Thermo Electric

Page 1

MeasurementTemperatureGuideBookInnovativeTemperatureSolutions

Jan-Willem

2 INTRODUCTION

THERMO ELECTRIC INSTRUMENTATION B.V. “We are an innovative organisation and highly experienced specialists in temperature measuring solutions. Spanning over 50 years of temperature sensing manufacturing, the original activities of Thermo Electric addressed a specific market need: measuring exhaust gas temperatures from aeroplane engines. Today our company is proud to manufacture and supply a complete range of temperature sensors, wires, cables and con nectors for almost every application and market. We are at the forefront of technology for temperature sensing and ancillary equipment. Our products continue to outperform in the field, providing reliable solutions worldwide. We manufacture products capable of withstanding corrosive chemicals, vibrations, extreme temperatures and high pres sures, ranging from the absolute zero point (-273 °C) to over 2.700 °C. It is here where we are at our best. Our business touches global markets, however we act locally. Our network of factories, distribution, sales and service centers span Europe, Middle East and Asia. We have also had the fortunate pleasure of working on the most prestige engineering contracts, alongside some of the largest organizations for many years. The successes we have experienced on these major projects can be attributed to our highly knowledgeable and experienced workforce. Thermo Electric Instrumentation has over 60 personnel strategically placed in major industrial areas. This global strategy allows us to service our customers world wide, providing the individual temperature measuring solutions that are re quired in today’s market”. Noordermeer Managing Director Thermo Electric Instrumentation B.V.

INTRODUCTION 3 We have dedicated manufacturing and testing facilities located in The Netherlands. Thermo Electric temperature sensing products are supplied direct from our headquarters to our customers, through sales and service centres across the globe. High standards and efficient supply Our dedicated central production and engineering facilities allow us to maintain our high standards and best practice in engineering and design. This expertise is reflected in the efficient supply of Thermo Electric tem perature sensors and in our consistent achievement of quality in the field. Services MANUFACTURING FACILITIES • Wake frequency calculations according ASME PTC19.3 (2010) for thermowells • X-rays • Welding robot • Manufacturing record book • Quality inspection plan • Explosion safe certificate Exi, Exe, Exd, Exn • Material certificate (according EN10204 3.1 and NACE MR0175) • Cleaning for oxygen service • Visual inspection • Dimensional check • Drawings for approval • WPS and PQR for welded Thermowells • Batch certificate • Certificate of origin • Certificate of conformance • CSA/US • IEC-Ex • CCOE • KTL • ATEX • GOST R Test Facilities • Functional performance test • Loop resistant test • Insulation resistance test • Pressure test • Calibration test From -200 °C up to 1.500 ºC (RvA/ILAC) • Calibration test for each in strument, mV, mA, Ohms and V (RvA/ILAC) • Vacuum test • Helium leak test • PMI test

DELIVERY PROGRAMME 4 Besta Level switches and capacitive level sensors Gemini One and two-channels data loggers Gems Pressure level and flow switches/transmitters Honeywell Pressure and temperature transmitters, recorders and controllers ITT Neo-Dyn Pressure and temperature switches Nuova Fima Bi-metals, pressure gauges and transmitters with chemical seals Thermo Electric Temperature sensors and accessories Weka Magnetic switches DELIVERY PROGRAMM

CONTENT 5 1. THERMOCOUPLES THEORY 6 2. MINERAL INSULATED TYPE THERMOCOUPLES 13 3. MEASURING JUNCTION 14 4. RESPONSE TIME 15 5. THERMOCOUPLE CALIBRATION 16 6. THERMOCOUPLES MV TABLES 18 7. RESISTANCE TEMPERATURE DETECTORS AND TABLE 63 8. A FEW CONSTRUCTIONS OF TEMPERATURE SENSORS 67 9. F.A.Q.’S 72 10. PIPE & TUBE END SIZE CHART PIPE SCHEDULES 74 11. METALLIC & NON-METALLIC THERMOWELL MATERIALS 77 12. MELTING TEMPERATURES OF METALS 85 13. STANDARD FLANGE SIZES 88 14. MATERIAL SELECTION GUIDE 98 15. COMPARISON OF NEMA AND IEC STANDARDS 103 16. EX GUIDE LINE 104 17. AWG WIRE SIZE 105 18. INTERNATIONAL THERMOCOUPLE COLOUR CODING 106 CONTENT

Fig.

In 1834 Jean C.A. Peltier reported that when a current flows across the junction of two metals, it gives rise to absorption or liberation of heat (depending upon the direction of the current). If the current happens to flow in the same direction as the cur rent produced by the ‘Seebeck Effect’ at the hot junction (T2), heat is absorbed whereas at the cold junction (T1) heat is libe Forrated.example: • Heat is absorbed (T+_ t) when: a current flows across a copper-constantan hot junction from the constantan (B) to the copper (A), minus to plus. • Conversely, heat is liberated (T- _ t) when: a current flows across the same junction from copper (A) to constantan (B), plus to minus (fig. 2).

B (–) T1 <

The E.M.F. (electromotive force) that produces this current is called the ‘Seebeck Thermal EMF’: if A is (+) compared to (B), then the current flows from A to B at T1 (fig. 1). 1 Seebeck Effect B (–) T1 < CurrentT2FlowA(+) Effect CurrentSeebackT2FlowA(+)

T.J. Seebeck discovered the phenomenon of thermo electricity in 1821. He found the so called ‘Seebeck Effect’: if a formed circuit consists of two dissimilar metallic conductors A & B and one of the junctions of A & B is at a temperature T1 while the other junction is at a higher temperature T2; then a current will flow in the circuit and will continue to flow as long as the two junctions have different temperatures.

T1 T2 SEEBECK EFFECT PELTIER EFFECT Fig. 2 Peltier

T1 t T2 t

1. THERMOCOUPLES THEORY 6

1. THERMOCOUPLES THEORY 7 Many investigations of thermo electric circuits have been made and have resulted in the establishment of several basic pre cepts. These precepts, while stated in many different ways, can be reduced to three fundamental laws: • Law of Homogeneous Circuits • Law of Intermediate Metals • Law of Successive or Intermediate Temperatures Law of Homogeneous Circuits This law states that ‘an electric current cannot be sustained in a circuit of a single homogeneous metal, however varying in section, by the application of heat alone’. If a junction of two dissimilar metals is maintained at T1, while the other is at T2, the developed thermal EMF is independent and unaffected by any temperature distribution along the wires T3 and T4 (fig. 4). It can be shown that the magnitude of the ‘Peltier Effect’ is given by: the product of the absolute temperature (°K) of the junction; and the rate of change of the thermal EMF of the junction at that temperature (fig. 3). If a complete analysis is done, you will find that the ‘Peltier Effect’ produces no measurable change in temperature of the junction if the only current through it is due to the thermal EMF. THERMO ELECTRIC LAWS MAGNITUDE OF PELTIER EFFECT Fig. 3 Temp.Junctionin ˚K Rate of ChangeemfatJunctionTemp.x= Fig.PeltierMagnitudeofEffect4LawofHomogeneous Circuits B (–) T1 < T2E Unaffected by T3 and T4 E = EMF A (+) T1 TT34 T2

If two dissimilar metals A & B with their junctions at T1 & T2 and a third metal C are joined on one leg (if C is kept at a uniform temperature along its entire length), the total EMF in the circuit will be unaffected (fig. 5).

It would seem that the introduction of other metals would modify the EMF developed by the thermocouple and destroy its calibration. However the ‘Law of Intermediate Metals’ states that: the introduction of a third metal into a circuit will have no effect upon the generated EMF, so long as the junctions of the third metal with the other two metals are at the same temperature.

Fig. 5 Law of Intermediate Metals TC3B (–) B (–) E = EMF A (+) T1 T2

In most industrial installations, it is not practical to maintain the reference junction of a thermocouple at a constant temperature. So, some means must be provided to bring the EMF developed at the reference junction to a value equal to that which would be generated with a reference junction maintained at a standard temperature, usually 0 °C (32 °F).

The ‘Law of Intermediate Temperatures’ provides a mean for relating the EMF generated by a thermocouple under ordinary conditions, to a standardized constant temperature. In effect, the Law states that: the sum of the EMF’s generated by two thermocouples (one with its junction at 0 °C (32 °F) and some reference temperature and the other with its junction at the same reference temperature and the measured temperature) is equivalent to the EMF produced by a single thermocouple with its junction at 0 °C (32 °F) and the measured temperature (fig. 6). Law of Intermediate Metals When thermocouples are used, it is usually necessary to introduce additional metals into a circuit. This happens when an instrument is used to measure the EMF and the junction is soldered or welded.

Law of Intermediate Temperatures

1. THERMOCOUPLES THEORY 8

E1

for Temperatures

1.

emf

Summary of the three laws

1. THERMOCOUPLES THEORY 9

The three fundamental laws may be combined and stated as follows: - the algebraic sum of the thermo electric EMF’s generated in any given circuit containing any number of dissimilar homogeneous metals, is a function only of the temperature of the junction; - if all but one of the junctions in such a circuit are maintained at some reference temperature, the EMF generated depends only on the temperature of that one junction and can be used as a measure of its temperature. There are many types of thermocouples available on today’s market. Each has its own particular advantages and disadvantages. In many cases, thermocouples and their accessories are designed for a specific temperature measurement problem. In other cases, thermocouples are manufactured with a wide variety of possible applications. It is not the intention to compare one type of thermocouple with another, or to compare the thermocouple of one manufacturer with another. No thermocouple is suitable for all needs. Thermocouples must be selected to meet the needs of a particular installation. The next basic types can be of use to guide you in your selection process. basic types of construction: Wire 2. Mineral insulated Thermowell Law of Successive or =T1 = E2T2 T3 emf’s are Additive Intervals = E3 =

Three

T2 emf

THERMOCOUPLE BODY CONSTRUCTION Fig. 6

Intermediate Temperatures emf

E1+ E2T1 T3

3.

The most basic thermocouple construction is the ‘wire type’. It consists of two dissimilar metals, homogeneously joined at one end to form the measuring junction. A common factor inherent in all wire type constructions is the fact that they all have an exposed junction: although it offers good response time, it is subject to environmental restrictions. In most cases the advantages are: a good response time, ruggedness and high temperature use. The disadvantage is the exposed junction: which means that it is susceptible to the environment (oxidizing and reducing atmospheres) and therefore it must be protected.

In order to overcome the disadvantages of the ‘wire type construction’, manufacturers developed the mineral insulation thermocouple. The ‘mineral insulated construction’ consists of two thermocouple material wires embedded in a ceramic insulation and protected by a metallic sheath. The two primary components of this construction are: 1. The mineral insulation material 2. The metallic sheath Sheath material characteristics

The table on the next page shows just some of the many different materials which can be used to protect the minerally insulated thermocouple. The two most important parameters in selecting the sheath material are: the operating temperature and the atmospheric environment. The atmospheric environmental parameters are oxidizing, reducing, neutral and vacuum. For example, SS 304 can be used in each type of atmosphere with a maximum operating temperature of 890 °C (1,650 °F).

1. THERMOCOUPLES THEORY 10

1. Wire type construction

2. Mineral insulated construction

1. THERMOCOUPLES THEORY 11 Mineral insulation The table below shows only a portion of the materials that can be used; however, the four shown are the most common. The most important parameters to be considered in selecting the mineral insulations are the upper temperature limit and the performance characteristics at the temperature. Of course there are other parameters which should also be considered such as: resistively, purity and crushability. However, they are secondary to temperature. For example: MgO, the most commonly used (as exhibited by this table) has an upper temperature limit of 2,395 °C with high resistivity, excellent purity and very good crushability. Mineral insulated thermocouple sheath material materialSheath pointMelting°C Max. temperature in air °C Operating atmosphere# max.Continuoustemp°C 304 SS 1400°C 1048°C O,R,N,V 895°C 310 SS 1400°C 1071°C O,R,N,V 1145°C 316 SS 1250°C 960°C O,R,N,V 930°C 321 SS 1415°C 815°C O,R,N,V 871°C 347 SS 1425°C 915°C O,R,N,V 871°C Inconel 1398°C 1095°C O,N,V (c.) 1145°C Copper 1082°C 315°C O,R,N,V (b) 315°C Aluminium 660°C 425°C O,R,N,V 371°C Platinum 1770°C 1648°C O,N (c.) 1648°C Molybdenum 2620°C 535°C V,N,R 2626°C Tantalum 3004°C 400°C V 2760°C Titanium 1815°C 315°C V,N 1090°C STABILITY materialInsulation Formula pointMelting°C Max. limit oxi.in Atm °C res.shockThermal AtmReducing Carbon slagAcid slagBasic Metal Alumina Al 2 O 3 2037°C 1954°C Good Good Fair Good Good Good Magnesium MgO 2760°C 2395°C Fair Poor Good Poor Good Fair Thoria ThO 2 3315°C 2700°C Poor Good Fair Poor Good Exc. Zirconia ZrO 2 2590°C 2510°C Fair Good Fair Good Poor Good # Key O = Oxidizing R = Reducing N = Neutral V = Vacuum (b) = Scales readiliy in oxidizing atmospheres (c) = Sensitive to sulphur corrosion

1. THERMOCOUPLES THEORY 12 3. Thermowells and protection tubes Thermowells and protection tubes are used to shield thermo couple sensing elements against mechanical damage and corrosive or contaminating atmospheres. The various types and constructions which are available ena ble the user to select the right combination to meet individual needs. For example: cast iron protection tubes are used primarily in molten aluminium, magnesium and zinc applications. On the other hand, the ceramic tubes are used in industries such as: iron and steel, glass, cement and lime processing. Their prin cipal advantages include: resistance to high temperatures and thermal shock, chemical inertness, good abrasion resistance and high dielectric strength.

2. MINERAL INSULATED TYPE THERMOCOUPLES Our standard diameters for our MI-cable (mineral insulated thermocouple cable) Diameter Type T/C Sheath Material 1/25/161/46.03/161/83.01/161.51.00.50.250.15 inchinchinchmminchinchmminchmmmmmmmmmm KK K,N,J and T K,N,J and T K,N,J and T K,N,J and T K,N,J,R,S and T K,N,J,R,S and T K,N,J,R,S and T K,N,J,R,S and T K,N,J,R,S,and T K,N and J K Inconel 600 or SS 316 Inconel 600 or SS 316 Inconel 600 or SS 316 Inconel 600 or SS 316 Inconel 600 or SS 316 Inconel 600 or SS 316 Inconel 600 or SS 316 Inconel 600 or SS 316 Inconel 600 or SS 316 Inconel 600 or SS 316 Inconel 600 or SS 316 Inconel 600 or SS 316 Inconel 600 or SS 446 13 One of the many advantages of a mineral insulated cable is the protection offered to the thermocouple wires, afforded by the metal sheath. For long service life, only contamination free sheathing of known chemical and physical compositions is used. The table above lists the most common constructions. Other diameters and sheath materials are available upon request. For example: type N thermocouples are available with several sheath materials of Nicrobel and/or Pyrosil; for the platinum rhodium thermocouples, which can be higher in temperature, we recommend to use this in a construction with beads (fig. 1). For the optimal use of type R, S and B thermocouples we use a nominal wire size of 0.5 mm as standard. The insulation material for this type of thermocouple will be aluminium oxide 99.7% purity. Beaded element ceramic insulator with one bead Beaded element ceramic insulators with several beads THERMOCOUPLES IN MINERAL INS. CONSTRUCTION

The hot junction is the junction which is subjected to the process or medium that is being measured or controlled.

The exposed loop junction offers a faster thermal response time than the other two types of junctions. However this type of junction is limited to mild environmental conditions or one time usage under more severe conditions. TYPES

Three common types of junctions:

COMMON MEASURING JUNCTION

GroundedInsulated Reduced Tip

1. Grounded 2. Insulated 3. Exposed (fast response) Of these three the one which has the highest application rate in greatest use, is the grounded junction. As will be seen, its characteristics meet most requirements.

Grounded junction

In this construction the mineral insulation is completely sealed from containments and the measuring junction becomes an in tegral part of the tip of the thermocouple. The response time, as we will see later, approaches that of an exposed loop ther mocouple. In addition, the junction conductors are completely protected from harsh environmental conditions. Small diameter thermocouples may be selected to match or better the response time of exposed loop thermocouples, yet the operational lift and upper temperature limit of the junction will be extended due to protection offered by the sheath. Insulated measuring junction In this construction the thermocouple conductors are welded together to form the junction which is insulated from the exter nal sheath with the mineral insulation. The response time for an insulated junction is longer than it is for a grounded junction thermocouple of the same outside diameter. In insulated junc tion thermocouples, however, conductors are electrically insu lated from the sheath. A feature advantageous in applications where thermocouples are used: in conductive solutions; for differential averaging (paralleled); for additive (series) applications; wherever isolation of the measuring circuitry is required.

Exposed loop junction

3. MEASURING JUNCTION 14

4. RESPONSE TIME 15 Some of the typical response times encountered when using these three types of junctions: • Insulated 4.5 seconds • Grounded 1.7 seconds • Exposed 0.1 seconds All values are for 6.35 mm outside diameter mineral insulated Valuescable. listed are based on the average response time of several minerally insulated cables. The time in seconds indicates time taken to undergo a change in temperature of 63.2 %. The tests where performed during a step change from room temperature to boiling water. Test per ASTM STP 470A (full response is approximated five time Asconstants).ageneral rule, it can be stated that the greater the mass of the junction, the greater the response time and the longer the service life. RESPONSE TIME Diameter Junction Time in sec. 0.5 mm insulated 0.15 0.5 mm grounded 0.05 1.0 mm insulated 0.3 1.0 mm grounded 0.1 3.0 mm insulated 1.3 3.0 mm grounded 0.7 4.8 mm insulated 2.2 4.8 mm grounded 1.1 6.0 mm insulated 4.5 6.0 mm grounded 2.1 6.0 mm exposed 0.1

Fixed point method

The fixed points for which values have been assigned or deter mined accurately and at which it has been found convenient to calibrate thermocouples are given. In selecting the points at which to calibrate a thermocouple, one has a choice between a boiling point and a freezing point.

Comparison method

The object of calibrating any thermocouple or wire is to deter mine temperature-EMF output (voltage produced at a given tem perature) as compared to the calibration table or curve.

THERMOCOUPLE CALIBRATION NO LIMITS OF ERROR LIMITS OF ERROR: STANDARD & PREMIUM GRADE

5. THERMOCOUPLE CALIBRATION 16

This method is just what it implies: the comparison of the EMF of an unknown thermocouple with a working standard (usually another thermocouple) at the same temperature. Accuracy is first limited by the accuracy of the standard. A secondary effect limiting accuracy is the ability of the observer to bring the un known thermocouple junction to the same temperature as the standard’s measuring element.

This method entails measuring unknown thermocouples at a known temperature as defined by the International Temperature Scale. No thermocouple can be more accurate than the wire from which it is made. Certain limits of error have been established by manufacturers and Engineering Societies to define acceptable wires for use in thermocouples. The accuracy with which wire conforms to the tables, is deter mined by checking the wire at predetermined points against NBS Certified Platinum. Checking against platinum insures that individual wires can be paired and remain within standard limits. For instance: measurement at 150 °C with a type K thermocou ple insures that the result will be 150 °C ±2.5 °C for standard grade material and 150 °C ±1.5°C with premium grade mate rial. Measurement at 550 °C with the same type K thermocouple in sures that the result will be at 550 °C ±0.75% for standard gra de material and at 550 °C ±0.4% for premium grade material.

Fixed points available for selecting thermocouples

5. THERMOCOUPLE CALIBRATION 17 For example: the boiling point of oxygen or the freezing point of mercury. In determining the EMF of a thermocouple at freezing point, the time during dissertation which observations may be taken is limited to the period of freezing, after which the material must be melted again before taking futher observations. In case of boiling points, there is no such limit in since the material can be boiled continiously. This brochure attempted to summarize the important aspects of thermocouple temperature sensors. It has primarily been aimed at the industrial user in order to help him understand more fully the basic principles of thermocouples. The field of temperature measurement is so vast, that each topic could have been a brochure itself. We have briefly described the theoretical foundation of the ther mocouple thermometry aspect, the basic construction of the thermocouples, two methods of calibration and the critical pa rameters to be considered in the selection of practical sensors. 0 500 1000 1500 2000 2500 SR C K T J E80706050403020100 TEMPERATURE °C MILLIVOLIS

19 TYPENAME Range °C Range °C Class584IECAcc. 1 Class584IECAcc. 2 Class584IECAcc. 3 Basic -200°C to +40°C J IRON-CONSTANTAN -40750±1,5°C OR 0,4% t±2,5°C OR 0,75% t±2,5°C OR 0,15% t K CHROMEL-ALUMEL -401200±1,5°C OR 0,4% t±2,5°C OR 0,75% t±2,5°C OR 0,15% t N NICROSIL-NISIL -401200±1,5°C OR 0,4% t±2,5°C OR 0,75% t±2,5°C OR 015% t E CHROMEL-CONSTANTAN -40900±1,5°C OR 0,4% t±2,5°C OR 0,75% t±2,5°C OR 015% t T COPPER-CONSTANTAN -40350±0,5°C OR 0,4% t±1,0°C OR 0,75% t±1,0°C OR 0,15 t R PLATINUM 13%Rh-PLATINUM01600±1,0 ±1,5°C OR 0,25% tN.A. S PLATINUM 10%Rh-PLATINUM01600±1,0 ±1,5°C OR 0,25% tN.A. B PLATINUM 6%Rh-PLATINUM30%Rh 6001800N.A. ±1,5°C OR 0,25% tN.A.TOLERANCE CLASSES FOR THERMOCOUPLES (REFERENCE JUNCTION AT 0°C) OFFICESALESOURCONTACTPLEASESTANDARDSTHERMOCOUPLEINTERNATIONALOTHERFOR ANSI (ASTM)BSDINJIS 6. THERMOCOUPLES MV TABLES 18 OFFICESALESOURCONTACTPLEASESTANDARDSTHERMOCOUPLEINTERNATIONALOTHERFOR (ASTM)ANSI BS DIN JIS 0°C)ATJUNCTION(REFERENCETHERMOCOUPLESFORCLASSESTOLERANCE

Iron/copper-nickel (1)Electromotive force as a function of temperature JType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC-210-8 095 -210-200-7 890-7 912-7 934-7 955-7 976-7 996-8 017-8 037-8 057-8 076-200-190-7 659-7 683-7 707-7 731-7 755-7 778-7 801-7 824-7 846-7 868-190-180-7 403-7 429-7 456-7 482-7 508-7 534-7 559-7 585-7 610-7 634-180-170-7 123-7 152-7 181-7 209-7 237-7 265-7 293-7 321-7 348-7 376-170-160-6 821-6 653-6 883-6 914-6 944-6 975-7 005-7 035-7 064-7 094-160-150-6 500-6 533-6 566-6 698-6 631-6 663-6 695-6 727-6 759-6 790-150-140-6 159-6 194-6 229-6 263-6 296-6 332-6 366-6 400-6 433-6 467-140-1305 801-5 838-5 874-5 910-5 946-5 952-6 018-6 054-6 089-6 124-130-120-5 426-5 465-5 503-5 541-5 578-5 616-5 653-5 690-5 727-5 764-120-110-5 037-5 076-5 116-5 155-5 194-5 233-5 272-5 311-5 350-5 388-110-100-4 633-4 674-4 714-4 755-4 796-4 836-4 877-4 917-4 957-4 997-100-90-4 215-4 257 -4 300-4 342-4 384-4 425-4 467-4 509-4 550-4 591-90-80-3 786-3 829-3 872-3 916-3 959-4 002-4 045-4 088-4 130-4 173-80-70-3 344-3 389-3 434 -3 478 -3 522-3 566-3 610-3 654-3 698-3 742-70-60-2 893-2 936-2 984-3 029-3 075-3 120-3 165-3 210-3 255-3 300-60-50-2 431-2 524-2 524-2 571-2 617-2 663-2 709-2 765-2 801-2 847-50-40-1 961-2 008-2 055-2 103-2 150-2 197-2 244-2 291-2 335-2 385-40-30-1 482-1 530-1 578-1 626-1 674-1 722-1 770-1 818-1 865-1 913-30-20 -995-1 044-1 093-1 142-1 190-1 239-1 283-1 336-1 385-1 433-20-10-501-550-600-50-699-749-798-847-896-946-100 0-50-101-151-201-251-301-351-401-451 0 THERMOCOUPLES MV TABLES 6 6. THERMOCOUPLES MV TABLES 19 temperatureoffunctionaasforceElectromotive (1)Iron/copper-nickelJ:Type

