https://doi.org/10.22214/ijraset.2023.49490
11 III
2023
March
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 11 Issue III Mar 2023- Available at www.ijraset.com
Integral Solutions of the Ternion Quadratic Equation
Gowri Shankari A1 , Sangavi S2
1Assistant Professor, PG and Research Department of Mathematics, 2PG Student, Cauvery College for Women (Autonomous), Trichy-18, (TamilNadu) India
Abstract: In order to find its non zero unique integral solutions for the quadratic diophantine equation with three unknowns given by is analysed. The equation under consideration exhibits multiple patterns of solutions. The solutions are presented with a few fascinating aspects.
Keywords: Quadratic equation with three unknowns, integral solutions, polygonal numbers.
I. INTRODUCTION
The quadratic diophantine equation with three unknowns offers a numerous researching opportunities because of their range[1-3]. For quadratic equations containing three unknowns, one should specially refer [4-19]. This communication deals with yet another fascinating ternary quadratic equation 3 2 2 401s g a with three unknown factors that can be used to determine any one of an infinite numbers of non-zero integral solutions.
II. METHOD OF ANALYSIS
The ternion quadratic equation to be solved for its non-zero integral solution is 2 2 2 401s g a (1) various patterns of solutions of (1) are listed below
A. Pattern 1: Assume,
International Journal for Research in Applied Science & Engineering Technology (IJRASET)
730 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |
2 2 2
401s g a
4,
A. Notations 2
n T n (Tetragonal number) 3) (4 10, n n T n (Decagonal number) 4) (5 12, n n T n (Dodecagonal number) 6) (7 16, n n T n ( Hexadecagonal number) 8) (9 20, n n T n (Icosagonal number)
2 2
1
9) (10 22, n n T n (Icosidigonal number) 10) (11 24, n n T n (Icositetragonal number) 12) (13 28, n n T n (Icosioctagonal number)
1) ( n n CS n (Centered square number)
2 n Gnon (Gnomonic number) 1 3 3 2 n n CH n (Centered hexagonal number)
International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 11 Issue III Mar 2023- Available at www.ijraset.com
Where l and m are non-zero integers and write
Using (2) and (3) in (1), we get
Using factorization method, we have
If we analyse the positive and negative aspects, we
Equating the actual and fictitious elements either
PROPERTIES
B. Pattern 2
We write 401 in the form as
731 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 2 2 ) , ( m l m l s s (2)
) )(20 (20 401 i i (3)
2 2 2 2 2 ) )( )(20 (20 m l i i g a
2 2 ) ( ) )( )(20 (20 ) )( ( im l im l i i ig a ig a
get 2) )( (20 im l i ig a (4) 2) )( (20 im l i ig a (5)
in (4)
we get 2 2 20 2 20 ) , ( m lm l m l a 2 2 40 ) , ( m lm l m l g 2 2 ) , ( m l m l s
or (5),
1) square perfect (1,1)isa 2 (1,1) a g 2) nastynumber (1,1)isa 3 (1,1) 2 (1,1) s a g 3) 0(mod27) 7 4 ,1) ( 40 ,1) ( 60 12, l l Gno T l a l s 4) 0(mod2) 25 2 ) (1, 31 ) (1, ) (1, 12, l l Gno T l s l g l a 5) 42) 0(mod 21 ,1) ( 19 ,1) ( ,1) ( lGno l s l a l g 6) 0 20 ) , ( 30 ) , ( 4, l T l l s l l a 7) 0 2 ) , ( 4, m T m m s 8) number perfect (1,1)isa
(1,1) (1,1) 20
a 9) Disariumnumber (1,1)isa 60 (1,1) 10 (1,1) s g a 10) number palindrome a (1,1)is 3 (1,1) (1,1) s g a
7
s g
) 20 )(1 20 (1 401 i i (6)
(6) and (2) in (1), we get 2 2 2 2 2 ) )( 20 )(1 20 (1 m l i i g a Using factorization method, we have 2 2 ) ( ) )( 20 )(1 20 (1 ) )( ( im l im l i i ig a ig a
aspects, we get 2) )( 20 (1 im l i ig a (7) 2) )( 20 (1 im l i ig a (8)
in (7) or (8), we get 2 2 40 ) , ( m lm l m l a
Where l and m are non-zero integers and write Using
