BASED AUTOMATIC PERSONALITY RECOGNITION USED IN ASYNCHRONOUS VIDEO INTERVIEWS OF STRESS DETECTION US

Page 1

InternationalJournalofComputer ScienceandEngineering(IJCSE)

ISSN(P):2278–9960;ISSN(E):2278–9979

Vol.11,Issue2,Jul–Dec2022;1–8 ©IASET

BASEDAUTOMATICPERSONALITYRECOGNITIONUSEDINASYNCHRONOUS VIDEOINTERVIEWSOFSTRESSDETECTIONUSINGFACEIMAGESANDFACIAL LANDMARKBYUSINGTHECONVOLUTIONNEURALNETWORK(CNN)ALGORITHM

PriyankaH1&BLJayakumar2

1ResearchScholar,DepartmentofComputerScience&Engineering,SEACollegeofEngineering&Technology, KRPuram,Bengaluru,India

2AssistantProfessor,DepartmentofComputerScience&Engineering,S.E.ACollegeofEngineering&Technology, K.RPuram,Bengaluru,India

ABSTRACT

Withthehelpoffacephotosandfaciallandmarks,wesuggestastressrecognitionalgorithminthiswork.Adevicefor gatheringthenecessarydataisneededalongtheeventofstressdetectionutilisinganaturalorbiologicalsignalor thermalpicture,thusbeingimportantareaforresearch.Toaddressthisflaw,weputforthanalgorithmthatcanidentifya person'sbehaviourfromstillvideosorphotostakenusinganormalcamera,includingcreatingin-depthneuralnetwork, usesfacialidentificationsinfusedalongbenefitingthatwhensomeoneisbeingstressed,theireye,mouth,andhead movementsdifferalonghowtheynormallybehave.Likewise,byidentifyingacandidate'sbehaviourduringanonline interview,wecandeterminewhetherornottheyarequalified.Thesuggestedalgorithmrecognisesbehaviourmore accurately,accordingtoexperimentaldata.

KEYWORDS:C++,Python,Java,ConvolutionalNeuralNetwork(CNN),PersonalityRecognition,OpenCV,HAAR CascadeandMatLab,OpenCV,Espeak,Xming&Putty

ArticleHistory

Received:06Jul2022|Revised:07Jul2022|Accepted:07Jul2022

1.INTRODUCTION

Inmanysituationswheremoresecurityorpersonaldataaboutthepersonisneeded,humanemotiondetectionisused.We couldneedtosetupasecondlayerofprotectionwhere,inadditiontotheface,theemotionisalsodetected.Thiscanbe consideredasthesecondstageafterfacedetection.Asystemiscurrentlybeingdevelopedtodetectwhenauserisunder stressandtoprovidefeedbackintheaimofreducingstresswhenunderstress,asmodernindividualsexperience tremendouslevelsofstress.Additionally,wesuggestedthatthestudent'semotionsbeacknowledgedandthattheworried teacherreceiveanupdate.Focusingonknowingclassesforstudentsincludingtime-tablebeingsharedamongstthem.

Intheseinvestigations,characteristicsfrombiosignalssuchtheelectrocardiogram,electrodermalactivity, respiration,galvanicskinresponse,andheartratevariabilitywereextractedandusedtoexpressstress.Furthermore,alot ofthemmadeuseoftraditionalclassifierslikeSupportVectorMachine,LinearDiscriminantAnalysis,Adaboost,andKNearestNeighbor[1].

www.iaset.us

editor@iaset.us

Alongthevicinityofrecognisingstresses,numerousmethodsthrubio-signalsbeingevaluated,thoughameasure andalongbio-signalling,anend-usermayexperiencerejectionsduetotoolsappliedinmeasuringbio-signallingthusbeing rootedalongthebody.Thusnumerousobservationsalongstress-recognitionthruthermalimagingweredone,thusevena demeritalongcomplicationsinrecognizingstresssimplyalongeverydaylifeduetounrecognisablewithoutanytoolsof thermalimaging,parallellyintheventofstress-recognitionobservationsthrucommonimaging,popularevaluations adaptedbeingconsiderablyfeaturedassimple.

Inthisarticle,weprovideatechniqueforidentifyingstressthatinvolvesextractinghigh-dimensionalfeatures fromfacephotostakenwitharegularcamera.Additionally,weusetheplacementoffacelandmarksthatsignificantlyvary whenunderstressinordertolearnmoreeffectivefeatures.