21 Iron/copper-nickel (continued) (2)Electromoive force as a function of temperature JType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC0 050101151 202253303 354405456 010507558609 660711762814865916 95610201 0191 0711 1221 1741 2261 2771 3291 3811 4331 48520301 5371 5891 6411 6931 7451 7971 8491 9021 9542 00630402 0592 1112 1642 2162 2692 3222 3742 4272 4802 53240502 5852 6382 6912 7442 7972 8502 9032 9563 0083 06250603 1163 169 3 222 3 2753 3293 3823 4383 4893 5433 59660703 6503 7033 7573 8103 8643 9183 9714 0254 0784 13370804 1874 2404 2944 3484 4024 4564 5104 584 4 6184 67280904 7264 7814 8354 8894 9434 9975 0525 1065 1605 215901005 2695 3235 3785 4325 4875 5415 5966 6505 7055 7591001105 8145 8685 9235 9776 0326 0876 1416 1966 2516 3061101206 3606 4156 4706 5256 5796 6346 6896 7446 7996 8541201306 9096 9647 0197 0747 1297 1847 2397 2947 3497 4041301407 4597 5147 5697 6247 6797 7347 7897 8447 9007 9551401508 0108 0658 1208 1758 2318 2858 3418 3968 4528 5071501608 5628 6188 6738 7288 7838 8398 8948 9499 0059 0601601709 1159 1719 2269 2829 3379 3929 4489 5039 5599 6141701809 6699 7259 7809 8369 8919 94710 00210 05710 11310 16818019010 22410 27910 33510 39010 44610 50110 55710 61210 66810 72319020010 77910 83410 89010 94511 00111 05611 11211 16711 22311 27820021011 33411 38911 44511 50111 55611 61211 66711 72311 77811 83421022011 88911 94512 00012 05612 11112 16712 22212 27812 33412 38922023012 44512 50012 55612 61112 66712 72212 77812 83312 88912 94423024013 00013 05613 11113 16713 22213 27813 33313 38913 44413 50024025013 55513 61113 66613 72213 77713 83313 88813 94413 99914 05525026014 11014 16614 22114 27714 33214 38814 44314 49914 55414 60926027014 66514 72014 77614 83114 88714 94214 99815 05315 10915 16427028015 21915 27515 33015 38815 44115 49615 55215 60715 66315 71828029015 77315 82915 88415 94015 99516 05016 10616 16116 21616 272290 6. THERMOCOUPLES MV TABLES 20 temperatureoffunctionaasforceElectromotive(2)(continued)Iron/copper-nickelJ:Type

23 Iron/copper-nickel (continued) (4)Electromotive force as a function of temperature JType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC60033 10233 16133 21933 27833 33733 39533 45433 51333 57133 63060061033 68933 74833 80733 86633 92533 98434 04334 10234 16134 22061062034 27934 33834 39734 45734 51634 57534 63534 69434 75434 81362063034 67334 93234 99235 05135 11135 17135 23035 29035 35035 41063064035 47035 53035 59035 65035 71035 77035 83035 89035 95036 01064065036 07136 13136 19136 25236 31236 37336 43336 49436 55436 61565066036 67536 73636 79736 85836 91836 97937 04037 10137 16237 22366067037 28437 34537 40637 46737 52837 59037 65137 71237 77337 83567068037 89637 95838 01938 08138 14238 20438 26538 32738 38938 45068069038 51238 57438 63638 69838 76038 82238 88438 94639 00839 07069070039 13239 19439 25639 31839 38139 44339 50539 58839 63039 69370071039 75539 81839 88039 94340 00540 06840 13140 19340 25640 31971072040 38240 44540 50840 57040 63340 69640 75940 82240 88640 94972073041 01241 07541 13841 20141 26541 32841 39141 45541 51841 58173074041 64541 70841 77241 83541 89941 96242 02642 09042 15342 21774075042 28142 34442 40642 47242 53642 59942 66342 72742 79142 85575076042 91942 98343 04743 11143 17543 23943 30343 36743 43143 49576077043 55943 62443 68843 75243 81743 88143 94544 01044 07444 13977078044 20344 26744 33244 39644 46144 52544 59044 65544 71944 78478079044 84844 91344 97745 04245 10745 17145 23645 30145 36545 43079080045 49445 55945 62445 68845 75345 81845 88245 94746 01146 07680081046 14146 20546 270 46 315 46 39946 46446 62846 59346 65746 72281082046 78646 85146 91546 98047 04447 10947 17347 23847 30247 36782083047 43147 49547 56047 62447 68847 75347 81747 88147 94648 01083084048 07448 13848 20248 26748 33148 39548 45948 52348 58748 65184085048 71548 77948 84348 90748 97149 03449 09849 16249 22649 29085086049 35349 41749 48149 54449 60849 67249 73549 79949 86249 92686087049 98950 52050 11650 17950 24350 30650 36950 43250 49550 55987088050 62250 68550 74850 81150 87450 93751 00051 06351 12651 18888089051 25151 31451 37751 43951 50251 56551 62751 69051 75251 815890 6. THERMOCOUPLES MV TABLES 21 temperatureoffunctionaasforceElectromotive(3)(continued)Iron/copper-nickelJ:Type

23 Iron/copper-nickel (continued) (4)Electromotive force as a function of temperature JType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC60033 10233 16133 21933 27833 33733 39533 45433 51333 57133 63060061033 68933 74833 80733 86633 92533 98434 04334 10234 16134 22061062034 27934 33834 39734 45734 51634 57534 63534 69434 75434 81362063034 67334 93234 99235 05135 11135 17135 23035 29035 35035 41063064035 47035 53035 59035 65035 71035 77035 83035 89035 95036 01064065036 07136 13136 19136 25236 31236 37336 43336 49436 55436 61565066036 67536 73636 79736 85836 91836 97937 04037 10137 16237 22366067037 28437 34537 40637 46737 52837 59037 65137 71237 77337 83567068037 89637 95838 01938 08138 14238 20438 26538 32738 38938 45068069038 51238 57438 63638 69838 76038 82238 88438 94639 00839 07069070039 13239 19439 25639 31839 38139 44339 50539 58839 63039 69370071039 75539 81839 88039 94340 00540 06840 13140 19340 25640 31971072040 38240 44540 50840 57040 63340 69640 75940 82240 88640 94972073041 01241 07541 13841 20141 26541 32841 39141 45541 51841 58173074041 64541 70841 77241 83541 89941 96242 02642 09042 15342 21774075042 28142 34442 40642 47242 53642 59942 66342 72742 79142 85575076042 91942 98343 04743 11143 17543 23943 30343 36743 43143 49576077043 55943 62443 68843 75243 81743 88143 94544 01044 07444 13977078044 20344 26744 33244 39644 46144 52544 59044 65544 71944 78478079044 84844 91344 97745 04245 10745 17145 23645 30145 36545 43079080045 49445 55945 62445 68845 75345 81845 88245 94746 01146 07680081046 14146 20546 270 46 315 46 39946 46446 62846 59346 65746 72281082046 78646 85146 91546 98047 04447 10947 17347 23847 30247 36782083047 43147 49547 56047 62447 68847 75347 81747 88147 94648 01083084048 07448 13848 20248 26748 33148 39548 45948 52348 58748 65184085048 71548 77948 84348 90748 97149 03449 09849 16249 22649 29085086049 35349 41749 48149 54449 60849 67249 73549 79949 86249 92686087049 98950 52050 11650 17950 24350 30650 36950 43250 49550 55987088050 62250 68550 74850 81150 87450 93751 00051 06351 12651 18888089051 25151 31451 37751 43951 50251 56551 62751 69051 75251 815890 (4)(continued)Iron/copper-nickelJ:Type 6. THERMOCOUPLES MV TABLES 22 temperatureoffunctionaasforceElectromotive

24 Iron/copper-nickel (continued) (5)Electromotive force as a function of temperature JType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC90051 87751 94052 00252 06452 12752 18952 25152 31452 37652 43890091052 50052 58252 62452 68652 74852 81052 87252 93452 99653 05791092053 11953 18153 24353 30453 36653 42753 48953 55053 61253 67392093053 73553 79653 85753 91953 98054 04154 10254 16454 22554 28693094054 34754 40854 46954 53054 59154 65254 71354 77354 83454 89594095054 95655 01655 07755 13855 19855 25955 31955 38055 44055 50195096055 56155 62255 68255 74255 80355 86355 92355 98356 04356 10496097056 16456 22456 28456 34456 40456 48456 52456 58456 64356 70397098056 76356 82356 88356 94257 00257 06257 12157 18157 24057 30098099057 36057 41957 47957 53857 59757 65757 71657 77657 83557 8949901 00057 95358 01358 07258 13158 19058 24958 30958 36858 42758 4861 0001 01058 54558 60458 66358 42258 78158 84058 89958 95759 01659 0751 0101 02059 13459 19359 25259 31059 36959 42859 48759 54559 60459 6631 0201 03059 72159 78059 83859 89759 95660 01460 07360 13160 19060 2481 0301 04060 30760 36560 42360 48260 54060 59960 65760 71560 77460 8321 0401 05060 89060 94961 00761 06561 12361 18261 24061 29861 35661 4151 0501 06061 47361 53161 58961 64761 70561 76361 82261 88061 93861 9961 0601 07062 05462 11262 17062 22862 28662 34462 40262 48062 51862 5761 0701 08062 63462 69262 75062 80862 86662 92462 98263 04063 09863 1561 0801 09063 21463 27163 32963 38763 44563 50363 56163 61963 67763 7341 0901 10063 79263 85063 90863 96664 02464 08164 13964 19764 25564 3131 1001 11064 37064 42864 48664 54464 60264 65964 71764 77564 83364 8901 1101 12064 94865 00865 06465 12165 17965 23765 29565 35265 41065 4681 1201 13065 52565 58365 64165 69965 75665 81465 87265 92965 98766 0451 1301 14066 10266 16066 21866 27566 33366 39166 44866 506 66 564 66 6211 1401 15066 57966 73766 79466 85268 91066 96767 02567 08267 14067 1981 1501 16067 25567 31367 37067 42867 48667 54357 60167 65867 71667 7731 1601 17067 83167 88867 94668 00368 06168 11968 17668 23468 29168 3481 1701 18068 40668 46368 52168 57868 63668 69368 75168 80866 86568 9231 1801 19068 98069 03769 09569 15269 20969 26769 32469 38169 439 69 496 1 1901 20069 553 1 200 (5)(continued)Iron/copper-nickelJ:Type 6. THERMOCOUPLES MV TABLES 23 temperatureoffunctionaasforceElectromotive

25 Nickel-chromium/nickel-aluminium (6)Electromotive force as a function of temperature KType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC-270-6 458 -270-260-6 441-6 444-6 446-6 448-6 450-6 452-6 453-6 455-6 456-6457-260-250-6 404-6 408-6 413-6 417-6 421-6 425-6 429-6 432-6 435-6438-250-240-6 344-6 351-6 358-6 364-6 370-6 377-6 382-6 388-6 393-6399-240-230-6 262-6 271-6 280-6 289-6 297-6 306-6 314-6 322-6 329-6337-230-220-6 158-6 170-6 181-6 192-6 202-6 213-6 223-6 233-6 243-6252-220-210-6 035-6 048-6 061-6 074-6 087-6 099-6 111-6 123-6 135-6147-210-200-5 891-5 907-5 922-5 936-5 951-5 965-5 980-5 994-6 007-6021-200-190-5 730-5 747-5 763-5 780-5 797-5 813-5 829-5 645-5 861-5876-190-180-5 550-5 569-5 588 -5 606 -5 624-5 642-5 660-5 678-5 695-5713-180-170-5 354-5 374-5 395-5 415-5 435-5 454-5 474-5 493-5 512-5531-170-160-5 141-5 163-5 185-5 207-5 228-5 250-5 271-5 292-5 313-5333-160-150-4 913-4 936-4 960-4 983-5 008-5 029-5 062-5 074-5 097-5119-150-140-4 669-4 694-4 719-4 744-4 768-4 793-4 817-4 841-4 865-4889-140-130-4 411-4 437-4 463-4 490-4 516-4 542-4 567-4 593-4 618-4644-130-120-4 138-4 166-4 194-4 221-4 249-4 276-4 303-4 330-4 357-4384-120-110-3 852-3 882-3 911-3 939-3 968-3 997-4 025-4 054-4 082-4110-110-100-3 554-3 584-3 614-3 645-3 675-3 705-3 734-3 764-3 794-3823-100-90-3 243-3 274-3 306-3 337-3 368-3 400-3 431-3 462-3 492-3523-90-80-2 920-2 953-2 986-3 018-3 050-3 083-3 115-3 147-3 179-3211-80-70-2 587-2 620-3 654-2 688-2 721-2 755-2 788-2 821-2 854-2887-70-60-2 243-2 278-2 312-2 347-2 382-2 416-2 450-2 485-2 519-2553-60-50-1 889-1 925-1 961-1 996-2 032-2 067-2 103-2 138-2 173-2208-50-40-1 527-1 564-1 600-1 637 -1 673-1 709 -1 745-1782-1 818 -1 854 -40-30-1 156-1 194-1 231-1 266 -1 305-1 343 -1 380-1417-1 453 -1 490 -30-20-778-816-854-892-930-968-1 006-1043-1 081-1119-20-10-392-431-470-508-547-586-624-663-701-739-100 0-39-79-118-157-197-236-275-314-353 0 (6)Nickel-chromium/nickel-aluminiumK:Type 6. THERMOCOUPLES MV TABLES 24 temperatureoffunctionaasforceElectromotive

27 Nickel –chrome/nickel-aluminium (suite)Force électromotrice as a function of température KType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC30012 20912 25012 29112 33312 37412 41612 45712 49912 54012 58230031012 62412 66512 70712 74812 79012 83112 87312 91512 95612 99831032013 04013 08113 12313 16513 20613 24813 29013 33113 37313 41532033013 45713 49813 54013 58213 62413 66513 70713 74913 79113 83333034013 87413 91613 95814 00014 04214 08414 12614 16714 20914 25134035014 29314 33514 37714 41914 46114 50314 54514 58714 62914 67135036014 71314 75514 79714 83914 88114 92314 98515 00715 04915 09136037015 13315 17515 21715 25915 30115 34315 38515 42715 46915 51137038015 55415 59615 63815 68015 72215 78415 80615 84915 89115 93338039015 97516 01716 05916 10216 14416 18616 22816 27016 31316 355390400 16 397 16 43916 48216 52416 58616 60816 65116 69316 73516 77840041016 82016 88216 90416 94716 98917 03117 07417 11617 15817 20141042017 24317 28517 32817 37017 41317 45517 49717 54017 58217 62442043017 66717 70917 75217 79417 83717 87917 92117 96418 00618 04943044018 09118 13418 17618 21818 26118 30318 34618 38818 43118 47344045018 51618 55818 60118 64318 68618 72818 77118 81318 85618 89845046018 94118 98319 02619 06819 11119 15419 19619 23919 28119 32446047019 36819 40919 45119 49419 53719 57919 62219 66419 70719 75047048019 79219 83519 87719 92019 96220 00520 04820 09020 13320 17548049020 12820 26120 30320 34620 38920 43120 47420 51620 55920 60249050020 64420 68720 73020 77220 81520 85720 90020 94320 98521 02850051021 07121 11321 15621 19921 24121 28421 32621 38921 41221 45451052021 49721 54021 58221 62521 66821 71021 75321 79621 83821 88152053021 92421 96622 00922 05222 09422 13722 17922 22222 26522 30753054022 35022 39322 43522 47822 52122 58322 60622 64922 69122 73454055022 77622 81922 86222 90422 94722 99023 03223 07523 11723 16055056023 20323 24523 28823 33123 37323 41623 45823 50123 54423 58656057023 62923 67123 71423 75723 79923 84223 88423 92723 97024 01257058024 05524 09724 14024 18224 22524 26724 31024 35324 39524 43858059024 48024 52324 56524 60824 65024 69324 73524 77824 82024 863590 6. THERMOCOUPLES MV TABLES (suite)Nickel-chrome/nickel-aluminiumK:Type 25 temperatureoffunctionaasforceElectromotive

27 Nickel –chrome/nickel-aluminium (suite)Force électromotrice as a function of température KType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC30012 20912 25012 29112 33312 37412 41612 45712 49912 54012 58230031012 62412 66512 70712 74812 79012 83112 87312 91512 95612 99831032013 04013 08113 12313 16513 20613 24813 29013 33113 37313 41532033013 45713 49813 54013 58213 62413 66513 70713 74913 79113 83333034013 87413 91613 95814 00014 04214 08414 12614 16714 20914 25134035014 29314 33514 37714 41914 46114 50314 54514 58714 62914 67135036014 71314 75514 79714 83914 88114 92314 98515 00715 04915 09136037015 13315 17515 21715 25915 30115 34315 38515 42715 46915 51137038015 55415 59615 63815 68015 72215 78415 80615 84915 89115 93338039015 97516 01716 05916 10216 14416 18616 22816 27016 31316 355390400 16 397 16 43916 48216 52416 58616 60816 65116 69316 73516 77840041016 82016 88216 90416 94716 98917 03117 07417 11617 15817 20141042017 24317 28517 32817 37017 41317 45517 49717 54017 58217 62442043017 66717 70917 75217 79417 83717 87917 92117 96418 00618 04943044018 09118 13418 17618 21818 26118 30318 34618 38818 43118 47344045018 51618 55818 60118 64318 68618 72818 77118 81318 85618 89845046018 94118 98319 02619 06819 11119 15419 19619 23919 28119 32446047019 36819 40919 45119 49419 53719 57919 62219 66419 70719 75047048019 79219 83519 87719 92019 96220 00520 04820 09020 13320 17548049020 12820 26120 30320 34620 38920 43120 47420 51620 55920 60249050020 64420 68720 73020 77220 81520 85720 90020 94320 98521 02850051021 07121 11321 15621 19921 24121 28421 32621 38921 41221 45451052021 49721 54021 58221 62521 66821 71021 75321 79621 83821 88152053021 92421 96622 00922 05222 09422 13722 17922 22222 26522 30753054022 35022 39322 43522 47822 52122 58322 60622 64922 69122 73454055022 77622 81922 86222 90422 94722 99023 03223 07523 11723 16055056023 20323 24523 28823 33123 37323 41623 45823 50123 54423 58656057023 62923 67123 71423 75723 79923 84223 88423 92723 97024 01257058024 05524 09724 14024 18224 22524 26724 31024 35324 39524 43858059024 48024 52324 56524 60824 65024 69324 73524 77824 82024 863590 6. THERMOCOUPLES MV TABLES (suite)Nickel-chrome/nickel-aluminiumK:Type 26 temperatureoffunctionaasforceElectromotive

28 Nickel-chromium/nickel-aluminium(continued) (10)Electromotive force as a function of temperature KType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC60024 90524 94824 99025 03325 07525 11825 16025 20325 24525 28860061025 33025 37325 41525 45825 50025 54325 58625 62725 67025 71261062025 75525 79725 84025 88225 92425 96726 00926 05226 09426 13662063026 17926 22126 26326 30626 34826 39026 43326 47526 51726 56063064026 60226 64426 68726 72926 77126 81426 85626 89826 94026 98364065027 02527 06727 10927 15227 19427 23627 27827 32027 36327 40565066027 44727 48927 53127 57427 61627 65827 70027 74227 78427 82666067027 86927 91127 95327 99528 03728 07928 12128 16328 20528 24767068028 28928 33228 37426 41628 45828 50028 54228 58428 62628 66868069028 71028 75228 79428 83528 87728 91928 96129 00329 04529 08769070029 12929 17129 21329 25629 29729 33829 38029 42229 46429 50670071029 54829 58929 63129 67329 71529 75729 79829 84029 88229 92471072029 96530 00730 04930 09030 13230 17430 21630 25730 29930 34172073030 38230 42430 46630 50730 54930 59030 63230 67430 71530 75773074030 79830 84030 88130 92330 96431 00631 04731 08931 13031 17274075031 21331 25531 29631 33831 37931 42131 46231 50431 54531 58675076031 62831 86931 71031 75231 79331 83431 87631 91731 958 32 000 76077032 04132 08232 12432 16532 20632 24732 28932 33032 37132 41277078032 45332 49532 53632 57732 61832 65932 70032 74232 78332 82478079032 88532 90632 94732 98833 02933 07033 11133 15233 19333 23479080033 27533 31633 35733 39833 43933 48033 52133 56233 60333 64480081033 68533 72633 76733 80833 84833 88933 93033 97134 01234 05381082034 09334 13434 17534 21634 25734 29734 33834 37934 42034 46082083034 50134 54234 58234 62334 66434 70434 74534 78634 82634 86783084034 90834 94834 98935 02935 07035 11035 15135 19235 23235 27384085035 31335 35435 39435 43635 47535 51635 55635 59635 63735 67785086035 71835 75835 79835 83935 87935 92035 96036 00036 04136 08186087036 12136 16236 20236 24236 28236 32336 36336 40336 44336 48487088036 52436 56436 60436 64436 68536 72536 76536 80536 84536 88588089036 92536 96537 00637 04637 08637 12637 16637 20637 24837 288890 6. THERMOCOUPLES MV TABLES (10)(continued)Nickel-chromium/nickel-aluminiumK:Type 27 temperatureoffunctionaasforceElectromotive

29 Nickel-chromium/nickel-aluminium(continued) (11)Electromotive force as a function of temperature KType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC90037 32637 36637 40637 44637 48637 52637 56637 60637 64637 68690091037 72537 76537 80537 84537 88537 92537 96538 00538 04438 08491092038 12438 16438 20438 24338 28338 32338 36338 40238 44238 48292093038 52238 56138 60138 64138 66038 72038 76038 79938 83938 87893094038 91838 95838 99739 03739 07639 11639 15539 18539 23539 27494095039 31439 35339 39339 43239 47139 51139 55039 59039 62939 66995096039 70839 74739 78739 82639 86639 90539 94439 98440 02340 06296097040 10140 14140 18040 21940 25940 29840 33740 37640 41540 45597098040 49440 53340 57240 61140 65140 69040 72940 76840 80740 84698099040 88540 92440 96341 00241 04241 08141 12041 15941 19841 2379901 00041 27641 31541 35441 39341 43141 47041 50941 54841 58741 6261 0001 01041 66541 70441 74341 78141 82041 85941 89841 93741 97642 0141 0101 02042 05342 09242 13142 16942 20842 24742 28642 32442 36342 4021 0201 03042 44042 47942 51842 55642 59542 63342 67242 71142 74942 7881 0301 04042 82642 86542 90342 94242 98043 01943 05743 09643 13443 1731 0401 05043 21143 25043 28843 32743 36543 40343 44243 48043 51843 5571 0501 06043 59543 63343 67243 71043 74843 78743 82543 86343 90143 9401 0601 07043 97844 01644 05444 09244 13044 16944 20744 24544 28344 3211 0701 08044 35944 39744 43544 47344 51244 55044 58844 62644 66444 7021 0801 09044 74044 77844 81644 85344 89144 92944 96745 00545 04345 0811 0901 10045 11945 15745 19445 23245 27045 30845 34645 38345 42145 4591 1001 11045 49745 53445 57245 61045 64745 68545 72345 76045 79845 8361 1101 12045 87345 91145 94845 98646 02446 06146 09946 13646 17446 2111 1201 13046 24946 29646 32446 36146 39846 43646 47346 51146 54846 5851 1301 14046 62346 66046 69746 73546 77246 80946 84746 88446 92146 9581 1401 15046 99547 03347 07047 10747 14447 18147 21847 25647 29347 3301 1501 16047 36747 40447 44147 47847 51547 55247 58947 62647 66347 7001 1601 17047 73747 77447 81147 84847 88447 92147 95847 99548 03248 0691 1701 18048 10548 14248 17948 21648 25248 28948 32648 38348 39948 4361 1801 19048 47648 50948 54648 58248 61948 65648 69248 72948 76548 8021 190 6. THERMOCOUPLES MV TABLES (11)(continued)Nickel-chromium/nickel-aluminiumK:Type 28 temperatureoffunctionaasforceElectromotive

Nickel-chromium/nickel-aluminium (concluded) (12)Electromotive force as a function of temperature KType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC1 20048 83848 87548 91148 94848 98449 02149 05749 09349 13049 1661 2001 21049 20249 23949 27549 31149 34849 38449 42049 45649 49349 5291 2101 22049 56549 60149 63749 67449 71049 74649 78249 81849 85449 8901 2201 23049 92649 96249 99850 03450 07050 10650 14250 17850 21450 2501 2301 24050 28650 32250 35850 39350 42950 46550 50150 53750 57250 6081 2401 25050 64450 88050 71550 75150 78750 82250 85850 89450 92950 9651 2501 26051 00051 03651 07151 10751 14251 17851 21351 24951 28451 3201 2601 27051 35551 39151 42651 46151 49751 53251 56751 60351 63851 6731 2701 28051 70851 74451 77951 81451 84951 88551 92051 95551 99052 0251 2801 29052 06052 09552 13052 16552 20052 23552 27052 30552 34052 3751 2901 30052 41052 44552 48052 51552 55052 58552 62052 65452 68952 7241 3001 31052 75952 79452 82852 86352 89852 93252 96753 00253 03753 0711 3101 32053 10653 14053 17553 21053 24453 27953 31353 34853 38253 4171 3201 33053 45153 48653 52053 55553 58953 62353 65853 69253 72753 7611 3301 34053 79553 83053 86453 89853 93253 96754 00154 03554 06954 1041 3401 35054 13854 17254 20654 24054 27454 30854 34354 37754 41154 4451 3501 36054 47954 51354 54754 58154 61554 84954 68354 71754 75154 7851 3601 37054 81954 85254 886 1 370 6. THERMOCOUPLES MV TABLES (12)(concluded)Nickel-chromium/nickel-aluminiumK:Type 29 temperatureoffunctionaasforceElectromotive

