??š is called Fuzzy if ∀đ?‘Ľ ∈ đ?’°đ?‘? , x partially belongs to đ?’°đ??š , or đ?‘‡đ?‘Ľ ⊆ [0, 1], where đ?‘‡đ?‘Ľ may be a subset, an interval, a hesitant set, a single-value, etc. Let’s denote it by đ?‘Ľ(đ?‘‡đ?‘Ľ ). 5.3. A Universe of Discourse đ?’°đ??źđ??š is called Intuitionistic Fuzzy if ∀đ?‘Ľ ∈ đ?’°đ??źđ??š , x partially belongs (đ?‘‡đ?‘Ľ ) and partially doesn’t belong (đ??šđ?‘Ľ ) to đ?’°đ??źđ??š , or đ?‘‡đ?‘Ľ , đ??šđ?‘Ľ ⊆ [0, 1], where đ?‘‡đ?‘Ľ and đ??šđ?‘Ľ may be subsets, intervals, hesitant sets, single-values, etc. Let’s denote it by đ?‘Ľ(đ?‘‡đ?‘Ľ , đ??šđ?‘Ľ ). 5.4. A Universe of Discourse đ?’°đ?‘ is called Neutrosophic if ∀đ?‘Ľ ∈ đ?’°đ?‘ , x partially belongs (đ?‘‡đ?‘Ľ ), partially its membership is indeterminate (đ??źđ?‘Ľ ), and partially it doesn’t belong (đ??šđ?‘Ľ ) to đ?’°đ?‘ , where đ?‘‡đ?‘Ľ , đ??źđ?‘Ľ , đ??šđ?‘Ľ ⊆ [0, 1], may be subsets, intervals, hesitant sets, single-values, etc. Let’s denote it by đ?‘Ľ(đ?‘‡đ?‘Ľ , đ??źđ?‘Ľ , đ??šđ?‘Ľ ). 5.5. A Universe of Discourse đ?’°đ?‘ƒ over a set V of attributes’ values, where đ?‘‰ = {đ?‘Ł1 , đ?‘Ł2 , ‌ , đ?‘Łđ?‘› }, đ?‘› ≼ 1, is called Plithogenic, if ∀đ?‘Ľ ∈ đ?’°đ?‘ƒ , x belongs to đ?’°đ?‘ƒ in the degree đ?‘‘đ?‘Ľ0 (đ?‘Łđ?‘– ) with respect to the attribute value đ?‘Łđ?‘– , for all
Florentin Smarandache. Extension of Soft Set to Hypersoft Set, and then to Plithogenic Hypersoft Set