If we analyse the positive and negative
Equating the actual and fictitious elements either
PROPERTIES
International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 11 Issue III Mar 2023- Available at www.ijraset.com
C. Pattern 3
Observe that (1) is written as
which is equivalent to the system of double equation
By applying the cross multiplication method to solve (10), the relevant non-zero unique integral solution to (1) are obtained as
732 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 2 2 20 2 20 ) , ( m lm l m l g 2 2 ) , ( m l m l s
1) square perfect (1,1)isa 38 (1,1) s a 2) number perrin a (1,1)is 20 (1,1) (1,1) s g a 3) 37) 0(mod 11 10 ,1) ( 39 ,1) ( ,1) ( l l Gno CS l s l g l a 4) 0(mod141) 23 ) (1, 59 ) (1, ) (1, 3 lGno l s l a l g 5) 22) 0(mod 20 ,1) ( ,1) ( mGno m a m s 6) 0 ) , ( 10 , 10 ) , ( l l s l l g l l a 7) 0 20 ) , ( 30 ) , ( 4, l T l l s l l a
number
s g
number
s a
g
8)
deficient (1,1)isa (1,1)
9)
palindrome (1,1)isa 31 (1,1)
10) nastynumber (1,1)isa 2 (1,1) s
2 2 2 2 400 s s g a (9) g s s a 20 s a g s 20 , 0
0 ) (20 s g a 0 ) 20 ( s g a (10)
2 2 20 2 20 ) , ( a 2 2 40 ) , ( g 2 2 ) , ( s PROPERTIES 1) happynumber (1,1)isa 2 (1,1) (1,1) 2 s g a 2) number silverback a (1,1)is 7 (1,1) s g 3) 511) 0(mod 501 ) (1, 5 ) (1, ) (1, 25 Gno s a g 4) 0(mod140) 47 2 ,1) ( 30 ,1) ( ,1) ( 2 Gno Star s x g 5) 0(mod146) 71 20 ) (1, 42 ) (1, ) (1, 2 Gno CH s a g 6) 0 36 ) , ( 2 ) , ( 4, T s g 7) 0 6 ) , ( 4 ) , ( 2 4, T s a 8) number perrin (1,1)isa 31 (1,1) 20 s a 9) number palindrome (1,1)isa (1,1) (1,1) s a g 10) digital perfect (1,1)isa 25 (1,1) 50 (1,1) 10 s a g number invariant
International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 11 Issue III Mar 2023- Available at www.ijraset.com
733 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |
Pattern 4 Equation (1) is written as 1 400 2 2 2 s g a (11) Write 1 as 229 ) 21 )(20 21 (20 1 i i (12) and write 400 as ) )(20 (20 400 i i (13) Using (2), (12) and (13) in (11), we get 2 2 2 2 2 29 ) 21 )(20 21 (20 ) )( )(20 (20 i i m l i i g a Employing the method of factorization the above equation is written as 2 2 2 29 ) 21 )(20 21 (20 ) ( ) )( )(20 (20 ) )( ( i i im l im l i i ig a ig a If we analyse the positive and negative aspects, we get 2) )( 21 )(20 (20 29 1 im l i i ig a (14) 2) )( 21 )(20 29(20 1 im l i i ig a (15) Equating the actual and fictitious elements either in (14) or (15), we get ) 379 880 (379 29 1 ) , ( 2 2 m lm l m l a ) 440 758 29(440 1 ) , ( 2 2 m lm l m l g Since our interest is on finding integer solution Let us take L l 29 and M m 29 2 2 379 880 379 ) , ( M LM L M L a 2 2 440 758 440 ) , ( M LM L M L g 2 2 29 29 ) , ( M L M L s PROPERTIES 1) number abudant (1,1)isa 16 (1,1) s a 2) number perrin (1,1)isa (1,1) 14 a s 3) L L Gno CS L s L a L g 1724 526 ,1) ( 19 ,1) ( ,1) ( 2 0(mod1248) 4) 0(mod955) 831 2 ) (1, 3 ) (1, ) (1, 28, L L Gno T L s L a L g 5) 0(mod2129) 706 133 ,1) ( ,1) ( 36 12, L L Gno T L a L s 6) 0(mod827) 859 10 ,1) ( ,1) ( ,1) ( 20, M M Gno T M s M a M g 7) 0(mod967) 832 ,1) ( 2 ) (1, ) (1, MGno M s M a M g 8) 0 4 ) , ( 13 ) , ( 4, L T L L s L L g 9) 0 52 ) , ( 3 ) , ( ) , ( 4, M T M M s M M g M M a 10) square perfect (1,1)isa 13 (1,1) s g
D.
International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 11 Issue III Mar 2023- Available at www.ijraset.com
E. Pattern 5
Equation (1) is written as
Using (17) and (18) in (16) and applying the method
III. CONCLUSION
we have given numerous non-zero unique integral solutions patterns. To conclude, one can look for further options for solutions and their respective attributes among the various choices.