31 Nickel –chrome-silicium/nickel-siliciumForce électromotrice en function de la température NType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC-270-4345-260-4 336-4 337-4 339-4 340-4 341-4 342-4 343-4 344-4 344-4 345-260-250-4 313-4 316-4 319-4 321-4 324-4 326-4 328-4 330-4 332-4 334-250-240-4 277-4 281-4 285-4 289-4 293-4 297-4 300-4 304-4 307-4 310-240-230-4 226-4 232-4 238-4 243-4 248-4 254-4 258-4 263-4 268-4 273-230-220-4 261-4 169-4 176-4 183-4 189-4 196-4 202-4 209-4 215-4 221-220-210-4 083-4 091-4 100-4 108-4 116-4 124-4 132-4 140-4 147-4 154-210-200-3 990-4 000-4 010-4 020-4 029-4 038-4 048-4 057-4 066-4 074-200-190-3 884-3 896-3 907-3 918-3 928-3 939-3 950-3 960-3 970-3 980-190-180-3 766-3 776-3 790-3 803-3 815-3 827-3 838-3 850-3 862-3 873-180-170-3 634-3 648-3 662-3 675-3 688-3 702-3 715-3 728-3 740-3 753-170-160-3 491-3 508-3 521-3 535-3 550-3 564-3 578-3 593-3 607-3 621-160-150-3 336-3 352-3 368-3 384-3 400-3 415-3 431-3 446-3 461-3 476-150-140-3 171-3 181-3 2053 2213 238-3 255-3 271-3 288-3 304-3 320-140-130-2 994-3 012-3 030-3 048-3 066-3 084-3 101-3 119-3 136-3 153-130-120-2 808-2 827-2 846-2 865-2 883-2 902-2 921-2 939-2 958-2 976-120-110-2 612-2 632-2 652-2 672-2 691-2 711-2 730-2 750-2 769-2 789-110-100-2 407-2 428-2 448-2 469-2 490-2 510-2 531-2 551-2 471-2 592-100-90-2 193-2 215-2 237-2 258-2 280-2 3012 322-2 344-2 365-2 386-90-80-1 972-1 995-2 017-2 039-2 062-2 084-2 106-2 128-2 150-2 172-80-70-1 744-1 767-1 790-1 813-1 836-1 859-1 882-1 905-1 927-1 950-70-60-1 509-1 533-1 557-1 580-1 604-1 627-1 651-1 674-1 698-1 721-60-50-1 269-1 293-1 317-1 341-1 366-1 390-1 414-1 438-1 462-1 485-50-40-1 023-1 048-1 072-1 097-1 122-1 146-1 171-1 195-1 220-1 244-40-30-772-798-823-848-873-898-923-948-973-998-30-20-518-544-569-595-620-646-671-696-722-747-20-10-260-286-312-338-364-390-415-441-467-492-100 0-26-52-78-104-131-157-183-209-234 0 6. THERMOCOUPLES MV TABLES Nickel-chrome-silicium/nickel-siliciumN:Type 30 temperatureoffunctionaasforceElectromotive

32 Nickel-chromium-silcon/nickel-silcon (continued) (13)Electromotive force as a function of temperature NType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC0 0265278104130156182208235 010261287313340366393419446472499102052555257860563265968571273976620307938208478749019289559631 0101 03730401 0651 0921 1191 1471 1741 2021 2291 2571 2841 31240501 3401 3681 3951 4231 4511 4791 5071 5351 5631 59150601 6191 6471 6751 7031 7321 7601 7881 8171 8451 87360701 9021 9301 9591 9882 0162 0452 0742 1022 1312 16070802 1892 2182 2472 2762 3052 3342 3632 3922 4212 45080902 4802 5092 5382 5682 5972 6262 6562 6852 7152 744901002 7742 8042 8332 8632 8932 9232 9532 9633 0123 0421001103 0723 1023 1333 1633 1933 2233 2533 2833 3143 3441101203 3743 4063 4353 4663 4963 5273 5573 5883 6193 6491201303 6803 7113 7423 7723 8033 8343 8653 8963 9273 9581301403 9894 0204 0514 0634 1144 1454 1764 2084 2394 2701401504 3024 3334 3654 3964 4284 4594 4914 5234 5544 5861501604 6184 6504 6814 7134 7454 7774 8094 8414 8734 9051601704 9374 9695 0015 0335 0665 0985 1305 1625 1955 2271701805 2595 2925 3245 3575 3895 4225 4545 4875 5205 5521801905 5855 6185 6505 6835 7165 7495 7825 8155 8475 8801902005 9135 9465 9796 0136 0466 0796 1126 1456 1786 2112002106 2456 2786 3116 3456 3786 4116 4456 4786 5126 5452102206 5796 6126 6466 6806 7136 7476 7816 8146 8486 8822202306 9166 9496 9837 0177 0517 0857 1197 1537 1877 2212302407 2557 2897 3237 3577 3927 4267 4607 4947 5287 5832402507 6977 6317 6667 7007 7347 7697 8037 8387 8727 9072502607 9417 9768 0108 0458 0808 1148 1498 1848 2188 2532602708 2888 3238 3568 3928 4278 4628 4978 5328 5678 6022702808 6378 6728 7078 7428 7778 8128 8478 8828 9188 9532802908 9889 0239 0589 0949 1299 1849 2009 2359 2709 306290 6. THERMOCOUPLES MV TABLES (13)(continued)Nickel-chromium-silcon/nickel-silconN:Type 31 temperatureoffunctionaasforceElectromotive

33 Nickel-chromium,silicone/nickel-silicon(continued)Electromotive force as a function of temperature NType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC3009 3419 3779 4129 4489 4839 5199 5549 5909 6259 6613003109 6959 7329 7669 8039 8399 8759 9109 9469 98210 01831032010 05410 08910 12510 16110 19710 23310 26910 30510 34110 37732033010 41310 44910 48510 52110 55710 59310 62910 66510 70110 73733034010 77410 81010 84610 88210 91810 93510 99111 02711 06411 10034035011 13611 17311 20911 24511 28211 31811 35511 39111 42811 46435036011 50111 53711 57411 61011 64711 68311 72011 75711 79311 83036037011 86711 90311 94011 97712 01312 05012 08712 12412 16012 19737038012 23412 27112 30812 34512 38212 41812 45512 49212 52912 56638039012 60312 64012 67712 71412 75112 78812 82512 86212 89912 93739040012 97413 01113 04813 08513 12213 15913 19713 23412 27113 30840041013 34613 38313 42013 45713 49513 53213 56913 60713 64413 68241042013 71913 75613 79413 83113 86913 90613 94413 98114 01914 05642043014 09414 13113 16914 20614 24414 28114 31914 35614 39414 43243044014 46914 50714 54514 58214 62014 65814 69514 73314 77114 80944045014 84614 88414 92214 96014 99815 03515 07315 11115 14915 18745046015 22515 26215 30015 33815 37615 41415 45215 49015 52815 56646047015 60415 64215 68015 71815 75615 79415 83215 87015 90815 94647048015 98416 02216 06016 09916 13716 17616 21316 25116 28916 32748049016 36816 40416 44216 48016 51816 55716 59516 63316 67116 71049050016 74816 76616 82416 86316 90116 93916 97817 01617 05417 09350051017 13117 16917 20817 24617 28517 32317 36117 40017 43817 47751052017 51517 55417 59217 63017 66917 70717 74617 78417 82317 88152053017 90017 93817 97718 01618 05418 09318 13118 17018 20818 24753054018 28618 32418 36318 40118 44018 47918 51718 55618 59518 63354055018 67218 71118 74918 78818 82718 86518 90418 94318 98219 02055056019 05919 08819 13619 17519 21419 25319 29219 33019 36919 40856057019 44719 48519 52419 58319 60219 64119 68019 71819 75719 79657058019 83519 87419 91319 95219 99020 02920 06820 10720 14620 18558059020 22420 26320 30220 34120 37920 41820 45720 49620 53520 574590 6. THERMOCOUPLES MV TABLES (continued)Nickel-chromium-silicone/nickel-siliconN:Type 32 temperatureoffunctionaasforceElectromotive

34 Nickel-chromium,silicone/nickel-silicon(continued)Electromotive force as a function of temperature NType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC60020 61320 65220 69120 73020 76920 80820 84720 88520 92520 98460061020 01321 04221 08121 12021 15921 19821 23721 27621 31521 35461062021 39321 43221 47121 51021 54921 58821 62821 66721 70621 74562063021 78421 82321 86221 90121 94021 97922 01822 05822 09722 13663064022 17522 21422 25322 29222 33122 37022 41022 44922 48822 52764065022 56622 60522 64422 68422 72322 76222 80122 84022 87922 91965066022 95822 99723 03623 07523 11523 15423 19323 23223 27123 31166067023 35023 38923 42823 46723 50723 54623 58523 62423 66323 70367068023 74223 78123 82023 86023 89923 93823 97724 01624 05624 09568069024 13424 17324 21324 25224 29124 33024 37024 40924 44824 48769070024 52724 56624 60524 64424 68424 72324 76224 80124 84124 88070071024 91924 95924 99825 03725 07625 11625 15525 19425 23325 27371072025 31225 35125 39125 43025 46925 50825 54825 58725 62525 66672073025 70525 74425 78325 82325 86225 90125 94125 98026 01926 05873074026 09826 13726 17626 21626 25526 29426 33326 37326 41226 54174075026 49126 53026 56926 60826 64826 68726 72626 76626 80526 84475076026 83326 92326 96227 00127 04127 08027 11927 15827 19827 23776077027 27827 31627 35527 39427 43327 47327 51227 55127 59127 63077078027 66927 70827 74827 78727 82627 86627 90527 94427 98328 02378079028 06228 10128 14028 18028 21928 25828 29728 33728 37628 41579080028 45628 49428 53328 57228 61228 65128 69028 72928 76928 80880081028 84728 88628 92628 96529 00429 04329 08829 12229 16129 20081082029 23929 27929 31829 36729 39629 43629 47529 51429 55329 59282083029 63229 67129 71029 74929 78929 82829 86729 90629 94529 98583084030 02430 06330 10230 14130 18130 22030 25930 29830 33730 37884085030 41630 45530 49430 53330 57230 61130 65130 69030 72930 76885086030 80730 84630 88630 92530 96431 00331 04231 08131 12031 16086087031 19931 23831 27731 31631 35531 39431 43331 47331 51231 55187088031 59031 62931 66831 70731 74631 78531 82431 86331 90331 94288089031 98132 02032 05932 09832 13732 17632 21532 25432 29332 332890 6. THERMOCOUPLES MV TABLES (continued)Nickel-chromium-silicone/nickel-siliconN:Type 33 temperatureoffunctionaasforceElectromotive

35 Nickel-chromium-silicon/nickelsilicon (continued)Electromotive force as a function of temperature NType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC90032 37132 41032 44932 48832 52732 56632 60532 64432 68332 72290091032 76132 80032 83932 87832 91732 95632 99533 03433 07333 11291092033 15133 19033 22933 26833 30733 34633 38533 42433 46333 50292093033 54133 58033 61933 65833 69733 73633 77433 81333 85233 89193094033 93033 96934 00834 04734 08634 12434 16334 20234 24134 28094095034 31934 35834 39634 43534 47434 51334 55234 59134 62934 66895096034 70734 74634 78534 82334 86234 90134 94034 97935 01735 05696097035 09535 13435 17235 21135 25035 28935 32735 36635 40535 44497098035 48235 52135 56035 59835 63735 67635 71435 75335 79235 83198099035 86935 90835 94635 98536 02436 06236 10136 14036 17836 2179901 00036 25636 29436 33336 37136 41036 44936 48736 52636 56436 6031 0001 01036 64136 68036 71836 75736 79636 83436 87336 91136 95036 9881 0101 02037 02737 06537 10437 14237 18137 21937 25837 29637 33437 3731 0201 03037 41137 45037 48837 52737 56537 60337 64237 68037 71937 7571 0301 04037 79537 83437 87237 91137 94937 96738 02638 06438 10238 1411 0401 05038 17938 21738 25638 29438 33238 37038 40938 44738 48538 5241 0501 06038 56238 60038 63838 67738 71538 75338 79138 82938 86838 9061 0601 07038 94438 98239 02039 05939 09739 13539 17339 21139 24939 2871 0701 08039 32639 36439 40239 44039 47839 51639 55439 59239 63039 6681 0801 09039 70639 74439 78339 82139 85939 89739 93539 97340 01140 0491 0901 10040 08740 12540 16340 20140 23840 27640 31440 35240 39040 4281 1001 11040 46640 50440 54240 58040 61840 65540 69340 73140 76940 8071 1101 12040 84540 68340 92040 95840 99641 03441 07241 10941 14741 1851 1201 13041 22341 26041 29841 33641 37441 41141 44941 48741 52541 5621 1301 14041 60041 63841 67541 71341 75141 78841 82641 86441 90141 9391 1401 15041 97642 01442 05242 08942 12742 16442 20242 23942 27742 3141 1501 16042 35242 39042 42742 46542 50242 54042 57742 61442 65242 6891 1601 17042 72742 76442 80242 83942 87742 91442 95142 98943 02643 0641 1701 18043 10143 13843 17643 21343 25043 28843 32543 36243 39943 4371 1801 19043 47443 51143 54943 58643 62343 66043 69843 73543 77243 8091 190 6. THERMOCOUPLES MV TABLES (continued)Nickel-chromium-silicon/nickel-siliconN:Type 34 temperatureoffunctionaasforceElectromotive

Nickel-chromium-silicon/nickel-siliconElectromotive force as a function of temperature NType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC1 20043 84643 88443 92143 95843 99544 03244 06944 10644 14444 1811 2001 21044 21844 25544 29244 32944 36644 40344 44044 47744 51444 5511 2101 22044 58844 62544 66244 69944 73644 77344 81044 84744 88444 9211 2201 23044 95844 99545 03245 06945 10545 14245 17945 21645 25345 2901 2301 24045 32645 36345 40045 43745 47445 51045 54745 58445 62145 6571 2401 25045 69445 73145 76745 80445 84145 87745 91445 95145 98746 0241 2501 26046 06046 09746 13346 17046 20746 24346 28046 31646 35346 3891 2601 27046 42546 46246 49846 53546 57146 60846 64446 68046 71746 7531 2701 28046 78946 82646 86246 89846 93546 97147 00747 04347 07947 1161 2801 29047 15247 18847 22447 26047 29647 33347 36947 40547 44147 4771 2901 30047 513 1 300 6. THERMOCOUPLES MV TABLES Nickel-chromium-silicon/nickel-siliconN:Type 35 temperatureoffunctionaasforceElectromotive

37 Copper/copper-nickelElectromotive force as a function of temperature TType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC-270-6 258 -270-260-6 232-6 236-6 239-6 242-6 245-6 248-6 251-6 253-6 255-6 256-260-250-6 180-6 187-6 193-6 198-6 204-6 209-6 214-6 219-6 223-6 228-250-240-6 105-6 114-6 122-6 130-6 138-6 146-6 153-6 160-6 167-6 174-240-230-6 007-6 017-6 028-6 038-6 049-6 059-6 068-6 078-6 087-6 096-230-220-5 888-5 901-5 914-5 926-5 938-5 950-5 962-5 973-5 985-5 996-220-210-5 753-5 767-5 782-5 795-5 809-5 823-5 836-5 850-5 863-5 876-210-200-5 603-5 619-5 634-5 650-5 665-5 680-5 695-5 710-5 724-5 739-200-190-5 439-5 456-5 473-5 489-5 506-5 523-5 539-5 555-5 571-5 587-190-180-5 261-5 279-5 297-5 316-5 334-5 351-5 369-5 387-5 404-5 421-180-170-5 070-5 089-5 109-5 128-5 148-5 167-5 186-5 205-5 224-5 242-170-160-4 865-4 886-4 907-4 928-4 949-4 969-4 989-5 010-5 030-5 050-160-150-4 648-4 671-4 693-4 715-4 737-4 759-4 780-4 802-4 823-4 844-150-140-4 419-4 443-4 466-4 489-4 512-4 535-4 558-4 581-4 604-4 626-140-130-4 177-4 202-4 226-4 251-4 275-4 300-4 324-4 348-4 372-4 395-130-120-3 923-3 949-3 975-4 000-4 026-4 052-4 077-4 102-4 127-4 152-120-110-3 657-3 684-3 711-3 738-3 765-3 791-3 818-3 844-3 871-3 897-110-100-3 379-3 407-3 435-3 463-3 491-3 519-3 547-3 574-3 602-3 629-100-90-3 089-3 118-3 148-3 177-3 206-3 235-3 264-3 293-3 322-3 350-90-80-2 788-2 818-2 849-2 879-2 910-2 940-2 970-3 000-3 030-3 059-80-70-2 476-2 507-2 539-2 571-2 602-2 633-2 664-2 695-2 726-2 757-70-60-2 153-2 186-2 218-2 251-2 283-2 316-2 348-2 380-2 412-2 444-60-50-1 819-1 853-1 887-1 920-1 954-1 987-2 021-2 054-2 087-2 120-50-40-1 475-1 510-1 545-1 579-1 614-1 648-1 663-1 717-1 751-1 785-40-30-1 121-1 157-1 192-1 228-1 264-1 299-1 335-1 370-1 405-1 440-30-20-757-794-830-867-904-940-976-1 013-1 049-1 085-20-10-383-421-459-496-534-571-808-646-683-720-100 0-39-77-116-154-193-231-269-307-345 0 6. THERMOCOUPLES MV TABLES Copper/copper-nickelT:Type 36 temperatureoffunctionaasforceElectromotive

38 Copper/copper-nickel (continued)Electromotive force as a function of temperature TType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC0 03978117156195234273312352 01039143147051054958962966970974910207908308709119519921 0331 0741 1141 16520301 1961 2381 2791 3201 3621 4031 4451 4861 5281 57030401 6121 6541 6961 7381 7801 8231 8651 9081 9501 99340502 0362 0792 1222 1652 2082 2512 2942 3382 3812 42550602 4682 5122 5562 6002 6432 5872 7322 7762 8202 86460702 9082 9532 9983 0433 0873 1323 1773 2223 2673 31270803 3583 4033 4483 4943 5393 5853 6313 6773 7223 76880903 8143 8603 9073 9533 9994 0464 0924 1384 1854 232901004 2794 3254 3724 4194 4664 5134 5614 6084 6554 7021001104 7504 7984 8454 8934 9414 9885 0365 0845 1325 1801101205 2285 2775 3255 3735 4225 4705 5195 5675 6165 6651201305 7145 7635 8125 8615 9105 9596 0086 0576 1076 1561301406 2066 2556 3056 3556 4045 4546 5046 5546 6046 6541401506 7046 7546 8056 8556 9056 9567 0087 0577 1077 1581501607 2097 2607 3107 3617 4127 4637 5157 5667 6177 6681601707 7207 7717 8237 8747 9267 9778 0298 0818 1338 1851701808 2378 2898 3418 3938 4458 4978 5508 8028 6548 7071801908 7598 8128 8658 9178 9709 0239 0769 1299 1829 2351902009 2889 3419 3959 4489 5019 5559 6069 6629 7159 7692002109 8229 8749 9309 98410 03810 09210 14610 20010 25410 30821022010 36210 41710 47110 52510 58010 63410 68910 74310 79810 85322023010 90710 96211 01711 07211 12711 18211 23711 29211 34711 40323024011 45811 51311 56911 62411 68011 73511 79111 84611 90211 95824025012 01312 06912 12512 18112 23712 29312 34912 40512 46112 51825026012 57412 63012 68712 74312 79912 85612 91212 96913 02613 08226027013 13913 19613 25313 31013 36613 42313 48013 53713 59513 65227028013 70913 76613 82313 88113 93813 99514 05314 11014 16814 22628029014 28314 34114 39914 45614 51414 57214 63014 68814 74614 804290 6. THERMOCOUPLES MV TABLES (continued)Copper/copper-nickelT:Type 37 temperatureoffunctionaasforceElectromotive

39 Copper/copper-nickel(concluded)Electromotive force as a function of temperature Type T E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC30014 86214 92014 97815 03615 09515 15315 21115 27015 32815 38630031015 44515 50315 56215 62115 67915 73815 79715 85615 91415 97331032016 03216 09116 15016 20916 26816 32716 38716 44616 50516 56432033016 62416 68316 74216 80216 86116 92116 98017 04017 10017 15933034017 21917 27917 33917 39917 45817 51817 57817 63817 69817 75934035017 81917 87917 93917 99918 06018 12018 18018 24118 30118 36235036018 42218 48318 54318 60418 66518 72518 78618 84718 90818 96936037019 03019 09119 15219 21319 27419 33519 39619 45719 51819 57937038019 64119 70219 76319 82519 88619 94720 00920 07020 13220 19338039020 25520 31720 37820 44020 50220 56320 62520 68720 74820 81039040020 872 400 6. THERMOCOUPLES MV TABLES (concluded)Copper/copper-nickelT:Type 38 temperatureoffunctionaasforceElectromotive

Nickel-chromium/copper-nickelElectromotive force as a function of temperature EType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC-270-9 835 -270-260-9 797-9 802-9 808-9 813-9 817-9 821-9 825-9 828-9 831-9 833-260-250-9 718-9 728-9 737-9 746-9 754-9 762-9 770-9 777-9 784-9 790-250-240-9 604-9 617-9 630-9 642-9 654-9 666-9 677-9 688-9 698-9 709-240-230-9 455-9 471-9 487-9 503-9 519-9 534-9 548-9 563-9 577-9 591-230-220-9 274-9 293-9 313-9 331-9 350-9 368-9 386-9 404-9 421-9 438-220-210-9 063-9 085-9 107-9 129-9 151-9 172-9 193-9 214-9 234-9 254-210-200-8 825-8 850-8 874-8 899-8 923-8 947-8 971-8 994-9 017-9 040-200-190-8 561-8 588-8 616-8 643-8 669-8 696-8 722-8 748-8 774-8 799-190-180-8 273-8 303-8 333-8 362-8 391-8 420-8 449-8 477-8 505-8 533-180-170-7 963-7 995-8 027-8 059-8 090-8 121-8 152-8 183-8 213-8 243-170-160-7 632-7 666-7 700-7 733-7 767-7 800-7 833-7 866-7 899-7 931-160-150-7 279-7 315-7 351-7 387-7 423-7 458-7 493-7 528-7 563-7 597-150-140-6 907-6 945-6 983-7 021-7 058-7 096-7 133-7 170-7 206-7 243-140-130-6 516-6 556-6 596-6 636-6 675-6 714-6 753-6 792-6 831-6 669-130-120-6 107-6 149-6 191-6 232-6 273-6 314-6 355-6 396-6 436-6 476-120-110-5 681-5 724-5 767-5 810-5 853-5 896-5 939-5 981-6 023-6 065-110-100-5 237-5 282-5 327-5 372-5 417-5 461-5 505-5 549-5 593-5 637-100-90-4 777-4 824-4 871-4 917-4 963-5 009-5 055-5 101-5 147-5 192-90-80-4 302-4 350-4 398-4 446-4 494-4 542-4 589-4 636-4 684-4 731-80-70-3 811-3 861-3 911-3 960-4 009-4 058-4 107-4 156-4 205-4 254-70-60-3 306-3 357-3 408-3 459-3 510-3 561-3 611-3 661-3 711-3 761-60-50-2 787-2 840-2 892-2 944-2 996-3 048-3 100-3 152-3 204-3 255-50-40-2 255-2 309-2 362-2 416-2 469-2 523-2 576-2 629-2 682-2 735-40-30-1 709-1 765-1 820-1 874-1 929-1 984-2 038-2 083-2 147-2 201-30-20-1 152-1 208-1 264-1 320-1 376-1 432-1 488-1 543-1 599-1 654-20-10-582-639-697-764-811-868-925-982-1 039-1 095-100 0-59-117-176-234-292-350-408-466-524 0 6. THERMOCOUPLES MV TABLES Nickel-chromium/copper-nickelE:Type 39 temperatureoffunctionaasforceElectromotive

