Sense-and-Predict: Harnessing Spatial Interference Correlation for Cognitive Radio Networks
Abstract: Cognitive radio (CR) is a key enabler realizing future networks to achieve higher spectral efficiency by allowing spectrum sharing between different wireless networks. It is important to explore whether spectrum access opportunities are available, but conventional CR based on transmitter (TX) sensing cannot be used to this end because the paired receiver (RX) may experience different levels of interference, according to the extent of their separation, blockages, and beam directions. To address this problem, this paper proposes a novel form of medium access control (MAC) termed sense-and-predict (SaP), whereby each secondary TX predicts the interference level at the RX based on the sensed interference at the TX; this can be quantified in terms of a spatial interference correlation between the two locations. Using stochastic geometry, the spatial interference correlation can be expressed in the form of a conditional coverage probability, such that the signal-tointerference ratio at the RX is no less than a predetermined threshold given the sensed interference at the TX, defined as an opportunistic