For the ternion quadratic equation
REFERENCES
[1] Carmichael R.D., “The Theory of Numbers and Diophantine Analysis”, Dover Publications, New York, 1959
[2] Dickson L.E., “History of the theory of numbers”, Chelsia Publishing Co., Vol II, New York, 1952
[3] Telang S. G., “Number Theory”, Tata Mc Graw-Hill Publishing Company, New Delhi 1996
[4] Mordell L.J., “Diophantine Equations”, Academic Press, London 1969
[5] Janaki G, Gowri Shankari A, “Properties of the Ternary Cubic Equation
Engineering Technology, Vol 10, Issue VIII,Pg.No: 231-234, August 2022
[6] Janaki G, Saranya C, “Observations on Ternary Quadratic Diophantine Equation
Research and science, Engineering and Technology, Volume 5, Issue
[7] Devibala. S, Gopalan M.A, “On the ternary quadratic Diophantine equation
Applied Science
Emerging Technologies in Engineering Research, 4(9), 2016, 6-7.
[8] Gopalan M.A, Vidhyalakshmi. S and Aarthy Thangam. S, “On the ternary quadratic equation
734 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |
1 401 2 2 2 a g s (16) Assume, 2 2 401 ) , ( m l m l a (17) Write 1 as 20) 401 20)( 401 ( 1 (18)
of
we get 20) 401 ( ) 401 ( ) 401 ( 2 m l g s Equating then rational and irrational factors, we get 2 2 401 ) , ( m l m l a 2 2 20 802 8020 ) , ( m lm l m l g 2 2 40 401 ) , ( m lm l m l s PROPERTIES 1) 0(mod8523) 299 2 ) (1, 25 ) (1, 7 ) (1, 2 10, l l Gno T l s l a l g 2) 0(mod6827) 391 2 ) (1, 2 ) (1, 24, Gnol T l a l g l 3) 0(mod380) 401 ,1) ( ,1) ( 20 mGno m g m a 4) 0(mod8410) 412 2 ) (1, ) (1, ) (1, 22, m m Gno T m s m g m a 5) 0(mod8009) 412 3 ) (1, ) (1, 16, m m Gno T m s m g 6) 0(mod180) 200 ,1) ( 10 ,1) ( 10 lGno l s l a 7) 0 38 ) , ( ) , ( 4, l T l l s l l a 8) 0 382 ) , ( 10 ) , ( ) , ( 4, m T m m s m m g m m a 9) 0 21 ,1) ( 19 ,1) ( ,1) ( mGno m s m a m g 10) square perfect a (1,1)representsa
factorization,
2 2 2 401s g a
3 2 2 3 5 z y x ”, International Journal for
Research in
and
2 2 2 72 9 3 3 11 ) 6( z y x xy y x ”, International Journal of Innovative
2,
2016
February
2 2 2 7 z y x ”, International Journal of
20 z y x x ”, Vol-6, Issue-8,
2017.
August
International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 11 Issue III Mar 2023- Available at www.ijraset.com
[9] Gopalan M.A, Vidhyalakshmi. S and Rajalakshmi. U.K, “On the ternary quadratic diophantine
1-10.
[10] Janaki G, Radha R, “On ternary quadratic diophantine equation
Engineering Technology”, Vol 6, Issue I, Pg. No: 2656-2660, January
[11] Gopalan M.A, Vidhyalakshmi. S and Nivetha. S,”On the ternary quadratic equation
[12] Gopalan M.A, Vidhyalakshmi. S, “On the ternary quadratic diophantine equation
[13] Gopalan M.A, Vidhyalakshmi. S and Usha Rani T.R, “Integral points on the
and Mathematical Science, 2(1),2012, 61-67.
[14] Gopalan M.A, Vidhyalakshmi. S and Usha Rani T.R, “On the ternary quadratic Diophantine equation
Tech., 2(2A),2104,108-112
[15] Janaki. G, Vidhya. S On the integer solutions of the homogeneous biquadratic diophantine equation
engineering Science and Computing 6(6) (2016), 227-229.
735 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |
equation 2 2 2 196 6 5 z xy y x ”, Vol-3, Issue-5, May 2017,
2 2 2 438 24 15 15 z xy y x ”, International Journal for Research in
and
2018
Applied Science
2 2 2 31 7 4 z xy y x ” Diophantus J. Math, 3(1), 2014, 1-7.
2 2 2 80 15 8 z xy y x ”, BOMSR, Vol 2, No.4,2014, 429-433.
non-homogeneous one 0 4 8 4 2 2 z x xy z ”, Global journal of Mathematics
2 2 2 21 8 ) 6( z xy y x “, Sch.J.Eng
2 2 2 4 4 ) 82( p w z y x , International Journal of