41 Nickelchroomzuur/copper-nickel(Continued)Electromotive force as a function of temperature EType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC0 059118176235294354413472532 0105916517117708308909501 0101 0711 13110201 1921 252 1 313 1 3731 4341 4951 5561 6171 6781 74020301 8011 862 1 924 1 9862 0472 1092 1712 2332 2952 35730402 4202 482 2 545 2 6072 6702 7332 7952 8582 9212 98440503 0483 111 3 174 3 2383 3013 3653 4293 4923 5563 62050603 6853 749 3 813 3 8773 9424 0084 0714 1364 2004 26560704 3304 395 4 480 4 5264 5914 6564 7224 7884 8534 91970804 9855 051 5 117 5 1835 2495 3155 3825 4485 5145 58180905 6485 714 5 781 5 8485 9155 9826 0496 1176 1846 251901006 3196 3866 4546 5226 5906 6586 7256 7946 8626 9301001106 9987 0657 1357 2037 2727 3417 4097 4767 5477 6161101207 6857 7547 8237 8927 9628 0318 1018 1708 2408 3081201308 3798 4498 5198 5898 6598 7298 7998 8698 9409 0101301409 0619 1519 2229 2929 3639 4349 5059 5769 6479 7181401509 7899 8609 93110 00310 07410 14510 21710 28810 36010 43215016010 50310 57510 64710 71910 79110 86310 93511 00711 08011 15216017011 22411 29711 36911 44211 51411 58711 66011 73311 80511 87817018011 95112 02412 09712 17012 24312 31712 39012 46312 53712 61018019012 68412 75712 83112 90412 97813 05213 12813 19913 27313 34719020013 42113 49513 56913 64413 71813 79213 86613 94114 01514 09020021014 16414 23914 31314 38814 46314 53714 61214 68714 76214 83721022014 91214 98715 06215 13715 21215 28715 36215 43815 51315 58822023015 68415 73915 81515 89015 96616 04116 11716 19316 26916 34423024016 42016 49616 57216 64816 72416 80016 87816 95217 02817 10424025017 18117 25717 33317 40917 48617 56217 63917 71517 79217 86825026017 94518 02118 09818 17518 25218 32818 40518 48218 55918 63626027018 71318 79018 86718 94419 02119 09819 17519 25219 33019 40727028019 48419 56119 63919 71619 79419 87119 94820 02620 10320 18128029020 25920 33620 41420 49220 55920 64720 72520 80320 88020 958290 6. THERMOCOUPLES MV TABLES (continued)acid/copper-nickelNickel-chromicE:Type 40 temperatureoffunctionaasforceElectromotive

42 Nickel-chromium/copper-nickel(continued)Electromotive force as a function of temperature Type E E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC30021 03621 11421 19221 27021 34821 42621 50421 58221 66021 73930031021 81721 89521 97322 05122 13022 20822 28622 36522 44322 52231032022 60022 67822 75722 83522 91422 99323 07123 15023 22623 30732033023 38623 46423 54323 62223 70123 78023 85823 93724 01624 09533034024 17424 25324 33224 41124 49024 56924 64824 72724 80624 88534035024 96425 04425 12325 20225 28125 36025 44025 51925 59825 67835036025 75725 83625 91625 99526 07526 15426 23326 31326 39226 47236037026 55226 63126 71126 79026 87026 95027 02927 10927 18927 26837038027 34827 42827 50727 58727 66727 74727 82727 90727 98628 06638039028 14628 22628 30628 38628 46628 54628 62628 70628 78628 86639040028 94629 02629 10629 18629 26829 34629 42729 50726 58729 66740041029 74729 82729 90829 98830 06830 14830 22930 30930 38930 47041042030 55030 63030 71130 79130 87130 95231 03231 11231 19331 27342043031 35431 43431 51531 59531 67631 75631 83731 91731 99832 07843044032 15932 23932 32032 40032 48132 56232 84232 72332 80332 88444045032 96533 04533 12633 20733 28733 36833 44933 52933 61033 69145046033 77233 85233 93334 01434 09534 17534 25634 33734 41834 49846047034 57934 66034 74134 82234 90234 98335 06435 14535 22635 30747048035 38735 46635 54935 63035 71135 79235 87335 95436 03436 11548049036 19636 27736 35836 43936 52036 60136 68236 76336 84336 92449050037 00537 08637 16737 24837 32937 41037 49137 57237 65337 73450051037 81537 89637 97738 05838 13938 22038 30038 38138 46238 54351052038 62438 70538 78638 86738 94839 02939 11039 19139 27239 35352053039 43439 51539 59639 67739 75839 83939 92040 00140 06240 16353054040 24340 32440 40540 48640 56740 64840 72940 81040 89140 97254055041 05341 13441 21541 29641 37741 45741 53841 61941 70041 78155056041 86241 94342 02442 10542 18542 26642 34742 42842 50942 59056057042 67142 75142 83242 91342 99443 07543 15643 23643 31743 39857058043 47943 56043 64043 72143 80243 88343 96344 04444 12544 20658059044 28644 36744 44844 52944 60944 69044 77144 85144 93245 013590 6. THERMOCOUPLES MV TABLES (continued)Nickel-chromium/copper-nickelE:Type 41 temperatureoffunctionaasforceElectromotive

43 Nickel-chromium/copper-nickel (continued)Electromotive force as a function of temperature EType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC60045 09345 17445 25545 33545 41645 49745 57745 65845 73645 81960061045 90045 98046 06146 14146 22246 30246 38346 46346 54446 62461062046 70546 78546 86646 94647 02747 10747 18847 26847 34947 42962063047 50947 59047 67047 75147 83147 91147 99248 07248 15248 23363064048 31348 39348 47448 55448 63448 71548 79548 87548 95549 03564065049 11649 19649 27649 35649 43649 51749 59749 67749 75749 83765066049 91749 99750 07750 15750 23850 31850 39850 47850 55650 63866067050 71850 79850 87850 95851 03851 11851 19751 27751 35751 43767068051 51751 59751 67751 75751 83751 91651 99652 07652 15652 23668069052 31552 39552 47552 55552 63452 71452 79452 87352 95353 03369070053 11253 19253 27253 35153 43153 51053 58053 67053 74953 82970071053 90853 98854 06754 14754 22654 30654 38554 46554 54454 62471072054 70354 78254 86254 94155 02155 10055 17956 25955 33855 41772073055 49755 57655 65555 73455 81455 89355 97256 05156 13156 21073074056 28956 36856 44756 52656 60656 68556 76456 84356 92257 00174075057 08057 15957 23857 31757 39657 47557 55457 63357 71257 79175076057 87057 94958 02858 10758 18658 26558 34358 42258 50158 58076077058 65958 73868 81658 89558 97459 05359 13159 21059 28959 36777078059 44659 52559 60459 68259 76159 83959 91859 99760 07560 15478079060 23260 31160 39060 46860 54760 62560 70460 78260 86060 93979080061 01761 09661 17461 25361 33161 40961 48861 56661 64461 72380081061 80161 87961 95862 03662 11462 19262 27162 34962 42762 50581082062 58362 66262 74062 81862 89662 97463 05263 13063 20863 28682083063 36463 44263 52063 59863 67663 75463 83263 91063 98864 06683084064 14464 22264 30064 37764 55664 53364 61164 68964 76664 84484085064 92265 00065 07765 15565 23365 31065 38865 46565 54365 62185086065 69865 77665 85365 93166 00866 08666 16366 24166 31866 39686087066 47366 55066 62866 70566 78266 66066 83767 01467 09267 16987088067 24667 32367 40067 47867 55567 63267 70967 78667 86367 94088089068 01768 09468 17168 24868 32568 40268 47968 55668 63368 710890 6. THERMOCOUPLES MV TABLES (continued)Nickel-chromium/copper-nickelE:Type 42 temperatureoffunctionaasforceElectromotive

Nickel-chromium/copper-nickel( concluded)Electromotive force as a function of temperature EType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC90068 78768 86368 94069 01769 094 69 17169 24769 32469 40169 47790091069 55469 63169 70769 78469 86069 93770 01370 09070 16670 24391092070 31970 39670 47270 54870 62570 70170 77770 85470 93071 00692093071 06271 15971 23571 31171 38771 46371 53971 61571 69271 76893094071 84471 92071 99672 07272 14772 22372 29972 37572 45172 52794095072 60372 67872 75472 83072 90672 98173 05773 13373 20873 28495096073 36073 43573 51173 58673 66273 73873 81373 88973 96474 04096097074 11574 19074 26674 34174 41774 49274 56774 64374 71874 79397098074 86974 94475 01975 09575 17075 24575 32075 39575 47175 54698099075 62175 69675 77175 84775 92275 99776 07276 14776 22376 298990100076 373 1 000 6. THERMOCOUPLES MV TABLES (concluded)Nickel-chromium/copper-nickelE:Type 43 temperatureoffunctionaasforceElectromotive

45 Platium13% thorium/platium (continued)Electromotive force as a function of temperature RType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC0 0 51116212732384349 010546065717782889410010510201111171231291351411471531591652030171177183189195201207214220226304023223924525125826427127728429040502953033103163233293363433493565060363369376383390397403410417424607043143844545245946647348048749470805015085165235305375445525595668090573581588595603610618625632640901006476656626706776856937007087151001107237317387467547617697777857921101208008088168248328398478558638711201308798878959039119199279358439511301409599679769349921 0001 0081 0161 0251 0331401501 0411 0491 0581 0661 0741 0821 0911 0991 1071 1161501601 1241 1321 1411 1491 1581 1661 1751 1831 1911 2001601701 2081 2171 2251 2341 2421 2511 2601 2681 2771 2851701801 2941 3031 3111 3201 3291 3371 3461 3551 3631 3721801901 3811 3891 3981 4071 4161 4251 4331 4421 4511 4601902001 4691 4771 4861 4951 5041 5131 5221 5311 5401 5492002101 5581 5671 5751 5841 5931 6021 6111 6201 6291 6392102201 6481 6671 6661 6751 6841 6931 7021 7111 7201 7292202301 7391 7481 7571 7661 7751 7841 7941 8031 8121 8212302401 8311 8401 8491 8581 8681 8771 8861 8951 9051 9142402501 9231 9331 9421 9511 9611 9701 9801 9891 9982 0082502602 0172 0272 0362 0462 0552 0642 0742 0832 0932 1022602702 1122 1212 1312 1402 1502 1592 1692 1792 1882 1982702802 2072 2172 2262 2362 2462 2552 2652 2752 2842 2942802902 3042 3132 2232 3332 3422 3522 3622 3712 3812 391290 6. THERMOCOUPLES MV TABLES (continued)thorium/platinumPlatinum-13%R:Type 44 temperatureoffunctionaasforceElectromotive

46 Platinum –13 % thorium/platium/ (continued)Electromotive force as a function of temperature RType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC3002 4012 4102 4202 4302 4402 4492 4592 4692 4792 4883003102 4982 5082 5182 5282 5382 5472 5572 5672 5772 5873103202 5972 6072 6172 6262 6362 6462 6562 6662 6762 6863203302 6962 7062 7162 7262 7362 7462 7562 7662 7762 7863303402 7962 8062 8162 8262 8362 8462 8562 8662 8762 8863403502 8962 9062 9162 9262 9372 9472 9572 9672 9772 9873503602 9973 0073 0183 0283 0383 0483 0583 0683 0792 0893603703 0993 1093 1193 1303 1403 1503 1603 1713 1813 1913703803 2013 2123 2223 2323 2423 2533 2633 2733 2843 2943803903 3043 3153 3253 3353 3463 3563 3663 3773 3873 3973904003 4083 4183 4283 4393 4493 4603 4703 4803 4913 5014004103 5123 5223 5333 5433 5533 5643 5743 5853 5953 6064104203 6163 6273 6373 6483 6583 6693 6793 6903 7003 7114204303 7213 7323 7423 7533 7843 7743 7853 7953 8083 8164304403 8273 8383 8483 8593 8693 8803 8913 9013 9123 9224404503 9333 9443 9543 9653 9763 9883 9974 0084 0184 0294504604 0404 0504 0614 0724 0834 0934 1044 1154 1254 1364604704 1474 1584 1684 1794 1904 2014 2114 2224 2334 2444704804 2554 2654 2764 2874 2984 3094 3194 3304 3414 3524804904 3634 3734 3844 3954 4064 4174 4284 4394 4494 4604905004 4714 4824 4934 5044 5154 5264 5374 5484 5584 5695005104 5804 5914 6024 6134 6244 6354 6464 6574 6684 6795105204 6904 7014 7124 7234 7344 7454 7564 7674 7784 7895205304 8004 8114 8224 8334 8444 8354 8664 8774 8884 8995305404 9104 9224 9534 9444 9554 9664 9774 9884 9995 0105405505 0215 0335 0445 0555 0665 0775 0885 0995 1115 1225505605 1335 1445 1555 1665 1785 1895 2005 2115 2225 2345605705 2455 2565 2675 2795 2905 3015 3125 3235 3355 3465705805 3575 3695 3805 3915 4025 4145 4255 4365 4485 4595805905 4705 4815 4935 5045 5155 5275 5385 5495 5915 572590 6. THERMOCOUPLES MV TABLES (continued)thorium/platinum%Platinum–13R:Type 45 temperatureoffunctionaasforceElectromotive

47 Platinum –13% rhodium/platinum (continued)Electromotive force as a function of temperature RType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC6005 5835 5955 6065 6185 6295 6405 6525 6635 6745 6866006105 6975 7095 7205 7315 7435 7545 7665 7775 7895 8006106205 8125 8235 8345 8465 8575 8695 8805 8925 9035 9156206305 9265 9385 9495 9615 9725 9845 9956 0076 0186 0306306406 0416 0536 0656 0766 0886 0996 1116 1226 1346 1466406506 1576 1696 1806 1926 2046 2156 2276 2386 2506 2626506606 2736 2856 2976 3086 3206 3326 3436 3556 3676 3786606706 3906 4026 4136 4256 4376 4486 4606 4726 4846 4956706806 5076 5196 5316 5426 5546 5666 5786 5896 6016 613680690 6 6256 6366 6486 6606 6726 6846 6956 7076 7196 7316907006 7436 7556 7666 7786 7906 8026 8146 8266 8386 8497007106 8616 8736 8856 8976 9096 9216 9336 9456 9566 9687107206 9806 9927 0047 0167 0287 0407 0527 0647 0767 0887207307 1007 1127 1247 1387 1487 1607 1727 1847 1967 2087307407 2207 2327 2447 2567 2687 2807 2927 3047 3167 3287407507 3407 3527 3647 3767 3897 4017 4137 4257 4377 4497507607 4617 4737 4857 4987 5107 5227 5347 5467 5587 5707607707 5837 5957 6077 6197 6317 6447 6567 6687 6807 6927707807 7057 7177 7297 7417 7537 7667 7787 7907 8027 8157807907 8277 8397 8517 8647 8767 8887 9017 9137 9257 9387908007 9507 9627 9747 9677 9998 0118 0248 0368 0488 0818008108 0738 0668 0888 1108 1238 1358 1478 1608 1728 1858108208 1978 2088 2228 2348 2478 2598 2728 2848 2968 3098208308 3218 3348 3468 3698 3718 3848 3968 4098 4218 4348308408 4468 4598 4718 4848 4968 5098 5218 5348 5468 5598408508 5718 5848 5978 6098 6228 6348 8478 6598 6728 6858508608 6978 7108 7228 7358 7488 7608 7738 7858 7988 8118608708 8238 8368 8498 8618 8748 8878 8998 9128 9258 9378708808 9508 9638 9758 9889 0019 0149 0269 0399 0529 0658808909 0779 0909 1039 1159 1289 1419 1549 1679 1799 192890 6. THERMOCOUPLES MV TABLES (continued)rhodium/platinumPlatinum–13%R:Type 46 temperatureoffunctionaasforceElectromotive

48 Platinum –13% rhodium/platinum (continued)Electromotive force as a function of temperature RType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC9009 2059 2189 2309 2439 2569 2699 2829 2949 3079 3209009109 3339 3469 3599 3719 3849 3979 4109 4239 4369 4499109209 4619 4749 4879 5009 5139 5269 5399 5529 5659 5789209309 5909 6039 6169 6299 6429 6559 6689 6819 6949 7079309409 7209 7339 7469 7599 7729 7859 7989 8119 8249 8379409509 8509 8639 8769 8899 9029 9159 9289 9419 9549 9679509609 9809 99310 00810 01910 03210 04610 05910 07210 08510 09896097010 11110 12410 13710 15010 16310 17710 19010 20310 21610 22997098010 24210 25510 26810 28210 29510 30810 32110 33410 34710 36198099010 37410 38710 40010 41310 42710 44010 45310 46610 48010 4939901 00010 50610 51910 53210 54610 55910 57210 58510 59910 61210 6251 0001 01010 63810 65210 66510 67810 69210 70510 71810 73110 74510 7581 0101 02010 77110 78510 79810 81110 82510 83810 85110 86510 87810 8911 0201 03010 90510 91810 93210 94510 95810 97210 96510 99811 01211 0251 0301 04011 03911 05211 06511 07911 09211 10611 11911 13211 14611 1591 0401 05011 17311 18611 20011 21311 22711 24011 25311 26711 28011 2941 0501 06011 30711 32111 33411 34811 36111 37511 38811 40211 41511 4291 0601 07011 44211 45611 46911 48311 49811 51011 52411 53711 55111 5641 0701 08011 67811 59111 60511 61811 63211 64611 65911 57311 68611 7001 0801 09011 71411 72711 74111 75411 76811 78211 79511 80911 82211 8361 0901 10011 85011 86311 87711 89111 90411 91811 93111 94511 95911 9721 1001 11011 98612 00012 01312 02712 04112 05412 06812 08212 09612 1091 1101 12012 12312 13712 15012 16412 17812 19112 20512 21912 23312 2461 1201 13012 26012 27412 28812 30112 31512 32912 34212 35612 37012 3841 1301 14012 39712 41112 42512 43912 45312 46612 48012 49412 50812 5211 1401 15012 53512 54912 56312 57712 59012 60412 61812 63212 64612 6591 1501 16012 67312 68712 70112 71512 72912 74212 75612 77012 78412 7981 1601 17012 81212 82512 83912 85312 86712 88112 89512 90912 92212 9361 1701 18012 95012 96412 97812 99213 00613 01913 03313 04713 06113 0751 1801 19013 08913 10313 11713 13113 14513 15813 17213 18613 20013 2141 190 6. THERMOCOUPLES MV TABLES (continued)rhodium/platinumPlatinum–13%R:Type 47 temperatureoffunctionaasforceElectromotive

49 Platinum –13% rhodium/platinum (continued)Electromotive force as a function of temperature RType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC1 20013 22813 24213 25613 27013 28413 29813 31113 32513 33913 3531 2001 21013 36713 38113 39513 40913 42313 43713 45113 46513 47913 4931 2101 22013 60813 52113 53513 54913 56313 57713 59013 60413 61813 6321 2201 23013 64613 66013 67413 68813 70213 71613 73013 74413 75813 7721 2301 24013 78613 80013 81413 82813 84213 85613 87013 88413 89813 9451 2401 25013 92613 94013 95413 96813 98213 99614 01014 02414 03814 0521 2501 26014 06614 08114 09514 10914 12314 13714 15114 16514 17914 1931 2601 27014 20714 22114 23514 24914 26314 27714 29114 30514 31914 3331 2701 28014 34714 36114 37514 39014 40414 41814 43214 44614 46014 4741 2801 29014 48814 50214 51614 53014 54414 55814 57214 58614 60114 6151 2901 30014 62914 64314 65714 67114 68514 69914 71314 72714 74114 7551 3001 31014 77014 78414 79814 81214 82614 84014 85414 86814 88214 8961 3101 32014 91114 92514 93914 95314 96714 98114 99515 00915 02315 0371 3201 33015 05215 06615 08015 09415 10815 12215 13615 15015 16415 1791 3301 34015 19315 20715 22115 23515 24915 26315 27715 29115 30615 3201 3401 35015 33415 34815 36215 37615 39015 40415 41915 43315 44715 4611 3501 36015 47515 48915 50315 51715 53115 54615 56015 57415 58815 6021 3601 37015 61615 63015 64515 65915 67315 68715 70115 71515 72915 7431 3701 38015 75815 77215 78615 80015 81415 82815 84215 85615 87115 8851 3801 39015 89915 91315 92715 94015 95515 96915 98415 99816 01216 0261 3901 40016 04016 05416 06816 08216 09716 11116 12516 13916 15316 1671 4001 41016 18116 19616 21016 22416 23816 25216 26616 28016 29416 3091 4101 42016 32316 33716 35116 36516 37916 39316 40716 42216 43616 4501 4201 43016 46416 47816 49216 50616 52016 53416 54916 56316 57716 5911 4301 44016 60516 61916 63316 64716 66216 67616 69016 70416 71816 7321 4401 45016 74816 76016 77416 78916 80316 81716 83116 84516 85916 8731 4501 46016 88716 90116 91516 93016 94416 95816 97216 98617 00017 0141 4601 47017 02817 04217 05617 07117 08517 09917 11317 12717 14117 1551 4701 48017 16917 18317 19717 21117 22517 24017 25417 26817 25217 2961 4801 49017 31017 32417 33617 35217 36617 38017 39417 40817 42317 4371 490 6. THERMOCOUPLES MV TABLES (continued)rhodium/platinumPlatinum–13%R:Type 48 temperatureoffunctionaasforceElectromotive

Platinum –13% rhodium/platinum (concluded)Electromotive force as a function of temperature RType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC1 50017 45117 46517 47917 49317 50717 52117 53517 54917 56317 5771 5001 51017 59117 60517 61917 63317 64717 66117 67617 69017 70417 7181 5101 52017 73217 74617 76017 77417 78817 80217 81617 83017 84417 8581 5201 53017 87217 88617 90017 91417 92817 94217 95617 97017 98417 9981 5301 54018 01218 02618 04018 05418 06818 08218 09618 11018 12418 1381 5401 55018 15218 16618 18018 19418 20818 22218 23618 25018 26418 2781 5501 56018 29218 30618 32018 33418 34818 36218 37618 39018 40418 4171 5601 57018 43118 44518 45918 47318 48718 50118 51518 52918 54318 5671 5701 58018 57118 58518 69918 61318 62718 64018 65418 66818 68218 6961 5801 59018 71018 72418 73818 75218 78618 77918 79318 80718 82118 8351 5901 60018 84918 86318 87718 89118 90418 91818 93218 94618 96018 9741 6001 61018 98819 00219 01519 02919 04319 05719 07119 08519 09819 1121 6101 62019 12619 14019 15419 16819 18119 19519 20919 22319 23719 2501 6201 63019 26419 27819 29219 30619 31919 33319 34719 36119 37519 3881 6301 64019 40219 41619 43019 44419 45719 47119 48519 49919 51219 5261 6401 65019 54019 55419 56719 56119 59519 60919 62219 63619 65019 6631 6501 66019 67719 69119 70519 71819 73219 74619 75919 77319 78719 8001 6601 67019 81419 82819 84119 85519 86919 88219 89619 91019 92319 9371 6701 68019 95119 96419 97819 99220 00520 01920 03220 04620 06020 0731 6801 69020 06720 10020 11420 12720 14120 15420 16820 18120 19520 2081 6901 70020 22220 23520 24920 26220 27520 28920 30220 31620 32920 3421 7001 71020 35620 36920 38220 39620 40920 42220 43620 44920 46220 4751 7101 72020 48820 50220 51520 52820 54120 55420 56720 58120 59420 6071 7201 73020 62020 63320 64620 65920 67220 68520 59820 71120 72420 7361 7301 74020 74920 76220 77520 78820 80120 81320 82620 83920 65220 8641 7401 75020 87720 89020 90220 91520 92820 94020 95320 96520 97820 9901 7501 76021 00321 01521 02721 04021 05221 06521 07721 08921 101 1 760 6. THERMOCOUPLES MV TABLES (continued)rhodium/platinumPlatinum–13%R:Type 49 temperatureoffunctionaasforceElectromotive

51 Platinum –10% rhodium/platinum (continued)Electromotive force as a function of temperature SType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC0 0 51116222733384450 010556167727884909510110710201131191251311371431491551611672030173179185191197204210216222229304023524124825426026727328028629240502993053123193253323383453523585060365372378385392399405412419426607043344044645346046747448148849570805025095165235305385455525595668090573580588595602609617624631639901006466536616686756836906987057131001107207277357437507587657737807881101207958038118188288348418498578651201308728808888969039119199279359421301409506589669749829909981 0061 0131 0211401501 0291 0371 0451 0531 0611 0691 0771 0851 0941 1021501601 1101 1181 1261 1341 1421 1501 1581 1671 1751 1831601701 1911 1991 2071 2161 2241 2321 2401 2491 2571 2651701801 2731 2821 2901 2961 3071 3151 3231 3321 3401 3481801901 3571 3651 3731 3821 3901 3991 4071 4151 4241 4321902001 4411 4491 4581 4661 4751 4831 4921 5001 5091 5172002101 5261 5341 5431 5511 5601 5691 5771 5861 5941 6032102201 6121 6201 6291 6381 6461 6551 6631 6721 6811 6902202301 6981 7071 7161 7241 7331 7421 7511 7591 7681 7772302401 7861 7941 8031 8121 8211 8291 8381 8471 8561 8652402501 8741 8821 8911 9001 9091 9181 9271 9361 9441 9532502601 9621 9711 9801 9891 9982 0072 0162 0252 0342 0432602702 0522 0612 0702 0782 0872 0962 1052 1142 1232 1322702802 1412 1512 1602 1692 1782 1872 1962 2052 2142 2232802902 2322 2412 2502 2592 2682 2772 2872 2962 3052 314290 6. THERMOCOUPLES MV TABLES (continued)rhodium/platinumPlatinum–10%S:Type 50 temperatureoffunctionaasforceElectromotive

