Learning to Entangle Radio Resources in Vehicular Communications: An Oblivious Game-Theoretic Perspective
Abstract: In this paper, we investigate non-cooperative radio resource management in a vehicle-to-vehicle communication network. The technical challenges lie in high-vehicle mobility and data traffic variations. Over the discrete scheduling slots, each vehicle user equipment (VUE)-pair competes with other VUE-pairs in the coverage of a road side unit (RSU) for the limited frequency to transmit queued data packets, aiming to optimize the expected long-term performance. The frequency allocation at the beginning of each slot at the RSU is regulated by a sealed second-price auction. Such interactions among VUE-pairs are modeled as a stochastic game with a semi-continuous global network state space. By defining a partitioned control policy, we transform the original game into an equivalent stochastic game with a global queue state space of finite size. We adopt an oblivious equilibrium (OE) to approximate the Markov perfect equilibrium, which characterizes the optimal solution to the equivalent game. The OE