52 Platinum –10% rhodium/platinum (continued)Electromotive force as a function of temperature SType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC3002 3232 3322 3412 3502 3602 3692 3782 3872 3962 4053003102 4152 4242 4332 4422 4512 4612 4702 4792 4882 4973103202 5072 5162 5252 5342 5442 5532 5622 5712 5812 5903203302 5992 6092 6162 6272 6362 6462 6552 6642 6742 6833303402 6922 7022 7112 7202 7302 7392 7482 7582 7672 7763403502 7862 7952 8052 8142 8232 8332 8422 8512 8612 8703503602 8802 8892 8992 9082 9172 9272 8362 9462 9552 9653603702 9742 9832 9933 0023 0123 0213 0313 0403 0503 0593703803 0693 0783 0883 0973 1073 1163 1263 1353 1453 1543803903 1643 1733 1833 1923 2023 2123 2213 2313 2403 2503904003 2593 2693 2793 2883 2983 3073 3173 3263 3363 3464004103 3553 3653 3743 3843 3943 4043 4133 4233 4323 4424104203 4513 4613 4713 4803 4903 5003 5093 5193 5293 5384204303 5483 5583 5673 5773 5873 5963 6063 6163 6263 6354304403 6453 6553 6643 6743 6843 6943 7033 7133 7233 7324404503 7423 7523 7623 7713 7813 7913 8013 8103 8203 8304504603 8403 8603 8593 8693 8793 8893 8983 9083 9183 9284604703 9383 9473 9573 9673 9773 9873 9974 0064 0164 0264704804 0364 0464 0584 0654 0754 0854 0954 1054 1154 1254804904 1344 1444 1544 1644 1744 1844 1944 2044 2134 2234905004 2334 2434 2534 2634 2734 2834 2934 3034 3134 3235005104 3324 3424 3524 3624 3724 3824 3924 4024 4124 4225105204 4324 4424 4524 4624 4724 4824 4924 5024 5124 5225205304 5324 5424 5524 5624 5724 5824 5924 6024 6124 6225305404 6324 6424 6524 6624 6724 6824 6924 7024 7124 7225405504 7324 7424 7524 7624 7724 7824 7934 8034 8134 8235505604 8334 8434 8534 8634 8734 8834 8934 9044 9144 9245605704 9344 9444 9544 9644 9744 9844 9955 0055 0155 0255705805 0355 0455 0555 0665 0765 0865 0965 1065 1165 1275805905 1375 1475 1575 1675 1785 1885 1985 2085 2185 228590 6. THERMOCOUPLES MV TABLES (continued)rhodium/platinumPlatinum–10%S:Type 51 temperatureoffunctionaasforceElectromotive

53 Platinum –10% rhodium/platinum (continued)Electromotive force as a function of temperature SType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC6005 2395 2495 2595 2695 2805 2905 3005 3105 3205 3316006105 3415 3515 3615 3725 3825 3925 4025 4135 4235 4336106205 4435 4545 4645 4745 4855 4955 5055 5155 5265 5366206305 5465 5675 6875 5775 5885 6985 6085 6185 6295 8396306405 6495 6605 6705 6805 6915 7015 7125 7225 7325 7436406505 7535 7635 7745 7845 7945 8055 8155 8265 8365 8466506605 8575 8675 8785 8885 8985 9095 9195 9305 9405 9506606705 9615 9715 9825 9926 0036 0136 0246 0346 0446 0556706806 0656 0766 0866 0976 1076 1186 1286 1396 1496 1606806906 1706 1816 1916 2026 2126 2236 2336 2446 2546 2656907006 2756 2866 2966 3076 3176 3286 3386 3496 3606 3707007106 3816 3916 4026 4126 4236 4346 4446 4556 4656 4767107206 4886 4976 5086 5186 5296 5396 5506 5616 5716 5827207306 5936 6036 6146 6246 6356 6466 6566 6676 6786 6887307406 6996 7106 7206 7316 7426 7526 7636 7746 7846 7957407506 8066 8176 8276 8385 8496 8596 8706 8816 8926 9027507606 9136 9246 9346 9456 9566 9676 9776 9886 9997 0107607707 0207 0317 0427 0537 0847 0747 0857 0967 1077 1177707807 1287 1397 1507 1617 1727 1827 1937 2047 2157 2267807907 2367 2477 2587 2697 2807 2917 3027 3127 3237 3347908007 3457 3567 3677 3787 3887 3997 4107 4217 4327 4438008107 4547 4657 4767 4877 4977 5087 5197 5307 5417 5528108207 5637 5747 5857 5967 6077 6187 6297 6407 6517 6628208307 6737 6847 6957 7067 7177 7287 7397 7507 7617 7728308407 7837 7947 8057 8167 8277 8387 8497 8607 8717 8828408507 8937 9047 9157 9267 9377 9487 9597 9707 9817 9928508608 0038 0148 0268 0378 0488 0598 0708 0818 0928 1038608708 1148 1258 1378 1488 1598 1708 1818 1928 2038 2148708808 2268 2378 2488 2598 2708 2818 2938 3048 3158 3268808908 3378 3488 3808 3718 3828 3938 4048 4168 4278 438890 6. THERMOCOUPLES MV TABLES (continued)rhodium/platinumPlatinum–10%S:Type 52 temperatureoffunctionaasforceElectromotive

54 Platinum –10% rhodium/platinum (continued)Electromotive force as a function of temperature SType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC9008 4498 4608 4728 4838 4948 5058 5178 5288 5398 5509009108 5628 5738 5848 5958 6078 6188 6298 6408 6528 6639109208 6748 6858 6978 7088 7198 7318 7428 7538 7658 7769209308 7878 7988 8108 8218 8328 8448 8558 8668 8788 8899309408 9008 9128 9238 9358 9468 9578 9698 9808 9919 0039409509 0149 0259 0379 0489 0609 0719 0829 0949 1059 1179509609 1289 1399 1519 1629 1749 1859 1979 2089 2199 2319609709 2429 2549 2659 2779 2889 3009 3119 3239 3349 3459709809 3579 3689 3809 3919 4039 4149 4269 4379 4499 4609809909 4729 4839 4959 5069 5189 5299 5419 5529 5649 5769901 0009 5879 5999 6109 6229 6339 6459 6569 6669 8809 6911 0001 0109 7039 7149 7269 7379 7499 7619 7729 7849 7959 8071 0101 0209 8199 8309 8429 8539 8659 8779 8889 9009 9119 9231 0201 0309 9359 9469 9589 9709 9819 99310 00510 01810 02810 0401 0301 04010 05110 06310 07610 08610 09810 11010 12110 13310 14510 1561 0401 05010 16810 18010 19110 20310 21510 22710 23810 25010 26210 2731 0501 06010 28510 29710 30910 32010 33210 34410 35610 36710 37910 3911 0601 07010 40310 41410 42610 43810 45010 46110 47310 48510 49710 5091 0701 08010 52010 53210 54410 55610 56710 57910 59110 60310 61510 6261 0801 09010 63810 65010 66210 67410 68810 69710 70910 72110 73310 7451 0901 10010 75710 76810 78010 79210 80410 81610 82810 83910 85110 8631 1001 11010 67510 88710 89910 91110 92210 93410 94610 95810 97010 9821 1101 12010 99411 00611 01711 02911 04111 05311 06511 07711 08911 1011 1201 13011 11311 12511 13611 14811 16011 17211 18411 19611 20811 2201 1301 14011 23211 24411 25611 26811 28011 29111 30311 31511 32711 3391 1401 15011 35111 36311 37511 38711 39911 41111 42311 43511 44711 4591 1501 16011 47111 48311 49511 50711 51911 53111 54211 55411 56611 5781 1601 17011 59011 60211 61411 62611 63811 65011 66211 67411 68611 6981 1701 18011 71011 72211 73411 74611 75811 77011 78211 79411 80611 8181 1801 19011 83011 84211 85411 86611 87811 89011 90211 91411 92611 9391 190 6. THERMOCOUPLES MV TABLES (continued)rhodium/platinumPlatinum–10%S:Type 53 temperatureoffunctionaasforceElectromotive

55 Platinum –10% rhodium/platinum (continued)Electromotive force as a function of temperature SType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC1 20011 95111 96311 97511 96711 99912 01112 02312 03512 04712 0591 2001 21012 07112 08312 09512 10712 11912 13112 14312 15512 16712 1791 2101 22012 19112 20312 21612 22812 24012 25212 26412 27612 26812 3001 2201 23012 31212 32412 33612 34812 36012 37212 38412 39712 40912 4211 2301 24012 43312 44512 45712 46912 48112 49312 50512 51712 52912 5421 2401 25012 55412 56612 57812 59012 60212 61412 62612 63812 65012 6621 2501 26012 67512 68712 69912 71112 72312 73512 74712 75912 77112 7831 2601 27012 79612 80812 82012 83212 84412 85612 86812 88012 89212 9051 2701 28012 91712 92912 94112 95312 96512 97712 98913 00113 01413 0261 2801 29013 03813 05013 06213 07413 08613 09813 11113 12313 13513 1471 2901 30013 15913 17113 18313 19513 20813 22013 23213 24413 25613 2681 3001 31013 28013 29213 30513 31713 32913 34113 95313 36513 37713 3901 3101 32013 40213 41413 42613 43813 45013 46213 47413 48713 49913 5111 3201 33013 52313 53513 54713 55913 57213 58413 59613 60613 62013 6321 3301 34013 64413 65713 66913 68113 69313 70513 71713 72913 74213 7541 3401 35013 76613 77813 79013 80213 81413 82613 83913 85113 86313 8751 3501 36013 88713 89913 91113 92413 93613 94813 96013 97213 88413 9961 3601 37014 00914 02114 03314 04514 05714 06914 08114 09414 10614 1181 3701 38014 13014 14214 15414 16614 17814 19114 20314 21514 22714 2391 3801 39014 25114 26314 27614 28814 30014 31214 32414 33614 34814 3601 3901 40014 37314 38514 39714 40914 42114 43314 44514 45714 47014 4821 4001 41014 49414 50614 51814 53014 54214 55414 56714 57914 59114 6031 4101 42014 61514 62714 63914 65114 66414 67614 68814 70014 71214 7241 4201 43014 73614 74814 76014 77314 78514 79714 80914 82114 83314 8451 4301 44014 85714 86914 88114 89414 90614 91814 93014 94214 95414 9661 4401 45014 97814 99015 00215 01515 02715 03915 05115 06315 07515 0871 4501 46015 09915 11115 12315 13515 14815 16015 17215 18415 19615 2081 4601 47015 22015 23215 24415 25615 26815 28015 29215 30415 31715 3291 4701 48015 34115 35315 36515 37715 38915 40115 41315 42515 43715 4491 4801 49015 46115 47315 48515 49715 50915 52115 53415 54615 55815 5701 490 6. THERMOCOUPLES MV TABLES (continued)rhodium/platinumPlatinum–10%S:Type 54 temperatureoffunctionaasforceElectromotive

Platinum –10% rhodium/platinum (conluded)Electromotive force as a function of temperature SType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC1 50015 58215 59415 60615 61815 63015 64215 65415 66615 67815 6901 5001 51015 70215 71415 72615 73815 75015 76215 77415 78615 79815 8101 5101 52015 82215 83415 84615 85815 87015 88215 89415 90615 91815 9301 5201 53015 94215 95415 96615 97815 99016 00216 01416 02616 03816 0501 5301 54016 06216 07416 08616 09816 11016 12216 13416 14616 15816 1701 5401 55016 18216 19416 20516 21716 22916 24116 25316 26516 27716 2891 5501 56016 30116 31316 32516 33716 34916 36116 37316 38516 39616 4081 5601 57016 42016 43216 44416 45616 46816 48016 49216 50416 51616 5271 5701 58016 53916 55116 56316 57516 58716 59916 61116 62316 63416 6461 5801 59016 65816 67016 68216 69416 70616 71816 72916 74116 75316 7851 5901 60016 77716 78916 80116 81216 82416 83616 84816 86016 87216 8831 6001 61016 89516 90716 91916 93116 94316 95416 96616 97816 99017 0021 6101 62017 01317 02517 03717 04917 06117 07217 08417 09617 10817 1201 6201 63017 13117 14317 15517 16717 17817 19017 20217 21417 22517 2371 6301 64017 24917 26117 27217 28417 29617 30817 31917 33117 34317 3551 6401 65017 36617 37817 39017 40117 41317 42517 43717 44817 46017 4721 6501 66017 48317 49517 50717 51817 53017 54217 55317 56517 57717 5881 6601 67017 60017 61217 62317 63517 64717 65817 67017 68217 69317 7051 6701 68017 71717 72817 74017 75117 76317 77517 78617 79817 80917 8211 6801 69017 83217 84417 85517 86717 87817 89017 90117 91317 92417 9361 6901 70017 94717 95917 97017 98217 99318 00418 01618 02718 03918 0501 7001 71018 06118 07318 08418 09518 10718 11818 12918 14018 15218 1631 7101 72018 17418 18518 19618 20818 21918 23018 24118 25218 26318 2741 7201 73018 28518 29718 30818 31918 33018 34118 35218 36218 37318 3841 7301 74018 39518 40618 41718 42818 43918 44918 46018 47118 48218 4931 7401 75018 50318 61418 52518 53518 54618 55718 56718 57818 58818 5991 7501 76018 60918 62018 63018 64118 65118 66118 67218 68218 693 1 760 6. THERMOCOUPLES MV TABLES (concluded)rhodium/platinumPlatinum–10%S:Type 55 temperatureoffunctionaasforceElectromotive

57 Platinum –30% rhodium/platinum –6% rhodiumElectromotive force as a function of temperature BType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC0000-1-1-1-1-1-2-2010-2-2-2-2-2-2-2-2-3-31020-3-3-3-3-3-2-2-2-2-22030-2-2-2-2-2-1-1-1-1-1304 000000111224 05 023334445565 06 067788991 01 01 16 07011121213141415151617708017181920202122222324809025262627282930313132901003334353637383940414210011043444546474849505152110120535556575859606263641201306566686970727374757713014078798182848586888991140150929495969899101102104106150160107109110112113115117118120122160170123125127128130132134135137139170180141142144146148150151153155157180190159161163165166168170172174176190200178180182184186188190192196197200210199201203204207209212214216218210220220222225227229231234236238241220230243245248250252255257259262264230240267269271274276279281284286289240250291294296299301304307309312314250260317320322325328330333336338341260270344347349352355358360363366369270280372375377380383386389392395398280290401404407410413416419422425428290 6. THERMOCOUPLES MV TABLES rhodiumrhodium/platinum–6%Platinum–30%B:Type 56 temperatureoffunctionaasforceElectromotive

58 Platinum –30% rhodium/platinum –6% rhodium (continued)Electromotive force as a function of temperature BType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC3004314344374404434464494524554583003104624664684714744784814844874903103204944975005035075105135175205233203305275305335375405445475505545573303405615645685715755785825855895923403505965996036076106146176216259283503606326366396436476506546586626653603706696736776806846886926967007033703807077117157197237277317357387423803907467507547587627667707747787823904007877917957998038078118158198244004108288328368408448498538578618664104208708748788838878918969009049094204309139179229269309359399449489534304409579619669709759799849869939944404501 0021 0071 0111 0161 0201 0251 0301 0341 0391 0434504601 0481 0531 0571 0621 0671 0711 0761 0811 0861 0904604701 0951 1001 1061 1091 1141 1191 1241 1291 1331 1384704801 1431 1481 1531 1581 1631 1671 1721 1771 1821 1874804901 1921 1971 2021 2071 2121 2171 2221 2271 2321 2374905001 2421 2471 2521 2571 2621 2671 2721 2771 2821 2885005101 2931 2981 3031 3081 3131 3181 3241 3291 3341 3395105201 3441 3501 3551 3801 3651 3711 3761 3811 3871 3925205301 3971 4021 4081 4131 4181 4241 4291 4351 4401 4455305401 4511 4561 4621 4671 4721 4781 4831 4891 4941 5005405501 5051 5111 5161 5221 5271 5331 5391 5441 5501 5555505601 5611 5661 5721 5781 5831 5891 5951 6001 6061 6125605701 6171 6231 6291 6341 6401 6461 6521 6571 6631 6695705801 6751 6601 6861 6921 6981 7041 7091 7151 7211 7275805901 7331 7391 7451 7501 7561 7621 7681 7741 7801 786590 6. THERMOCOUPLES MV TABLES (continued)rhodiumrhodium/platinum–6%Platinum–30%B:Type 57 temperatureoffunctionaasforceElectromotive

59 Platinum –30% rhodium/platinum –6% rhodium (continued)Electromotive force as a function of temperature BType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC6001 7921 7981 8041 8101 8161 8221 8281 8341 8401 8466006101 8521 8581 8641 8701 8761 8821 8881 8941 9011 9076106201 9131 9191 9251 9311 9371 9441 9501 9561 9621 9686206301 9751 9811 9871 9931 9992 0062 0122 0182 0252 0316306402 0372 0432 0502 0562 0622 0692 0752 0822 0882 0946406502 1012 1072 1132 1202 1262 1332 1392 1462 1522 1586506602 1652 1712 1782 1842 1912 1972 2042 2102 2172 2246606702 2302 2372 2432 2502 2562 2632 2702 2762 2832 2896706802 2962 3032 3092 3162 3232 3292 3362 3432 3502 3566806902 3632 3702 3762 3832 3902 3972 4032 4102 4172 4246907002 4312 4372 4442 4512 4582 4652 4722 4792 4852 4927007102 4992 5062 5132 5202 5272 5342 5412 5482 5562 5627107202 5692 5762 5832 5902 5972 6042 6112 6182 6252 6327207302 6392 6462 6532 6602 6672 5742 6812 6882 6962 7037307402 7102 7172 7242 7312 7382 7462 7532 7602 7672 7757407502 7822 7892 7962 8032 8112 8182 8252 8332 8402 8477507602 8542 8622 8692 8762 8842 8912 8982 9062 9132 9217607702 9282 9352 9432 9502 9582 9652 9732 9802 9872 9957707803 0023 0103 0173 0253 0323 0403 0473 0553 0623 0707807903 0783 0853 0933 1003 1083 1163 1233 1313 1383 1467908003 1543 1613 1693 1773 1843 1923 2003 2073 2153 2238008103 2303 2383 2463 2543 2613 2693 2773 2853 2923 3008108203 3083 3163 3243 3313 3393 3473 3653 3633 3713 3798208303 3863 3943 4023 4103 4183 4263 4343 4423 4503 4588308403 4663 4743 4823 4903 4983 5063 5143 5223 5303 5388408503 5463 5543 5823 5703 5783 5863 5943 6023 6103 6188508603 6263 6343 6433 6513 6593 6673 6753 6833 6923 7008608703 7083 7163 7243 7323 7413 7493 7573 7653 7743 7828708803 7903 7983 8073 8153 8233 8323 8403 8483 8573 8658808903 6733 8823 8903 8983 9073 9153 9233 9323 9403 949890 6. THERMOCOUPLES MV TABLES (continued)rhodiumrhodium/platinum–6%Platinum–30%B:Type 58 temperatureoffunctionaasforceElectromotive

60 Platinum –30% rhodium/platinum –6% rhodium (continued)Electromotive force as a function of temperature BType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC9003 9573 9653 9743 9823 9913 9994 0084 0164 0244 0339009104 0414 0504 0584 0674 0754 0844 0934 1014 1104 1189109204 1274 1354 1444 1524 1614 1704 1784 1874 1954 2049209304 2134 2214 2304 2394 2474 2564 2654 2734 2824 2919309404 2994 3084 3174 3264 3344 3434 3524 3604 3694 3789409504 3874 3964 4044 4134 4224 4314 4404 4484 4574 4669509604 4754 4844 4934 5014 5104 5194 5284 5374 5464 5559609704 5644 5734 5824 5914 5994 6084 6174 6264 6354 6449709804 6534 6624 6714 6804 6894 6984 7074 7164 7254 7349809904 7434 7534 7624 7714 7804 7894 7984 8074 8164 8259901 0004 8344 8434 8534 8624 8714 8804 8894 8984 9084 9171 0001 0104 9264 9354 9444 9544 9634 9724 9814 9905 0005 0091 0101 0205 0185 0275 0375 0465 0555 0655 0745 0835 0925 1021 0201 0305 1115 1205 1305 1395 1485 1585 1675 1765 1865 1951 0301 0405 2055 2145 2235 2335 2425 2525 2615 2705 2805 2891 0401 0505 2995 3085 3185 3275 3375 3465 3565 3655 3755 3841 0501 0605 3945 4035 4135 4225 4325 4415 4515 4805 4705 4801 0601 0705 4895 4995 5085 5185 5285 5375 5475 5565 5665 5781 0701 0805 5855 5955 6055 6145 6245 6345 6435 6535 6635 6721 0801 0905 6825 6925 7025 7115 7215 7315 7405 7505 7605 7701 0901 1005 7805 7895 7995 8095 8195 8285 8385 8485 8585 8681 1001 1105 8785 8875 8975 9075 9175 9275 9375 9475 9565 9681 1101 1205 9765 9865 9966 0066 0166 0266 0366 0466 0556 0651 1201 1306 0756 0856 0956 1056 1156 1256 1356 1456 1556 1651 1301 1406 1756 1856 1956 2056 2156 2256 2356 2456 2566 2661 1401 1506 2766 2866 2966 3066 3166 3266 3366 3466 3566 3671 1501 1606 3776 3876 3976 4076 4176 4276 4386 4486 4586 4681 1601 1706 4786 4886 4996 5096 5196 5296 5396 5506 5606 5701 1701 1806 5806 5916 6016 6116 6216 6326 6426 6526 6636 6731 1801 1906 6836 6936 7046 7146 7246 7356 7456 7556 7666 7761 190 6. THERMOCOUPLES MV TABLES (continued)rhodiumrhodium/platinum–6%Platinum–30%B:Type 59 temperatureoffunctionaasforceElectromotive

61 Platinum –30% rhodium/platinum –6% rhodium (continued)Electromotive force as a function of temperature BType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC1 2006 7866 7976 8076 8186 8286 8386 8496 8596 8696 8801 2001 2106 8906 9016 9116 9226 9326 9426 9536 9636 9746 9841 2101 2206 9957 0057 0167 0267 0377 0477 0587 0687 0797 0891 2201 2307 1007 1107 1217 1317 1427 1527 1637 1737 1847 1941 2301 2407 2057 2167 2267 2377 2477 2587 2697 2797 2907 3001 2401 2507 3117 3227 3327 3437 3537 3647 3757 3857 3967 4071 2501 2607 4177 4287 4397 4497 4607 4717 4827 4927 5037 5141 2601 2707 5247 5357 5467 5577 5677 5787 5897 6007 6107 6211 2701 2807 6327 6437 6537 6647 6757 6867 6977 7077 7187 7291 2801 2907 7407 7517 7617 7727 7837 7947 8057 8167 8277 8371 2901 3007 8487 8597 8707 8817 8927 9037 9147 9247 9357 9461 3001 3107 9577 9687 9797 9908 0018 0128 0238 0348 0458 0561 3101 3208 0668 0778 0868 0998 1108 1218 1328 1438 1548 1651 3201 3308 1768 1878 1988 2098 2208 2318 2428 2538 2648 2751 3301 3408 2868 2988 3098 3208 3318 3428 3538 3648 3758 3861 3401 3508 3978 4088 4198 4308 4418 4538 4648 4758 4868 4971 3501 3608 5088 5198 5308 5428 5538 5648 5758 5868 5978 6081 3601 3708 6208 6318 8426 6538 6648 6758 6878 6988 7098 7201 3701 3808 7318 7438 7548 7658 7768 7878 7998 8108 8218 8321 3801 3908 8448 8558 8668 8778 8898 9008 9118 9228 9348 9451 3901 4008 9568 9678 9798 9909 0019 0139 0249 0359 0479 0581 4001 4109 0699 0809 0929 1039 1149 1269 1379 1489 1609 1711 4101 4209 1829 1949 2059 2169 2289 2399 2519 2629 2739 2851 4201 4309 2969 3079 3199 3309 3429 3539 3649 3769 3879 3981 4301 4409 4109 4219 4339 4449 4569 4679 4789 4909 5019 5131 4401 4509 5249 5369 5479 5589 5709 5819 5939 6049 6169 6271 4501 4609 6399 6509 6629 6739 6849 6969 7079 7199 7309 7421 4601 4709 7539 7659 7769 7889 7999 8119 8229 8349 9459 8571 4701 480 9 8689 8809 8919 9039 9149 9269 9379 9499 9619 97214801 4909 9849 99510 00710 01810 03010 04110 05310 06410 07610 0881 490 6. THERMOCOUPLES MV TABLES (continued)rhodiumrhodium/platinum–6%Platinum–30%B:Type 60 temperatureoffunctionaasforceElectromotive

62 Platinum –30% rhodium/platinum –6% rhodium (continued)Electromotive force as a function of temperature BType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC1 50010 09910 11110 12210 13410 14510 16710 16810 18010 19210 2031 5001 51010 21510 22610 23610 24910 26110 27310 28410 29610 30710 3191 5101 52010 33110 34210 35410 36510 37710 38910 40010 41210 42310 4351 5201 53010 44710 45810 47010 48210 49310 50510 51610 52810 54010 5511 5301 54010 56310 57510 58610 59810 60910 62110 63310 64410 65810 6681 5401 55010 67910 69110 70310 71410 72610 73810 74910 76110 77310 7841 5501 56010 79610 80810 81910 83110 84310 85410 86610 87710 88910 9011 5601 57010 91310 92410 93610 94810 95910 97110 98310 99411 00611 0181 5701 58011 02911 04111 05311 06411 07611 08811 09911 11111 12311 1341 5801 59011 14611 15811 16911 18111 19311 20511 21611 22811 24011 2511 5901 60011 26311 27511 28611 29811 31011 32111 33311 34511 35711 3681 6001 61011 38011 39211 40311 41511 42711 43811 45011 46211 47411 4851 6101 62011 49711 50911 52011 53211 54411 55611 56711 57911 59111 6021 6201 63011 61411 62611 63711 64911 66111 67311 68411 69611 70811 7191 6301 64011 73111 74311 75411 76611 77811 79011 80111 81311 82511 8361 6401 65011 84811 86011 87111 88311 89511 90711 91811 93011 94211 9531 6501 66011 96511 97711 98812 00012 01212 02412 03512 04712 05912 0701 6601 67012 08212 09412 10512 11712 12912 14112 15212 16412 17612 1871 6701 68012 19912 21112 22212 23412 24612 25712 26912 28112 29212 3041 6801 69012 31612 32712 33912 35112 36312 37412 38612 39812 40912 4211 6901 70012 43312 44412 45612 46812 47912 49112 50312 51412 52612 5381 7001 71012 54912 56112 57212 58412 59612 60712 61912 63112 64212 6541 7101 72012 66612 67712 68912 70112 71212 72412 73612 74712 75912 7701 7201 73012 78212 79412 80512 81712 82912 84012 85212 88312 87512 8871 7301 74012 89812 91012 92112 93312 94512 95612 96812 98012 99113 0031 7401 75013 01413 02613 03713 04913 06113 07213 08413 09513 10713 1191 7501 76013 13013 14213 15313 16513 17613 18813 20013 21113 22313 2341 7601 77013 24613 25713 26913 28013 29213 30413 31513 32713 33813 3501 7701 78013 36113 37313 38413 39613 40713 41913 43013 44213 45313 4851 7801 79013 47613 48813 49913 51113 52213 53413 54513 55713 56813 5801 790 6. THERMOCOUPLES MV TABLES (continued)rhodiumrhodium/platinum–6%Platinum–30%B:Type 61 temperatureoffunctionaasforceElectromotive

63 Platinum –30% rhodium/platinum –6% rhodium (concluded)Electromotive force as a function of temperature BType E/µV T90/ºC 0-1-2-3-4-5-6-7-8-9T90/ºC1 80013 59113 60313 61413 62613 63713 64913 66013 67213 68313 6941 8001 81013 70613 71713 72913 74013 75213 76313 77513 78613 79713 8091 8101 82013 820 1 820 6. THERMOCOUPLES MV TABLES (concluded)rhodiumrhodium/platinum–6%Platinum–30%B:Type 62 temperatureoffunctionaasforceElectromotive

7. RESISTANCE TEMPERATURE DETECTORS ElementResistance R1 R2 Vb R3RT S Bridge Output SupplyPower ElementResistance R1 R2 Vb R3RT S Bridge Output Lead Resistance SupplyPower ElementResistance R1 R2 Vb R3RT S Bridge Output Lead Resistance SupplyPower AND TABLE 63 A Resistance Temperature Detector (RTD) operates under the principle that the electrical resistance of certain metals increa ses or decreases in a repeatable and predictable manner with a temperature change. RTD’s may have a lower temperature range than some thermo couples and a slower response time, however, they are more sta ble and repeatable over long periods of time. RTD’s higher signal outputs make them easier to interface with computers & data loggers. They reduce the effects of radio frequency interference. RTD’s are used in: the plastic processing industry, environmen tal test chambers, motor windings, pumps and bearings, ovens, kilns, waste treatment and the pulp & paper industry. RTD’s are available in the same configurations of thermocouples to suit the most applications. Basic RTD’s constructions • Flat film constructions, ceramic insulation • Sealed bifilar winding, ceramic insulation • Sealed bifilar winding, glass insulation Standard wiring systems RESISTANCE TEMPERATURE DETECTOR 2-wiring system 3-wiring system 4-wiring system

A basic construction for RTD’s

RTD BODY Resistance Thermometer Connection Leads InsulatorSheathConnectiontoleads

• Tube type construction • Mineral insulated type Tube type construction The most basic RTD construction is the tube type construction. The wires can be made of several materials (depending on the temperature range) such as copper, silver or nickel clad copper wire. The insulation material of the wires can be PVC, Silicon or PTFE insulators for temperature up to 250 °C. Above this temperature the isolation material will be ceramic. The total construction is not bendable and is normally not used in applications with a lot of vibrations.

There are many RTD types available on today’s market. Each has its own particular advantages and disadvantages. In many cases, RTD’s and their accessories are designed for a specific temperature measurement problem. In other cases, RTD’s are manufactured with a wide variety of possible applications. It is not the intention to compare one RTD type with another, or to compare the RTD of one manufacturer with another. RTD’s must be selected to meet the needs of a particular installation. Two examples as a guide in the selection process:

7. RESISTANCE TEMPERATURE DETECTORSANDTABLE 64

CONSTRUCTION (PT100)

7. RESISTANCE TEMPERATURE DETECTORS Accuracy according IEC 60751n, can be 1/3,1/5,1/6 and 1/10 at 0 °C Temperature Class A, ±°C Class B, ±°C -200 °C 0,55 °C 1,3 °C 0 °C 0,15 °C 0,3 °C +100 °C 0,35 °C 0,8 °C +200 °C 0,55 °C 1,3 °C +300 °C 0,75 °C 1,8 °C +500 °C 1,15 °C 2,8 °C +700 °C -3,8 °C AND TABLE 65 The most common used RTD construction is mineral insulated. The mineral insulated type is bendable and can be used in ap plications with high vibration conditions. The construction: • 4 conductors from several materials • Isolated with magnesium powder (MgO) • SS outer sheath • Available diameters: from 1.5 mm, with a measuring system of 4 wire, up to 6.4 mm Commercial platinum grades are produced which exhibit a change of resistance of 0.385 ohms/°C (European Fundamen tal Interval). The sensor is usually made to have a resistance of 100 ohms at 0 °C, this is defined in BS EN 60751:1996. The American Fundamental Interval is 0.392 ohms/°C. Upon request, RTD’s such as: Pt 400, Pt500 and Pt1000. For other international Pt100 standards, please contact our office. ANSI : alpha 0.00379 instead of 0.00385 IEC JIS : alpha 0.003916 instead of 0.00385 IEC MINERAL INSULATED TYPE 123 -100 0 100 200 300 400 500 600--200 0 Tolerance ± ˚C Class “1/10BDIN” Best tolerance, B Class “1/10ADIN” Best tolerance, A “1/10 DIN” Theoretical unattainablebut

7. RESISTANCE TEMPERATURE DETECTORSANDTABLE 66 °C Ω °C Ω °C Ω °C Ω -200 18.52 20 107.79 240 190.47 460 267.56 -195 20.68 25 109.73 245 192.29 465 269.56 -190 22.83 30 111.67 250 194.10 470 270.93 -185 24.97 35 113.61 255 195.91 475 272.61 -180 27.10 40 115.54 260 197.71 480 274.29 -175 29.22 45 117.47 265 199.51 485 275.97 -170 31.33 50 119.40 270 201.31 490 277.64 -165 33.44 55 121.32 275 203.11 495 279.31 -160 35.54 60 123.24 280 204.90 500 280.98 -155 37.64 65 125.16 285 206.70 505 282.64 -150 39.72 70 127.08 290 208.48 510 284.30 -145 41.80 75 128.99 295 210.27 515 298.96 -140 43.88 80 130.90 300 212.05 520 287.62 -135 45.94 85 132.80 305 213.83 525 289.27 -130 48.00 90 134.71 310 215.61 530 290.92 -125 50.06 95 136.61 315 217.38 535 292.56 -120 52.11 100 138.51 320 219.15 540 294.21 -115 54.15 105 140.40 325 220.92 545 295.85 -110 56.19 110 142.29 330 222.69 550 297.49 -105 58.23 115 144.18 335 224.45 555 299.12 -100 60.26 120 156.07 340 226.21 560 300.75 -95 62.28 125 147.95 345 227.96 565 302.38 -90 64.30 130 149.83 350 229.72 570 304.01 -85 66.31 135 151.71 355 231.47 575 305.63 -80 68.33 140 153.58 360 233.21 580 307.25 -75 70.33 145 155.46 365 234.96 585 308.87 -70 72.33 150 157.33 370 236.70 590 310.49 -65 74.33 155 159.19 375 238.44 595 312.10 -60 76.33 160 161.05 380 240.18 600 313.71 -55 78.32 165 162.91 385 241.91 605 315.31 -50 80.31 170 164.77 390 243.64 610 316.92 -45 82.29 175 166.63 395 245.37 615 318.52 -40 84.27 180 168.48 400 247.09 620 320.12 -35 86.25 185 170.33 405 248.81 625 321.71 -30 88.22 190 172.17 410 250.53 630 323.30 -25 90.19 195 174.02 415 252.25 635 324.89 -20 92.16 200 175.86 420 253.96 640 326.48 -15 94.12 205 177.69 425 255.97 645 328.06 -10 96.09 210 179.53 430 257.38 650 329.64 -5 98.04 215 181.36 435 259.08 655 331.22 0 100.00 220 183.19 440 260.78 660 332.79 5 101.95 225 185.01 445 262.48 10 103.90 230 186.84 450 264.18 15 105.85 235 188.66 455 265.87

8. A FEW CONSTRUCTIONS OF TEMPERATURE SENSORS 67 MULTI POINT

MULTI

TEMPERATURE SENSORS 8. A FEW CONSTRUCTIONS OF 68

Type ‘A’ Type ‘A’ Mi-cable (MgO) thermocouples are free hanging for use in non pressurized applications. Type ‘B’ Type ’B’ Mi-cable (MgO) thermocouples can be retracted for transport and mounting purposes. Individually replaceable without disassembling the complete unit. Type ‘C’ Type ‘C’ Mi-cable (MgO) thermocouples are spring loaded to con nect with the inner wall of the thermowell. This construction allows replacement of the thermocouple during operation. Type ‘D’ Each Type ‘D’ Mi-cable (MgO) or beaded type thermo- couple is enclosed in a guide tube which terminates at a special block, welded to the thermowell at the point to be measured. Each thermocouple can be replaced during operation. POINT

TEMPERATURE SENSORS 8. A FEW CONSTRUCTIONS OF 69 TUBE SKIN

TEMPERATURE SENSORS 8. A FEW CONSTRUCTIONS OF 70 INDUSTRIAL TEMPERATURE SENSOR

TEMPERATURE SENSORS 8. A FEW CONSTRUCTIONS OF 71 5 6 8 12 3 4 9107 * *** SEE DETAIL DETAIL T/C 1T/C 2T/C 3T/C 4T/C 5 BS-509353 A 1 7654321 8 GROUNDED WELDED 3/8"-24UNF-LH-2A HEX19 TAG No - X-RAY No R=0,8 NICRO BRAZED - CUSTOMER ORDER N. GROUND TO ENGRAVE T.E. SERIAL No +0 -0,0+0,5 L2160 Ø9,53ÿ3,0 L1 70 Ø2459ºRa0.19,14Ø5,56 25 Ø8,2 HIGH MINIATURESEMI-CONDUCTORPRESSUREMINERAL INSULATED CABLE

F.A.Q.’S

A. It depends on the instrumentation. If there is any chance that there may be a reference to ground (common in controllers with non-isolated inputs), then an ungrounded probe is required. If the instru ment is a handheld indicator, then a grounded probe can almost always be used.

3. Q. Can I split my one thermocouple signal to two separate instruments?

2. Q. Should I use a grounded or ungrounded probe?

A. No. The T/C signal is a very low-level millivolt signal, and should only be connected to one device. Splitting into two devices may result in bad readings or loss of signal. The solution is to use a dual T/C or convert one T/C (output a 4-20mA signal) by using a transmitter or signal conditioner which can send the new signal to more than one instrument.

A. For a specific instrument, check its specifications to see if there are any limits to the input impedance. However as a rule of thumb, limit the resistance to 100 Ohms maximum, depending on the con ductor diameter of the wire: the larger the diameter, the less resistance/metre, the longer the run can be. If the environment is electrically noisy, then a transmitter may be required which transmit a 4-20 mA signal that can be run a longer distance and is more resistant to noise.

A. They are summarized in the tables of the International Standards (page 18). It is important to know that both accuracy and ranges depend on a.o.: the thermocouple alloys, the temperature being measured, the construction of the sensor, the material of the sheath, the media being measured, the state of the media (liquid, solid or gas) and the diameter of either the thermocouple wire (if it is exposed) or the sheath diameter (if the thermocouple wire is not exposed but sheathed).

5. Q. How can I choose between thermocouples, resistance temperature detectors (RTD’s) and thermistors?

A. You have to consider the characteristics and costs of the various sensors as well as the available instrumentation. Thermocouples generally can measure temperatures over wide temperature ran ges, are inexpensively and very rugged. They are not accurate or stable as RTD’s and thermistors. RTD’s are stable and have a fairly wide temperature range but are not as rugged and inexpensively as thermocouples. Since they require the use of an electric current to make measurements, RTD’s are subject to inaccuracies from self-heating. Thermistors tend to be more accurate than RTD’s or thermocouples, but they have a much more limited temperature range.

1. Q. How many metres of T/C wire can I run?

4. Q. What are the accuracies and the temperature ranges of the various thermocouples?

9. F.A.Q.’S 72

9. F.A.Q.’S 73 6. Q. What is the drift of a thermocouple type K? A. T/C type K can be drifted in several temperature ranges: from 450 °C to 550 °C or in a measuring area of 800°C. When you work in a process like ethylene furnaces and your process temperature is fluctuated between 850 °C and 200 °C and back to 850 °C with an interval of approx. 6 to 8 weeks, your chosen construction is an industrial thermocouple with a metal sheath into a protection tube of SS or ceramic. The drift of a thermocouple in this application can be approx. 30 °C within one year. 7. Q. What is the response time for thermocouples? A. Depending on the diameter of the thermocouple itself and the measuring junction (grounded or ungrounded). When you use mineral insulated thermocouples, the ASTM STP 470 A specifies the following: ‘Values listed are the average of several mineral insulated elements, checked in each category. They show the time required to indicate 63.2% of a temperature change. The tests were performed during a step change from room temperature to boiling water.’ F.A.Q.’S Diameter Hot Junction Time in sec. 1,0 mm ungrounded 0,3 1,0 mm grounded 0,1 3,0 mm ungrounded 1,3 3,0 mm grounded 0,7 4,8 mm ungrounded 2,2 4,8 mm grounded 1,1 6,0 mm ungrounded 4,5 6,0 mm grounded 2,0

10. PIPE & TUBE END SIZE CHART PIPE SCHEDULES 75 74 PIPE THREAD SIZE NPT TUBING O.D. SIZE 1/16”1/8”1/4”3/8”1/2”3/4”1” NPTNPTNPTNPTNPTNPTNPT 1”7/8”3/4”5/8”1/2”3/8”5/16”1/4”3/16”1/8”1/16”

Asme b 36,10 pipe schedules Wall = walthickness in mm Wt = weights in kg/p/mtr PipeNominalsize O.D. Standard strongExtra strongextraDouble Schedule Schedule Schedule STD XS XXS 10 20 30 Inches mm Wall Wt Wall Wt Wall WT Wall WT Wall WT Wall WT 1/8” 10,3 1,7 0,357 2,4 0,470 1/4” 13,7 2,2 0,625 3,0 0,804 3/8” 17,1 2,3 0,848 3,2 1,10 1/2” 21,3 2,8 1,26 3,7 1,62 7,5 2,54 3/4” 26,7 2,9 1,68 3,9 2,19 7,8 3,63 1” 33,4 3,4 2,50 4,5 3,23 9,1 5,45 1.1/4” 42,2 3,6 3,38 4,9 4,46 9,7 7,75 1.1/2” 48,3 3,7 4,05 5,1 5,40 10,2 9,54 2” 60,3 3,9 5,43 5,5 7,47 11,1 13,4 2.1/2” 73 5,2 8,62 7,0 11,4 14 20,4 3” 88,9 5,5 11,3 7,6 15,3 15,2 27,7 3.1/2” 101,6 5,7 13,6 8,1 18,6 16,2 34 4” 114,3 6 16,1 8,6 22,3 17,1 41,1 5” 141,3 6,6 21,8 9,5 30,9 19 57,4 6” 168,3 7,1 28,2 11,0 42,5 21,9 79,1 8” 219,1 8,2 42,5 12,7 64,6 22,2 108 6,4 33,3 7 36,7 10” 273 9,3 60,2 12,7 81,5 25,4 155 6,4 41,7 7,8 50,9 12” 323,9 9,5 73,8 12,7 97,4 25,4 187 6,4 49,7 8,4 65,1 14” 355,6 9,5 81,2 12,7 107 6,4 54,6 7,9 68,1 9,5 81,2 16” 406,4 9,5 93,1 12,7 123 6,4 62,6 7,9 77,9 9,5 93,1 18” 457,2 9,5 105 12,7 139 6,4 70,5 7,9 87,8 11,1 122 20” 508 9,5 117 12,7 155 6,4 78,5 9,5 117 12,7 155 22” 558,8 9,5 129 12,7 171 6,4 86,4 9,5 129 12,7 171 24” 609,6 9,5 141 12,7 187 6,4 94,7 9,5 141 14,3 210 26” 660,4 9,5 153 12,7 203 7,9 128 12,7 203 28” 711,2 9,5 165 12,7 219 7,9 138 12,7 219 15,9 272 30” 762 9,5 176 12,7 234 7,9 147 12,7 234 15,9 292 32” 812,8 9,5 188 12,7 250 7,9 157 12,7 250 15,9 312 34” 863,6 9,5 200 12,7 266 7,9 167 12,7 266 15,9 332 36” 914,4 9,5 212 12,7 282 7,9 177 12,7 282 15,9 351 10. PIPE & TUBE END SIZE CHART PIPE SCHEDULES 75

10. PIPE & TUBE END SIZE CHART PIPE SCHEDULES 76 PipeNominalsize O.D. Schedule Schedule Schedule Schedule Schedule Schedule 40 60 80 100 120 140 160 Inches mm Wall Wt Wall Wt Wall Wt Wall Wt Wall Wt Wall Wt Wall Wt 1/8” 10,3 1,7 0,357 2,4 0,470 1/4” 13,7 2,2 0,625 3,0 0,804 3/8” 17,1 2,3 0,848 3,2 1,10 1/2” 21,3 2,8 1,26 3,7 1,62 4,8 1,9 3/4” 26,7 2,9 1,68 3,9 2,19 5,6 2,89 1” 33,4 3,4 2,50 4,5 3,23 6,4 4,23 1.1/4” 42,2 3,6 3,38 4,9 4,46 6,4 5,6 1.1/2” 48,3 3,7 4,05 5,1 5,40 7,1 7,23 2” 60,3 3,9 5,43 5,5 7,47 8,7 11,1 2.1/2” 73 5,2 8,62 7,0 11,4 9,5 14,9 3” 88,9 5,5 11,3 7,6 15,3 11,1 21,3 3.1/2” 101,6 5,7 13,6 8,1 18,6 4” 114,3 6 16,1 8,6 22,3 11,1 28,3 13,5 33,5 5” 141,3 6,6 21,8 9,5 30,9 12,7 40,2 15,9 49,0 6” 168,3 7,1 28,2 11,0 42,5 14,3 54,2 18,3 67,5 8” 219,1 8,2 42,5 10,3 53,1 12,7 64,6 15,1 75,8 18,3 90,7 20,6 101 23,0 112 10” 273 9,3 60,2 12,7 81,5 15,1 95,8 18,3 115 21,4 133 25,4 156 28,6 172 12” 323,9 10,3 79,7 14,3 109 17,4 132 21,4 160 25,4 187 28,6 208 33,3 239 14” 355,6 11,1 94,3 15,1 126 19,0 158 23,8 195 27,8 224 31,8 253 35,7 281 16” 406,4 12,7 123 16,7 160 21,4 203 26,2 245 30,9 286 36,5 333 40,5 365 18” 457,2 14,3 156 19 206 23,8 254 29,4 310 34,9 363 39,7 408 45,2 459 20” 508 15,1 183 20,6 248 26,2 311 32,5 381 38,1 441 44,4 508 50,0 564 22” 558,8 22,2 294 28,6 373 34,9 451 41,3 526 47,6 600 54,0 671 24” 609,6 17,4 255 24,6 355 30,9 441 38,9 547 46,0 639 52,4 719 59,5 807 26” 660,4 28” 711,2 30” 762 32” 812,8 34” 863,6 36” 914,4 Asme b 36,10 pipe schedules Wall = walthickness in mm Wt = weights in kg/p/mtr

A wide variety of steels and nickel-based alloys are used to make thermowells. There are no other materials which will stand up to all of the many service conditions which can be found across the industry. It is important that the proper metal is used in the fabrication of a thermowell. Obviously an improper choice will lead to premature failure, while over-specifying leads to higher costs than necessary to do a given job. The primary metals used in the fabrication of thermowells are: carbon steel, chrome molybdenum steels, stainless steels (304, 310, 316, 321, 347, 304L, 316L, 446), nickel-based alloys (Inconels, Incoloys, TheHastelloys).mainresponsibility

of thermowells is to protect the temperature sensor from corrosion or oxidation conditions found in the process, as well as mechanical stresses. Each of the previously mentioned materi als provides different degrees of protection under various service conditions. The following pages lists the type of materials with some recommendations for their use. As a general guide, a high chromium content is desirable for high temperature resistance to oxidation and sulfur attack. The presence of aluminum (1-2%) is also useful as a very resistant surface: ‘ilm of mixed chromium oxide/ aluminum oxide is formed.

11. METALLIC & NON METALLIC THERMOWELL MATERIALS 77

INTRODUCTION

Ferritic : Refers to the crystal structure of the 400 series stainless steel.

Carbide precipitation : The process where chromium carbides form and precipitate out in the steel. Carbon atoms combine with chromium atoms lead to local depletion of chromium, thereby reducing the available chromium to form a protective chromium oxide film. This allows localized inter granular attack from salts and acids. Carbide precipitation occurs when a 300 series stainless steel is held in the 800 ºF range.

Creep : At high temperatures the mechanical strength of metals falls off. Over time and at high temperatures metals will slowly stretch under an applied load and will fail at stress much smaller than would normally be expected.

Carburizing atmospheres : Contain carbonaceous vapours (e.g. hydrocarbons). The present carbon can react with the alloys at high temperatures to produce metal carbides. This can result in embrittlement. Generally, high nickel content in an alloy is helpful in resisting carburizing although it will not completely prevent it.

GLOSSARY OF TERMS THERMOWELL MATERIALS

Oxidizing atmospheres : Contain oxygen and will react with metals at elevated temperatures to pro duce oxides on the surface. The good high temperature performance of the heat-resisting alloys depends on the formation of a stable protective oxide film on the surface. The elements chromium and aluminium, when present in an alloy, form excellent protective films of chromium oxide and aluminium oxide.

Carbide stabilized : In order to reduce the chance of carbon precipitation, certain 300 series stainless steel are stabilized with small amounts of titanium, tantalum of columbium which preferentially combine with the carbon leaving the chro mium alone. This result is also accomplished by the ‘low carbon’ stainless steels, which have less carbon to combine with the chromium.

Austenitic : Refers to the crystal structure of the 300 series stainless steel.

Inert atmospheres : Consist of inert gas such as argon. There is no problem with alloys in such an atmosphere. A variation of an inert atmosphere is no atmosphere at all – i.e. a vacuum. This is used increasingly for heat-treatment purposes.

11. METALLIC & NON METALLIC 78

Sulphidizing atmospheres : Contain sulphur compounds, which often arise when coal or fuel oil is burned. The sulphur may be present as sulphur dioxide, which is the case under oxidizing conditions, or as hydrogen sulphide (H2S) under redu cing conditions. The latter is worse as the atmosphere does not help the formation of protective oxide films. Alloys containing nickel (as almost all the commonly used high temperature alloys do) are subject to attack by sulphur because sulphur forms a low melting point compound with the nickel in the alloy. Alloys high in chromium (over about 18%) containing aluminium form an oxide film which offers resistance to sulphur under oxidizing conditions. To resist sulphur under reducing conditions, the best protection is an aluminized film.

Weld decay : Localized corrosion on each side of a weld caused by carbide precipita tion.

Passivating

Stress-corrosion cracking : When a metal is subjected to both stress and corrosion at the same time, there is the possibility it may crack. Often stress-corrosion cracking oc curs in the presence of chlorides.

:

Stress relief : A heat treating process, used to reduce internal stresses in a part to avoid stress corrosion cracking from occurring.

Involves immersing 300 series stainless steel in 10% nitric acid for 10-30 minutes. The acid removes any particles of iron which may have become embedded in the surface during processing but doesn’t attack the stainless steel. Actually, being a strong oxidizing acid, the chromium oxide film is improved thereby increasing the steels ability to withstand corrosion.

Reducing atmospheres : Contain hydrogen of carbon compounds and will not form protective oxi des on an alloy. If hydrogen is present, this may diffuse into thermowells and thermocouples. It produces ‘green rot’ attack, so called from the dark green surface colour produced, although this may not be very obvious. In the case of chromel-alumel thermocouples the ‘green rot attack cau ses the chromed wire to become magnetic, which results in an erroneous lower output. This effect is easy to confirm with a magnet; if both wires are magnetic ‘green rot’ has occurred. (Actually this is not strictly a ‘redu cing’ phenomenon. It occurs only when a very small amount of oxygen is present in an essentially reducing atmosphere. Under these conditions, preferential oxidation of the chromium in the alloy will occur.)

11. METALLIC & NON METALLIC 79 THERMOWELL MATERIALS

SS 310 : Has higher chromium and nickel (nominally 25% chromium and 20% nickel) improved high temperature characteristics. The SS 310 is subject to carbide precipitation in the 800 °F to 1,600 °F range. Maximum continuous service temperature in air is 2,100 °F. The SS 310 is used where good high temperature strength is needed or in carburizing/ reducing atmospheres.

304L and 316L : Low carbon versions of SS 304 and SS 316. These alloys solve the problem of carbide precipitations since they have a very low carbon content (0.03% maximum instead of 0.08% maximum).

11. METALLIC & NON METALLIC 80 STAINLESS STEELS

SPECIAL STEELS

This group of metals forms an invisible chromium oxide which serves to resist oxidation and corrosive attack by chemicals and acids. To be effective, they need to have a minimum of 14% chromium. The 300 series stainless steel are known as ’austenitic’ while the 400 series are known as ‘ferritic’. Austenitic stainless steels do not become brittle at low temperature as ferritic steels do.

STAINLESS

THERMOWELL

Carpenter 20-Cb3 : A stainless steel having 20% chromium, 34% nickel, 2,5% copper and columbium and tantalum equal to 8 times the carbon content for carbide stabilization. This alloy has excellent resistance to corrosive conditions, especially to sulfuric acid.

MATERIALS

SS 304 : Also known as ‘18-8’ (nominally 18% chromium, 8% nickel) is the most commonly speci fied austenitic stainless steel. SS 304 like other 300 series stainless steel is subject to ‘carbide precipitation’ in the area of 700-1,650 ºF. This means that chromium forms car bides when SS 304 is held in/of is cooled slowly through the above temperature range. The net effect is a localized depletion of chromium around the carbides, which can lead to inter-granular corrosion from acids of other corrosives. This condition is especially apparent where parts are welded (leading to ‘weld decay’). SS 304 has a maximum temperature rating for continuous service of 1,650 ºF in air. Care must be taken as the strength falls off considerably at elevated temperatures. SS 304 is widely used as a thermowell material for lower temperature applications across industry since it is not affected by most organic and inorganic chemicals.

SS 316 : Another very popular all purpose austenitic stainless steel. SS 316 has nominally 18% chromium and 12% nickel, but is modified with 2-3% molybdenum which improves its resistance to chlorides. SS 316 is subject to carbide precipitation in the 800-1,600 °F range. Maximum continuous service temperature in air is 1,650 °F. Because of its increased corrosive resistance, SS 316 is used where improved corrosion resistance is required, especially in chlorides.

THERMOWELL MATERIALS

11. METALLIC & NON METALLIC 81

Hastelloy X : 47% nickel, 9% molybdenum, 22% chromium, 0.5% tungsten. Good high temperature strength and resistance to oxidation to 2,200 °F. Also good for reducing conditions.

A. Incoloys, Inconels, Monel

Monel 400 : 66% high nickel, 31% high copper. Monel provides a good resistance to corrosion in salt water. Not subject to chloride stress cracking. Monel is used for heat exchangers and for sulphuric acid applications.

These nickel-based alloys are used for their excellent corrosion resistance under many severe conditions due to their high molybdenum content.

Hastelloy C : 54% nickel, 16% molybdenum, 15.5% chromium, 4% tungsten. Excellent corrosion resistance to many chemical environments, including ferric acid and cupric chlorides, contaminated mineral acids, and wet chlorine gas. Oxidation resistant to 1,900 °F.

B. Hastelloys

Incoloy 800H : A special version of the above alloy with a small controlled amount of carbon for impro ved high temperature strength.

NICKEL BASED

ALLOYS

A very important group of alloys is the nickel-based Inconels and Incoloys. These alloys have an excellent resistance to a corrosive attack by many aggressive chemicals. They also have an excellent resistance to oxidation at high temperatures and good high temperature strength. They typically contain 15-23% chro mium to provide a protective oxide film. The Inconels contain 40-73% nickel, while the Incoloys contain 32-42% and 30-36% iron. Some grades contain a small amount of titanium or tantalum for improved high temperature strength and aluminium to improve the protective characteristics of the oxide film at elevated temperatures (a mixed chromium oxide/aluminium film).

Inconel 601 : High nickel 60.5%, high chromium 23.0%, plus 1.5% aluminium. Good high tempe rature properties. I601 provides an outstanding resistance to oxidation and a good resistance to carburizing and sulphur containing atmospheres.

Hastelloy B : 61% nickel, 28% molybdenum. Excellent corrosion resistance to hydrochloric acid and to sulphuric, phosphoric and acetic acids and hydrogen chloride gas.

Incoloy 800H : 32.5% nickel, 46.0% iron, 21% chromium. Resistance to oxidation and carburization at high temperatures. Resists sulphur attack and corrosion in many environments.

Inconel 600 : High nickel 76%, high chromium 15.5%, for resistance to oxidizing and reducing at mospheres. I600 is used for several corrosive environments at high temperature.

Incoloy 800 : 32.5% nickel, 46.0% iron, 21% chromium. Resistance to oxidation and carburization at high temperatures. Resists sulphur attack and corrosion in many environments.

Introduction There are many applications across the industry where the temperature to be measured, is too high for the standard stainless steel and nickel-based alloy thermowell materials. All of the more common stainless steels and nickel-based alloys melt at/or before 2,550 °F/1,400 °C and become weak or soft at/or before approx. 2,200 °F/1,200 °C. In these applications a different material must be utilized.

11. METALLIC & NON METALLIC THERMOWELL MATERIALS 82 PROTECTION TUBE MATERIALS

The solution is to use a non-metallic or ceramic type of protection tube material. There are a number of these type materials available for high temperature service, each with its own unique capabilities: fused quartz, cermet, silicon carbide, boron nitride, mullite and alumina.

There are two metals available which have a much higher melting point than the stainless steels or nickelbased alloys: tantalum 5,425 °F/2,996 °C and molybdenum 4,730 °F/2,610 °C. However, these metals have inherent problems that limit their use in high temperature service: they oxidize rapidly (tantalum above 530 °F/276 °C and molybdenum above 930 °F/499 °C), there fore they can’t be used for thermowell materials except in strictly non-oxidizing atmospheres; they are very expensive to be used as a thermowell or protection tube material.

While these materials exhibit varying degrees of high temperature capabilities there are disavantages to their use. Being almost completely made of ceramic, they are extremely brittle and can be broken quite easily by a mechanical shock. Also, most of these materials have a very poor resistance to ‘thermal shock’. If a flame is applied suddenly to one side, it expands. Since the other side is cooler, it doesn’t expand at the same rate. This leads to stresses which, if severe enough, will crack the protection tube. The lower co-efficient of thermal expansion’ these materials have, the more resistance they exhibit to this thermal shock cracking. The following is a discussion of each of the above referenced materials with some examples of their typical uses in industry.

Fused quartz Pure silica, fused quartz, has a very low co-efficient of thermal expansion, giving it excellent resistance to thermal shock cracking. It is also a vey chemically inert material and resists attacks by many corrosive chemicals and liquid metals. An unfortunate limitation of fused quartz is, that it is a super cooled ‘glass’. At about 2,000 °F (1,094 °C) it will devitrify so that it can’t be used for service above this temperature. Also, any surface contamination will accelerate devitrification at high temperatures. (Devitrification refers to the fact that fused quartz will re-crystallize and can’t be used above 2,000°F).

Because of fused quartz’ excellent thermal shock resistance, it is often used in the metal casting industry as a ‘disposable’ thermocouple protection tube. The fused quartz tube is inserted into the melt and the temperature (used for control of the pouring temperature) is read. Due to its excellent thermal shock resis tance, fuse quartz is able to withstand the sudden change from ambient to melt temperatures.

Two types of silicon carbide are available: carbofrax ‘A’: about 90% silicon carbide with the balance being mainly silica; ‘KT’ silicon carbide: about 96% silicon carbide.

Cermet Cermet is a mixture of 77% chromium oxide and 23% aluminum oxide. Made by the Union Carbide Company it is a dense, abrasion resistant material with a high thermal conductivity and a good resistance to wetting by many liquid metals. (Wetting is the degree at which a liquid metal will ‘adhere’ to a protection tube). It resists sulphur gases under oxidizing conditions up to at least 2,000 °F (1,094 °C). Also, non-ferrous alloys such as copper, brass, zinc and lead do not wet cermet. It is not recommended for use in carburizing or nitrogen atmospheres, since the chromium in the cermet will form carbides or nitrides. Cermet is somewhat sensitive to thermal shock and has a maximum service temperature in oxidizing con ditions of 2,500 °F (1,370 °C). Cermet finds use in copper and brass melting pots, and in abrasive atmospheres of elevated temperature where particles might damage a metal thermowell operating near its softening point.

Thermowells of carbofrax are considerably less expensive than ‘KT silicon carbide, but are not gas tight. Ho wever, they give excellent service at high temperatures up to 3,000 °F (1,649 °C). An inner alumina ‘sleeve’ is used to protect a platinum-rhodium thermocouple from contamination when it is the sensor of choice. ‘KT’ silicon carbide is used for special applications when high density gas tight thermowells are needed. Silicon carbide is often used in the steel industry, due to its good thermal shock resistance and elevated temperature capabilities. It is used as a protection tube, which is inserted into a ladle to read the melt temperature. Boron nitride Boron nitride is a synthetic material made by the Carborundum Company which can be used in oxidizing atmospheres up to about 2,000 °F (1,094 °C) or in reducing of inert atmospheres up to about 5,000 °F (2,760 °C). It has a very low co-efficient of thermal expansion and hense excellent resistance to thermal shock. It is not wetted by many liquid metals. A big advantage is that it is machinable with ordinary too ling and has lubricating characteristics somewhat similar to graphite. Recent applications where boron nitride has been used include as an intermittent thermowell with a ‘B’ calibration thermocouple to measure pouring temperatures of cupro nickels.

11. METALLIC & NON METALLIC THERMOWELL MATERIALS

83

Silicon carbide Silicon carbide is another very inert material which resists attacks from many aggressive environments, such as sulphur gases. Having a low co-efficient of thermal expansion, it has an excellent resistance to thermal shock and a good thermal conductivity. The material is made by the Carborundum Company.

84

Alumina and Mullite

11. METALLIC & NON METALLIC THERMOWELL MATERIALS

Alumina (aluminum oxide) and mullite (a compound of alumina and silica) have been used for many years as thermowells for chromel-alumel and platinum-rhodium thermocouples. They can be used for high tempe ratures: 3,450 °F (1,900 °C) for high purity alumina and 3,100 °F (1,700 °C) for mullite. One problem with these materials: they are subject to thermal shock. They can crack if subjected to sudden or non-uniform, localized heating or cooling. Mullite has a co-efficient of thermal expansion of about 2/3 of alumina and a consequently somewhat bet ter resistance to thermal shock. Both materials are gas tight. Alumina, other than mullite, should be used with platinum-rhodium thermocouples for any conditions rather than oxidizing. The reason: the silicon can be reduced from the mullite and will contaminate platinum-rhodium thermocouples, thereby throwing them out of calibration. Typical applications for alumina and mullite protection tubes include heat treatment furnaces operating at high temperatures, where little danger from thermal shock or from mechanical damage is involved. This type of protection tube is also widely used in the glass industry.

Tungsten ......... 6,000/3,315 .......................................................................................................................................................................................................Palladium..................................................5,000/2,7601,000/538500/260500/2602,000/1,0933,000/1,694........................°F/°CRhenim°F/°C°F/°C°F/°C°F/°C°F/°C°F/°COsiumIridiumRhodiumPlatinumVanadiumStainlessSteelsCastIronsAluminiumSilverSoldersCadmiumSilverSoldersGold(24Karat)18Karat12KaratGoldAlloys10KaratTantalum MercuryGalliumIndiumTinBismuthLeadZincMagnesiumBrassesSilverCopperUraniumManganeseBerylliumNickelCobaltIronZirconiumTitaniumChromium..................................................................................................................................................................................................................................................... ˚F/C Molybdenum ... Niobium (Columbium).......... 12. MELTING TEMPERATURES OF METALS 85

SS 316 18 % Chromium 12 % Nickel 2-3% Molybdenum 1,650 °F 899 °C 2,550-2,550 °F 1,399-1,399 °C

SS 321 SS 347 Similar to 304 but carbide stabilized 1,600 °F 871 °C 2,550-2,600 °F 1,399-1,426 °C Carbide stabilized grade intended to prevent harmful precipitation of chromium carbides and the resul ting susceptibility to inter granular corrosion. For corrosion conditions and intermittent heating and coo ling applications between 426 to 815 °C range.

The general purpose austenitic SS. Subject to carbide precipitation in the 480 to 870 °C range. Corrosion resistant in the annealed conditions. Not affected by steri lizing solutions, foodstuffs, most dyestuffs, organic chemicals and many inorganic chemicals.

12. MELTING TEMPERATURES OF METALS 86 Summary table metallic thermowell materials

SS 310 25 % Chromium 20 % Nickel 2,100 °F 1,148 °C 2,550-2,640 °F 1,399-1,449 °C

SS 304 18 % Chromium 81 % Nickel 1,652 °F 900 °C 2,550-2,640 °F 1,399-1,449 °C

Higher corrosion resistance than type 304. High creep strength. Withstands sulphurous acid compounds resists tendency to pit in phosphoric and acetic acids. Subject to carbide precipitation in the 426 to 815 °C range.

Designation

Nominal composition temp.Max. Meting range Application (con´t.serv.,notesair)

Very high elevated temperature strength and scale resistance. Superior to 304 in much high temperature applications. Good resistance to carburizing and reducing environments. Subject to carbide precipitation in the 480 to 870 °C range.

Designation

Tungsten 2,200 °F 1,204 °C 2,300-2,470 °F 1,260-1,354 °C Good high temperature strength and resistance to oxidations to 1,200 °C. Also good for reducing conditions.

Summary table metallic thermowell materials

Hastelloy X 47 % 9 % 22 % 0,5 % ChromiumMolybdenumNickel

ChromiumNickel 2,100 °F 1,148 °C 2,470-2,575 °F 1,354-1,412 °C Good in several corrosive environ ments and at elevated tempe ratures. High hot strength and resistance to progressive oxidation.

Incoloy 800 32,5 % 46 % 21 % Nickel Iron Chromium 2,000 °F 1,093 °C 2,475-2,525 °F 1,357-1,385 °C Good elevated temperature resis tance to oxidation and carburiza tion. Good sulphur and corrosion resistance.

Inconel 600 76 % 15,5 %

Hastelloy C 54 % 16 % 15,5 % 4 %

Nominal composition temp.Max. Meting range Application (con´t.serv.,notesair)

Hastelloy B 61 % 28 % MolybdenumNickel 2,200 °F 1,204 °C 2,300-2,470 °F 1,260-1,354 °C Excellent corrosion resistance to hydrochloric, sulphuric phospho ric, and acetic acids. Excellent corrosion. Resistance to hydrogen chloride gas.

12. MELTING TEMPERATURES OF METALS 87

ChromiumMolybdenumNickel

Tungsten 2,200 °F 1,204 °C 2,300-2,470 °F 1,260-1,354 °C Excellent corrosion resistance to many chemical environments, in cluding ferric and cupric chlorides, contaminated mineral acids, wet chlorine gas. Oxidation resistance to 982 °C.

According to DIN EN 1092-1 type PN10 (DIN 2576) OD flange dimensions in mm bolts weight grades NW d1 mm d5 mm mmD mmb mmk mme st draad mmd2 kg/st 4301/4307 4401/4404 nr thread kg/pc (304/304L) (316/316L) 10 17,2 17,7 90 14 60 5 4 M 12 14 0,605 x x 15 20 21 95 14 65 5 4 M 12 14 0,675 x x 15 21,3 22 95 14 65 5 4 M 12 14 0,669 x x 20 25 26 105 16 75 5 4 M 12 14 0,75 x x 20 26,9 27,6 105 16 75 5 4 M 12 14 0,94 x x 25 30 31 115 16 85 5 4 M 12 14 1,14 x x 25 33,7 34,4 115 16 85 5 4 M 12 14 1,11 x x 32 38 39 140 16 100 5 4 M 16 18 1,66 x x 32 42,4 43,1 140 16 100 5 4 M 16 18 1,62 x x 40 44,5 45,5 150 16 110 5 4 M 16 18 1,89 x x 40 48,3 49 150 16 110 5 4 M 16 18 1,86 x x 50 50,8 51,9 165 18 125 6 4 M 16 18 2,6 x x 50 54 55,1 165 18 125 6 4 M 16 18 2,57 x x 50 57 58,1 165 18 125 6 4 M 16 18 2,51 x x 50 60,3 61,1 165 18 125 6 4 M 16 18 2,47 x x 65 70 71,1 185 18 145 6 4 M 16 18 3,15 x x 65 76,1 77,1 185 18 145 6 4 M 16 18 3 x x 13. STANDARD FLANGE SIZES 88 SLIP-ON FLANGES

13. STANDARD FLANGE SIZES According to DIN EN 1092-1 type PN10 (DIN 2576) OD flange dimensions in mm bolts weight grades NW d1 mm d5 mm mmD mmb mmk mme st draad mmd2 kg/st 4301/4307 4401/4404 nr thread kg/pc (304/304L) (316/316L) 80 84 85,5 200 20 160 7 8 M 16 18 3,95 x x 80 88,9 90,3 200 20 160 7 8 M 16 18 3,79 x x 100 101,6 103,2 220 20 180 7 8 M 16 18 4,58 x x 100 104 105,6 220 20 180 7 8 M 16 18 4,38 x x 100 106 107,6 220 20 180 7 8 M 16 18 4,3 x x 100 108 109,6 220 20 180 7 8 M 16 18 4,2 x x 100 114,3 115,9 220 20 180 7 8 M 16 18 4,03 x x 125 129 130,8 250 22 210 7 8 M 16 18 5,92 x x 125 133 134,8 250 22 210 7 8 M 16 18 5,71 x x 125 139,7 141,6 250 22 210 7 8 M 16 18 5,46 x x 150 154 156,1 285 22 240 7 8 M 20 22 6,88 x x 150 156 158,1 285 22 240 7 8 M 20 22 6,8 x x 150 159 161,1 285 22 240 7 8 M 20 22 6,72 x x 150 168,3 170,5 285 22 240 7 8 M 20 22 6,57 x x 200 204 206,8 340 24 295 7 8 M 20 22 10,41 x x 200 206 208,7 340 24 295 7 8 M 20 22 9,91 x x 200 219,1 221,8 340 24 295 7 8 M 20 22 9,31 x x 200 219,1 221,8 340 24 295 7 12 M 20 22 9,31 x x 250 254 257,2 395 26 350 7 12 M 20 22 12,98 x x OD flange dimensions in mm bolts weight grades NW d1 mm d5 mm mmD mmb mmk mme st draad mmd2 kg/st 4301/4307 4401/4404 nr thread kg/pc (304/304L) (316/316L) 250 256 259,2 395 26 350 7 12 M 20 22 12,9 x x 250 273 276,2 395 26 350 7 12 M 20 22 11,9 x x 300 304 307,7 445 26 400 7 12 M 20 22 15,8 x x 300 306 309,7 445 26 400 7 12 M 20 22 15,3 x x 300 323,9 327,6 445 26 400 7 12 M 20 22 13,8 x x 350 355,6 359,7 505 28 460 7 16 M 20 22 20,6 x x 400 406,4 411 565 32 515 7 16 M 24 26 27,9 x x 450 457,2 462,3 615 38 565 7 20 M 24 26 35,6 x x 500 508 513,6 670 38 620 7 20 M 24 26 41,1 x x 600 609,6 615,7 780 44 725 7 20 M 27 30 56,3 x x 700 711 716,5 895 50 840 7 24 M 27 30 80,4 o o 800 813 820 1015 56 950 7 24 M 27 30 113,2 o o 900 914 921,5 1115 62 1050 7 28 M 33 36 138,3 o o 89

According to ASTM-A 182 SO/RF 150 LBS OD flange dimensions in mm bolts weight grades NW mmD mmb mmk mmh mmm J mm mmg nrst mml kg/pckg/st 304/L 316/L 1/2” 88,9 11,1 60,3 15,9 30,2 22,3 34,9 4 15,9 0,5 x x 3/4” 98,4 12,7 69,8 15,9 38,1 27,7 42,9 4 15,9 0,9 x x 1” 107,9 14,3 79,4 17,5 49,2 34,5 50,8 4 15,9 0,9 x x 1.1/4” 117,5 15,9 88,9 20,6 58,7 43,2 63,5 4 15,9 1,4 x x 1.1/2” 127 17,5 98,4 22,2 65,1 49,5 73 4 15,9 1,4 x x 2” 152,4 19,1 120,6 25,4 77,8 62 92,1 4 19 2,3 x x 2.1/2” 177,8 22,2 139,7 28,6 90,5 74,7 104,8 4 19 3,2 x x 3” 190,5 23,8 152,4 30,2 107,9 90,7 127 4 19 3,6 x x 4” 228,6 23,8 190,5 33,3 134,9 116,1 157,2 8 19 5,9 x x 5” 254 23,8 215,9 36,5 163,5 143,8 185,7 8 22,2 6,8 x x 6” 279,4 25,4 241,3 39,7 192,1 170,7 215,9 8 22,2 8,6 x x 8” 342,9 28,6 298,4 44,4 246,1 221,5 269,9 8 22,2 13,6 x x 10” 406,4 30,2 361,9 49,2 304,8 276,4 323,8 12 25,4 19,5 x x 12” 482,6 31,8 431,8 55,6 365,1 327,2 381 12 25,4 29 x x 14” 533,4 34,9 476,2 57,1 400 259,2 412,7 12 28,6 41 x x 16” 596,9 36,5 539,7 63,5 457,2 410,5 469,9 16 28,6 44,5 x x 18” 635 39,7 577,8 68,3 504,8 461,8 533,4 16 31,7 59 x x 20” 698,5 42,9 635 73 558,8 513,1 584,2 20 31,7 75 x x 24” 812,8 47,6 749,3 82,5 663,6 616 692,1 20 34,9 99,8 x x 13. STANDARD FLANGE SIZES 90

13. STANDARD FLANGE SIZES According to ASTM-A 182 SO/RF 300 LBS OD flange dimensions in mm bolts weight grades NW mmD mmb mmk mmh mmm J mm mmg nrst mml kg/pckg/st 304/L 316/L 1/2” 95,2 14,3 66,7 22,2 38,1 22,3 34,9 4 15,9 0,9 x x 3/4” 117,5 15,9 82,5 25,4 47,6 27,7 42,9 4 19 1,4 x x 1” 123,8 17,5 88,9 27 54 34,5 50,8 4 19 1,4 x x 1.1/4” 133,3 19 98,4 27 63,5 43,2 63,5 4 19 1,8 x x 1.1/2” 155,6 20,6 114,3 30,2 69,8 49,5 73 4 22,2 2,7 x x 2” 165,1 22,2 127 33,3 84,1 62 92,1 8 19 3,2 x x 2.1/2” 190,5 25,4 149,2 38,1 100 74,7 104,8 8 22,2 4,5 x x 3” 209,5 28,6 168,3 42,9 117,5 90,7 127 8 22,2 5,9 x x 4” 254 31,8 200 47,6 146 116,1 157,2 8 22,2 10 x x 5” 279,4 34,9 234,9 50,8 177,8 143,8 185,7 8 22,2 12,7 e e 6” 317,5 36,5 269,9 52,4 206,4 170,7 215,9 12 22,2 17,7 x x 8” 381 41,3 330,2 61,9 260,3 221,5 269,9 12 25,4 26,3 x x 10” 444,5 47,6 387,3 66,7 320,7 276,4 323,8 16 28,6 36,7 e e 12” 520,7 50,8 450,8 73 374,6 327,2 381 16 31,7 52,2 e e 14” 584,2 54 514,3 76,2 425,4 359,2 412,7 20 31,7 74,8 e e 16” 647,7 57,2 571,5 82,5 482,6 410,5 469,9 20 34,9 86,2 e e 18” 711,2 60,3 628,5 88,9 533,4 461,8 533,4 24 34,9 113 e e 20” 774,7 63,5 685,8 95,2 587,4 513,1 584,2 24 34,9 143 e e 24” 914,4 69,8 812,8 106,4 701,7 616 692,1 24 41,3 215 e e 91

According to DIN EN 1092-1 type 05 PN64 (DIN 2527) OD flange dimensions in mm bolts weight grades NW mmD mmb mmk max d9 st draad mmd2 kg/st 4301/4307 4401/4404 nr thread kg/pc (304/304L) (316/316L) 50 180 26 135 4 M20 22 4,5 o o 65 205 26 160 45 8 M20 22 5,7 o o 80 215 28 170 60 8 M20 22 6,9 o o 100 250 30 200 80 8 M24 26 10,1 o o 125 295 34 240 105 8 M27 30 16 o o 150 345 36 280 130 8 M30 33 23,5 o o (175) 375 40 310 155 12 M30 33 30,8 o o 200 415 42 345 180 12 M33 36 39,7 o o 250 470 46 400 220 12 M33 36 57,4 o o 300 530 52 460 270 16 M33 36 81 o o 350 600 56 525 310 16 M36 39 114 o o 400 670 60 585 360 16 M39 42 153 o o BLIND FLANGES 13. STANDARD FLANGE SIZES 92

13. STANDARD FLANGE SIZES According to DIN 2527/E ND 100 OD flange dimensions in mm bolts weight grades NW mmD mmb mmk max d9 st draad mmd2 kg/st 4301/4307 4401/4404 nr thread kg/pc (304/304L) (316/316L) 10 100 20 70 4 M12 14 1 o o 15 105 20 75 4 M12 14 1,2 o o 25 140 24 100 4 M16 18 2,7 o o 32 155 24 110 4 M20 22 3,2 o o 40 170 26 125 4 M20 22 4,1 o o 50 195 28 145 4 M24 26 5,8 o o 65 220 30 170 45 8 M24 26 8 o o 80 230 32 180 60 8 M24 26 9,4 o o 100 265 36 210 80 8 M27 30 14,3 o o 125 315 40 250 105 8 M30 33 22,6 o o 150 355 44 290 130 12 M30 33 31,8 o o (175) 385 48 320 155 12 M30 33 41,3 o o 200 430 52 360 180 12 M33 36 56,1 o o 250 505 60 430 210 12 M36 39 89,6 o o 300 585 68 500 260 16 M39 42 11 o o 350 655 74 560 300 16 M45 48 175 o o 93

According to ASTM-A 182 BL/RF 150 LBS OD flange dimensions in mm bolts weight grades NW mmD mmb mmk mmg nrst mml kgkg/st/pc 304/L 316/L 1/2” 88,9 11,1 60,3 34,9 4 15,9 0,5 x x 3/4” 98,4 12,7 69,8 42,9 4 15,9 0,9 x x 1” 108 14,3 79,4 50,8 4 15,9 0,9 x x 1.1/4” 117,5 15,9 88,9 63,5 4 15,9 1,4 x x 1.1/2” 127 17,5 98,4 73 4 15,9 1,8 x x 2” 152,4 19,1 120,6 92,1 4 19 2,3 x x 2.1/2” 177,8 22,2 139,7 104,8 4 19 3,2 x x 3” 190,5 23,8 152,4 127 4 19 4,1 x x 4” 228,6 23,8 190,5 157,2 8 19 7,7 x x 5” 254 23,8 215,9 185,7 8 22,2 9,1 x x 6” 279,4 25,4 241,3 215,9 8 22,2 11,8 x x 8” 342,9 28,6 298,4 269,9 8 22,2 21 x x 10” 406,4 30,2 361,9 323,8 12 25,4 31,8 x x 12” 482,6 31,8 431,8 381 12 25,4 49,9 x x 14” 533,4 34,9 476,2 412,7 12 28,6 63,5 x x 16” 596,9 36,5 539,7 469,9 16 28,6 81,6 x x 18” 635 39,7 577,8 533,4 16 31,7 99,8 x x 20” 698,5 42,9 635 584,2 20 31,7 129 x x 24” 812,8 47,6 749,3 692,1 20 34,9 195 x x 13. STANDARD FLANGE SIZES 94

13. STANDARD FLANGE SIZES According to ASTM-A 182 BL/RF 300 LBS OD flange dimensions in mm bolts weight grades NW mmD mmb mmk mmg nrst mml kgkg/st/pc 304/L 316/L 1/2” 95,2 14,3 66,5 34,9 4 15,9 0,9 x x 3/4” 117,5 15,9 82,5 42,9 4 19 1,4 x x 1” 123,8 17,5 88,9 50,8 4 19 1,4 x x 1.1/4” 133,3 19 98,4 63,5 4 19 1,8 x x 1.1/2” 155,6 20,6 114,3 73 4 22,2 2,7 x x 2” 165,1 22,2 127 92,1 8 19 3,6 x x 2.1/2” 190,5 25,4 149,2 104,8 8 22,2 5,4 x x 3” 209,5 28,6 168,3 127 8 22,2 7,3 x x 4” 254 31,8 200 157,2 8 22,2 12,2 x x 5” 279,4 34,9 234,9 185,7 8 22,2 15,9 e e 6” 317,5 36,5 269,9 215,9 12 22,2 22,7 x x 8” 381 41,3 330,2 269,9 12 25,4 36,7 x x 10” 444,5 47,6 387,3 323,8 16 28,6 57 e e 12” 520,7 50,8 450,8 381 16 31,7 84 e e 14” 584,2 54 514,3 412,7 20 31,7 113 e e 16” 647,7 57,2 571,5 469,9 20 34,9 134 e e 18” 711,2 60,3 628,6 533,4 24 34,9 178 e e 20” 774,7 63,5 685,8 584,2 24 34,9 229 e e 24” 914,4 69,8 812,8 692,1 24 41,3 358 e e 95

According to ASTM-A 182 WN/RF 150 LBS OD flange dimensions in mm bolts weight grades NW mma mmD mmb mmk mmh mmm J mm mmg nrst mml kg/pckg/st 304/L 316/L 1/2” 21,3 88,9 11,1 60,3 47,6 30,2 15,8 34,9 4 15,9 0,9 x x 3/4” 26,7 98,4 12,7 69,8 52,4 38,1 20,8 42,9 4 15,9 0,9 x x 1” 33,5 107,9 14,3 79,4 55,6 49,2 26,7 50,8 4 15,9 1,4 x x 1.1/4” 42,2 117,5 15,9 88,9 57,1 58,7 35,1 63,5 4 15,9 1,4 x x 1.1/2” 48,3 127 17,5 98,4 61,9 65,1 40,9 73 4 15,9 1,8 x x 2” 60,5 152,4 19,1 120,6 63,5 77,8 52,6 92,1 4 19,1 2,7 x x 2.1/2” 73,2 177,8 22,2 139,7 69,8 90,5 62,7 104,8 4 19,1 3,6 x x 3” 88,9 190,5 23,8 152,4 69,8 107,9 78 127 4 19,1 4,5 x x 4” 114,3 228,6 23,8 190,5 76,2 134,9 102,4 157,2 8 19,1 6,8 x x 5” 114,3 254 23,8 215,9 88,9 163,5 128,3 185,7 8 22,2 8,6 x x 6” 168,4 279,4 25,4 241,3 88,9 192,1 154,2 215,9 8 22,2 10,9 x x 8” 219,2 342,9 28,6 298,4 101,6 246,1 202,7 269,9 8 22,2 17,7 x x 10” 273,1 406,4 30,2 362 101,6 304,8 254,5 323,8 12 25,4 23,6 x x 12” 323,9 482,6 31,8 431,8 114,3 365,1 304,8 381 12 25,4 36,3 x x 14” 355,6 533,4 34,9 476,2 127 400 412,7 12 28,6 50 x x 16” 406,4 596,9 36,5 539,7 127 457,2 469,9 16 28,6 64 x x 18” 457,2 635 39,7 577,8 139,7 504,8 533,4 16 31,8 68 x x 20” 508 698,5 42,9 635 144,5 558,8 584,2 20 31,8 81,6 x x 24” 609,6 812,8 47,6 749,3 152,4 663,6 692,1 20 34,9 118 x x WELDING NECK FLANGES 13. STANDARD FLANGE SIZES 96

13. STANDARD FLANGE SIZES According to ASTM-A 182 WN/RF 150 LBS OD flange dimensions in mm bolts weight grades NW mma mmD mmb mmk mmh mmm J mm mmg nrst mml kg/pckg/st 304/L 316/L 1/2” 21,3 95,2 14,3 66,7 52,4 38,1 15,8 34,9 4 15,9 0,9 x x 3/4” 26,7 117,5 15,9 82,5 57,1 47,6 20,8 42,9 4 19,1 1,4 x x 1” 33,5 123,8 17,5 88,9 61,9 54 26,7 50,8 4 19,1 1,8 x x 1.1/4” 42,2 133,4 19,1 98,4 65,1 63,5 35,1 63,5 4 19,1 2,3 x x 1.1/2” 48,3 155,6 20,6 114,3 68,3 69,8 40,9 73 4 22,2 3,2 x x 2” 60,5 165,1 22,2 127 69,8 84,1 52,6 92,1 8 19,1 4,1 x x 2.1/2” 73,2 190,5 25,4 149,2 76,2 100 62,7 104,8 8 22,2 5,4 x x 3” 88,9 210 28,6 168,3 79,4 117,5 78 127 8 22,2 6,8 x x 4” 114,3 254 31,8 200 85,7 146,1 102,4 157,2 8 22,2 11,3 x x 5” 141,2 279,4 34,9 235 98,4 177,8 128,3 185,7 8 22,2 14,5 e e 6” 168,4 317,5 36,5 269,9 98,4 206,4 154,2 215,9 12 22,2 19 x x 8” 219,2 381 41,3 330,2 111,1 260,4 202,7 269,9 12 25,4 30,4 x x 10” 273,1 444,5 47,6 387,3 117,5 320,7 254,5 323,8 16 28,6 41,3 e e 12” 323,9 520,7 50,8 450,8 130,2 374,6 304,8 381 16 31,7 63,5 e e 14” 355,6 584,2 54 514,3 142,9 425,4 412,7 20 31,7 81,6 e e 16” 406,4 647,7 57,2 571,5 146,1 482,6 469,9 20 34,9 113 e e 18” 457,2 711,2 60,3 628,6 158,8 533,4 533,4 24 34,9 145 e e 20” 508 774,7 63,5 685,8 161,9 587,4 584,2 24 34,9 181 e e 24” 609,6 914,4 69,8 812,8 168,3 701,7 692,1 24 41,3 263 e e 97

14. MATERIAL SELECTION GUIDE 98 Application Protection tube material APPLICATIONS / PROTECTION TUBE MATERIALS Heat treatment • Annealing : - up to 704 °C Black steel - over 704 °C Inconel 600, SS 446 • Carburizing hardening : - up to 816 °C Black steel, SS 446 1,093 °C Inconel 600, SS 446 - over 1,093 °C Ceramic - nitriding salts bath SS 446 - cyanide Nickel (CP) - neutral SS 446 - high speed Ceramic Iron and Steel • Basic oxygen furnace Quartz • Blast furnace: - down comer Inconel 600, SS 446 - stove dome Silicon carbide - hot blast main Inconel 600 - stove trunk Inconel 600 - stove outlet flue Black steel • Open hearth: - flues and stack Inconel 600, SS 446 - checkers Inconel 600, cermets - waste heat boiler Inconel 600, SS 446 • Billet heating slab heating and butt welding : - up to 1,093°C Inconel 600, SS 446 - over 1,093°C Silicon ceramic carbide • Bright annealing batch: - top work temperature Not required (use bare wire J T/C) - bottom work temperature SS 446 • Continuous furnace section: - forging Silicon ceramic carbide - soaking pits : - up to 1,093 °C Inconel 600 - over 1,093 °C Silicon ceramic carbide Nonferrous materials • Aluminium melting Cast iron (white-washed) • Aluminium heat treating Black steel • Brass or bronze Not required (use dip-type T/C) • Lead SS 446, black steel • Magnesium Black steel, cast iron • Tin Extra heavy carbon steel • Zinc Extra heavy carbon steel

14. MATERIAL SELECTION GUIDE 99 Application Protection tube material Cement • Exit flues Inconel 600, SS 446 • Kilns, heating zone Inconel 600 Ceramic • Kilns Ceramic and silicon carbide • Dryers Silicon carbide, black steel • Vitreous enamelling Inconel 600, SS 446 Glass • Fore hearths and feeders Platinum thimbles • Tanks roof and wall Ceramic • Flues and checkers Inconel 600, SS 446 Paper • Digesters SS 316, SS 446 Petroleum • Cracking lines SS 316 • Dewaxing SS 304, SS 316, SS310, SS321 • Towers SS 304, SS 316, SS310, SS321 • Transfer lines SS 304, SS 316, SS310, SS321 • Bridge wall Inconel 600 Power • Coal-air mixtures SS 304 • Flue gases Black steel, SS 446 • Pre heaters Black steel, SS 446 • Steam lines SS 347, SS 316 • Water lines Low carbon steel • Boiler tubes SS 304, SS 310 Gas producers • Producer gas SS 446 • Water gas : - carburettor Inconel 600, SS 446 - super heater Inconel 600, SS 446 Incinerators : - up to 1,093 °C Inconel 600, SS 446 - over 1,093 °C Ceramic, silicon carbide (secondary)

14. MATERIAL SELECTION GUIDE Application Protection tube material 100 Food • Baking ovens Black steel • Char retort, sugar Black steel • Vegetables and fruit SS 304 Chemical • Acetic acid : - 10-50%, 21 °C SS 304, Hastelloy C, Monel - 50%, 100 °C SS 316, Hastelloy C, Monel - 99%, 21-100 °C Hastelloy C, Monel • Alcohol, ethyl, methyl : 21-100 °C SS 304 • Ammonia : all concentration, 21-100 °C SS 304, SS 316 • Ammonium chloride : all concentration, 100 °C SS 316, Monel • Ammonium nitrate : all concentration, 21-100 °C SS 316 • Ammonium sulphate : 10% to saturated, 100 °C SS 316 • Barium chloride : at 21 °C Monel, Hastelloy C • Barium hydroxide : at 21 °C Low carbon steel • Barium sulphide Nichrome, Hastelloy C • Butadiene SS 304 • Butane SS 304 • Butyl acetate Monel • Butyl alcohol Copper, SS304 • Calcium chlorate : dilute 21 to 66 °C SS 304 • Calcium hydroxide : - 10 to 20%, 100 °C SS 304, Hastelloy C - 50% at 100 °C SS 304, Hastelloy C • Carbolic acid : all 100 °C SS 316 • Chlorine gas : - dry at 21 °C SS 316, Monel - moist -7 to 100 °C Hastelloy C • Chromic acid : 10 to 50% at 100 °C SS 316, Hastelloy C • Citric acid : concentrated at 100 °C SS 316, Hastelloy C • Copper nitrite SS 304, SS 316 • Copper sulphate SS 304, SS 316 • Cyanogen gas SS 304 • Dow therm Low carbon steel • Ether SS 304 • Ethyl acetate SS 304 • Ethyl chloride : 21 °C SS 304, low carbon steel • Ethyl sulphate : 21 °C Monel • Ferric chloride : 5%, 21 °C to boiling Tantalum, Hastelloy C • Ferric sulphate : 5%, 21 °C SS 304 • Ferrous sulphate dilute : 21 °C SS 304 • Formaldehyde SS 304, SS 316 • Freon Monel • Gallic acid : 5%, 21 to 66 °C Monel

14. MATERIAL SELECTION GUIDE Application Protection tube material 101 • Gasoline : 21 °C SS 304 • Glucose : 21 °C SS 304 • Glycerin : 21 °C SS 304 • Hydrobromic acid : 98%, 100 °C Hastelloy B • Hydrochloric acid : - 1- 5%, 21 °C Hastelloy C - 1-25%, 100 °C Hastelloy B • Hydrofluoric acid : 60%, 100 °C Hastelloy C, Monel • Hydrogen peroxide : 21 to 100 °C SS 316, SS 304 • Hydrogen sulphide : wet and dry SS 316 • Iodine Hastelloy C, tantalum • Kerosene SS 304 • Lactic acid SS 316 • Magnesium chloride : - 5%, 21 °C Monel, nickel - 5%, 100 °C Carpenter 20CB3 • Magnesium sulphate : hot and cold Monel • Muratic acid Hastelloy B • Naphtha : 21 °C SS 304 • Natural gas : 21 °C SS 304, SS 316 • Nickel chloride : 21 °C SS 304 • Nickel sulphate : hot and cold SS 304 • Nitric acid : - 5%, 21 °C SS 304, SS 316 - 20%, 21 °C SS 304, SS 316 - 50%, 100 °C SS 304, SS 316 - 65%, 100 °C SS 316 - concentrated, 100 °C Tantalum • Nitrobenzene SS 304 • Oleic acid : 21 °C SS 316 • Oxalic acid : - 5% hot, cold SS 304 - 10%, 100 °C Monel • Oxygen : 21 °C • Steel • Palmitic acid SS 316 • Pentane SS 304 • Phenol SS 304, SS 316 • Phosphoric acid : 1-5%, 21 °C SS 304 10%, 21 °C SS 316 10%, 100 °C Hastelloy C 30%, 21-100°C Hastelloy B 85%, 21-100°C Hastelloy B • Picric acid : 21 °C SS 304 • Potassium bromide : 21 °C SS 316 • Potassium carbonite : 1% at 21 °C SS 304, SS 316

14. MATERIAL SELECTION GUIDE Application Protection tube material 102 • Potassium hydroxide : - 5-25%, 21-100 °C SS 304 - 60% at 100 °C SS 316 • Potassium nitrate SS 304 • Potassium sulphate : 21 °C SS 304, SS 316 • Potassium sulphide : 21 °C SS 304, SS 316 • Propane SS 304, low carbon steel • Pyrogallic acid SS 304 • Quinine sulphate : dry SS 304 • Seawater Monel, Hastelloy C • Salicylic acid Nickel • Sodium bicarbonate : - all concentration, 21 °C SS 304 - 5% at 66 °C SS 304, SS 316 • Sodium chloride : - 5%, 21-66 °C SS 316 - saturated 21-100 °C SS 316, Monel • Sodium fluoride : 5%, 21 °C Monel • Sodium hydroxide SS 304, SS 316, Hastelloy C • Sodium nitrate : fused SS 316 • Sodium sulphate : 21 °C SS 304, SS 316 • Sodium sulphide : - 21 °C SS 316 - 30%, 66 °C SS 304 • Sulphur dioxide : - moist gas, 21 °C SS 316 - gas, 302 °C SS 304, SS 316 • Sulphur : - dry molten SS 304 - wet SS 316 • Sulphuric acid : - 5-90% at 21-100 °C Hastelloy B - 90% above 100 °C Hastelloy D • Tannic acid : 21 °C SS 304, Hastelloy B • Tartaric acid : - 21 °C SS 304 - 66 °C SS 316 • Toluene SS 304, low carbon steel • Turpentine SS 304, SS 316 • Vinegar SS 316 • Water distilled : return condensate SS 304 • Whiskey and wine SS 304, nickel • Xylene Copper • Zinc chloride Monel, Hastelloy B • Zinc sulphate : - 5%, 21 °C SS 304, SS 316 - saturated, 21 °C SS 304, SS 316

Dusttight and protected against water entry at one meter immersion IP 67 Dusttight and protected against heavy submersion IP 68 NEMA 6 dusttightwatertightsubmersiblesleet (ice) resistant indoor & outdoor

Protection against solid objects greater than 2,5 mm and dripping water IP 34 NEMA 3R rain proof sleet (ice) resistant outdoor use

Dusttight and protected against heavy seas IP 66 NEMA 35 driptightdusttight

NEMA AND IEC STANDARDS

Protection against solid objects greater than 12 mm IP 20 NEMA (ventilated)1 general purpose

Protection against solid objects greater than 2,5 mm IP 30 NEMA 1 general purpose

Protection against solid objects greater than 12 mm and dripping water IP 21 NEMA (ventilated)2 drip proof

Dusttight and protected against heavy seas IP 66 NEMA 4 watertightdusttight NEMA 4X resistantcorrosionwatertightdusttight

IP Definition Protection to IEC 144/855420

Protection against dust and splashing liquids IP 54 Dusttight and protected against water jets IP 65 NEMA 12 induct driptightdusttightuse&

Protection against sleet (ice) not specified by IEC NEMA 13 oiltight & dusttight

15. COMPARISON OF NEMA AND IEC STANDARDS 103 EUROPEAN IEC STANDARDS

European IEC specifications 144 & 529 define the degree of protection provided to electrical enclosures to safeguard personnel against electric shock an equipment within the enclosures from environmental contami nation such as entry of water. This is expressed by the letters IP followed by two numbers. In the USA, NEMA and UL have established a rating system for enclosures which provides different levels of protection. A direct comparison between IEC and NEMA is not possible but the following table gives an ap proximate guide.

Protection against solid objects greater than 2,5 mm and dripping water IP 31 NEMA 2 drip proof

Protection against solid objects greater than 12 mm and dripping water IP 24 NEMA (ventilated)3R rain proof sleet (ice) resistant outdoor use

Protection to NEMA enclosure type NEMA Definition

Type XPS4 Ex II 3G ExenA II T6 to T1 for use in zone 2 according ATEX EN-60079-0-2006 and EN-60079-15-2005

ATEX approvals

Type XPS1 Ex II 2G Exe II T6 to T1 for use in zone 1 and 2 according ATEX EN-60079-0-2006 and EN-60079-7-2007

Type XPS3 Ex II 2G Exd IIC T6 to T1 for use in zone 1 and 2 according ATEX EN-60079-0-2006 and EN-60079-1-2007

Type XPS4 ExnA II T6… T1 for use in zone 2

16. EX GUIDE LINE 104

North America Zone 0 Exia Div. 1 Zone 0 now recognised Exd-flameproof Zone 1 Exi-intrinsic safety ia&ib Exe-increased safety Class I Type of protection: Div. 1 explosionproof purged intrinsic safety oil immersion Zone 2 All types suitable for Zone 0 and 1 Type N, ExN or Exn N=BS 1998 n=EN1999 Class I Type of protection: Div. 2 All types suitable for Div. 1 and Non-incendive

Types of protection

Type XPS2 Ex II 2G Exia IIC T6 to T1 for use in zone 0, 1 and 2 according ATEX EN-60079-0-2006 and EN-60079-11-2007

Type XPS2 Ex II 2G Exib IIC T6 to T1 for use in zone 0, 1 and 2 according ATEX EN-60079-0-2006 and EN-60079-11-2007

IEC/EX approvals Type XPS1 Exe II T6… T1 for use in zone 1 and 2 Type XPS2 Exia IIC T6…T1 for use in zone 0, 1 and 2 Type XPS2 Exib IIC T6…T1 for use in zone 0, 1 and 2 Type XPS3 Exd IIC T6…T1 for use in zone 1 and 2

IEC/Europe

17. AWG WIRE SIZE 105 SPECIFICATIONS Solid Conductors Wire size AWG Diametermm Circular mm 0 8,25 53,57 2 6,54 33,57 4 5,19 21,23 6 4,12 13,30 8 3,26 8,36 10 2,59 5,26 12 2,05 3,31 14 1,63 2,08 1,38 1,50 16 1,29 1,33 18 1,02 0,82 20 0,81 0,52 22 0,64 0,32 24 0,51 0,20 26 0,40 0,13 28 0,32 0,08 30 0,25 0,05 32 0,20 0,03 34 0,16 0,02 36 0,13 0,01 38 0,10 0,008 40 0,08 0,005

The above listed only. Stranded Conductors Wire size AWG Strandingnxmmdia. Diametermm Circular mm 12 7 x 0,81 2,44 3,65 12 19 x 0,45 2,37 3,10 – 50 x 0,26 2,20 2,50 14 7 x 0,64 1,85 2,28 14 16 x 0,40 1,85 2,08 14 19 x 0,36 1,85 1,95 48 x 0,20 1,70 1,50 16 7 x 0,51 1,52 1,44 16 19 x 0,29 1,47 1,24 7 x 0,43 1,30 1,00 32 x 0,21 1,38 1,00 17 19 x 0,25 1,35 0,95 18 7 x 0,40 1,22 0,90 18 16 x 0,25 1,19 0,82 18 19 x 0,25 1,24 0,97 24 x 0,21 1,20 0,75 20 7 x 0,30 0,95 0,52 20 16 x 0,20 0,93 0,50 20 19 x 0,20 0,94 0,62 24 7 x 0,20 0,61 0,23 24 19 x 0,13 0,61 0,24 26 7 x 0,16 0,48 0,14 28 7 x 0,13 0,38 0,07 30 7 x 0,10 0,30 0,057 32 7 x 0,08 0,22 0,034 34 7 x 0,06 0,19 0,022 36 7 x 0,05 0,15 0,014

Thermo Electric standard wire sizes* Solid (t/c) 14, 16, 20, 24 and 30 AWG Stranded 16,20 and 24 AWG (t/c) 14, 16, 18 and 20 AWG (Cu) * Other sizes are available on request or as ‘non standard’ wire from stock. For more information contact Doedijns Instrumentation (brand Thermo Electric).

dimensions are nominal values for comparison purposes

COLOUR CODING 18. INTERNATIONAL THERMOCOUPLE 106 THERMOCOUPLE COLOUR CODING

107 Multipoint produced on-site

THERMO ELECTRIC INSTRUMENTATION B.V. Coenecoop 71 – 73 I 2741 PH Waddinxveen I The Netherlands P.O. Box 85 I 2740 AB Waddinxveen I The Netherlands t. +31 (0) 85 7607 300 I f. +31 (0)85 7607 301 info@te-instrumentation.com I www.te-instrumentation.com Thermo Electric Instrumentation BV is in no way affiliated with Thermo Electric Co.Inc., a U.S. company, or Thermo Electric Company Ltd., a UK company ISO 9001

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.