2.RELATEDWORK

Physiologicalparameterevaluation,bodilyfluidmeasurement,andthepapermethod(self-report)aresomeofthe behaviouranalysistechniquesnowinuse.Inthepaperapproach,individualsaregivenamultiple-choicequestionnaireto complete,andeachresponseisassignedaspecificscore.Aftertherespondentcompletesthequestionnaire,theresultsof eachchoicewillbeaddeduptoproduceafinalscorethatrepresentstheindividual'slevelofconduct.Fortheidentification ofthestresshormone,Cortical,bodyfluidtestssuchasbloodorsalivaareperformed.Thesetwoapproachesare ineffectivefortrackingstressovertime.Monitoringandanalysingphysiologicaldatacangiveoneausefulunderstanding oftheirhealth.

BehaviorRecognitionusingBio-Signals

Becausetheydisplaythebody'smostsensitivealterationsandenabletheidentificationofchangesinthebodythatarenot indicatedbyfaceandbehaviour,bio-signalswereusedinearlyresearchonstressrecognition.Intheseinvestigations, characteristicsfrombio-signalssuchtheelectrocardiogram,electrodermalactivity,respiration,galvanicskinresponse,and heartratevariabilitywereextractedandusedtoexpressstress.AndalotofthemmadeuseoftraditionalclassifierslikeKNearestNeighbor,AdaBoost,SupportVectorMachine,andlineardiscriminantanalysis.

BehaviorRecognitionUsing

Thermalpicturemanystudieshavebeendonetodetectthechangebyusingthethermalimagingtodetectthechange becausewhenapersonisstressed,thebloodflowandtemperatureofthefaceincrease.Thisresearchusedavarietyof techniquestoidentifystress,includingdirectlyextractingcharacteristicsfromthermalpicturesandextractingfeatureslike respirationrate,blinkfrequency,skintemperature,andbloodflowfromthermalimages.

BehaviorRecognitionusingGeneralImage

Eye,lip,andheadmovementschangewhenapersonisstressedcomparedtonormalcircumstances,andresearchonstress recognitionusingcommonimageryisalsobeingdone.Theseresearchemployedavarietyoftechniquestoidentifystress, includingtheextractionofhand-craftedfeaturesfromthenose,mouth,andeyeregionsaswellastheuseofeyesize,lip motions,andheadmovementsasfeatures.

2 PriyankaH&BLJayakumar
ImpactFactor(JCC):8.5226 NASRating:3.17

BasedAutomaticPersonalityRecognitionUsedinAsynchronousVideoInterviewsofStressDetectionAlgorithm 3

UsingFaceImagesandFacialLandmarkbyUsingtheConvolutionNeuralNetwork(CNN)

3.LITERATUREREVIEW

HumanAttitude-RecognitionApplicationsBasedonFacialFeaturethroughFaceDetection

Author:ArdinintyaSetyadiDivaet.al,

Publishedin:2015InternationalElectronicsSymposium(IES)

Abstract

Human-psychology,exploredalong4basicpersonalitieslikesanguine,choleric,melancholic,andphlegmatic.Basicmode ofknowinghumanfundamentalpersonalityisbytesting,thusbeingGraphotest(handwritingtest).Currentstudyitsbeing executedondetectinghumanfundamentalpersonalitythrucollectivefeaturedfaces:theeyes,lips,andnose(priortotest), thusgotthrureceivedimagesoffaces,gapamongstthecornersoftheeyes,ratiosamongstmouthwidthandnose,ratiosof widthamongsteyes,lipthicknessbeingextractingfeatures,thruANN:artificialneuralnetworks(back-propagation),also relayingonextractingsuchfeatures,thefundamentalpersonalitybeingidentifiedConsideringpracticalfindings,system detectshumanfundamentalpersonalityalongsimilarinputimagingdataalongtrainingaverageratios85.5%.The identificationfindingsvariousinputimagingdataalongtrainingbeingweighedas42.5%average,situationsdemandsthru identificationofpersonalityalongcholeric,phlegmaticreadslessenedabout50%ratios.

ADVANTAGE

 Theyhaveimplemented2typesoftesting,oneonthesamephotoandanotheronthedifferentphoto.

DISADVANTAGE

 Testingaccuracybeingminimallyabout50%alongfewfeaturesonalimitedoccasions

SentimentClassificationandPersonalityDetectionviaGalvanicSkinResponseBasedonDeepLearningModels

Author:TaoHong;XiaoSun;FangTian;FujiRen

PublishedIn:20195thInternationalConferenceonBigDataComputingandCommunications(BIGCOM)

Abstract

Sentimentandpersonalityhaveasignificantinfluenceonhowwethink,create,andmakedecisionsinourdailylives. Manymethodshavebeenputforthtoautomaticallydetectusers'sentimentinspeechandimage.Forsomecircumstances, suchasinterviewsandpolygraphs,beingabletoaccuratelyforecastaperson'semotionsandpersonalitytraitscanbe helpful.Inthiswork,severalmodels,suchasJointLearningModelofConvolutionalNeuralNetworkandmemoryalong long-Short-Term,alsospatiotemporalhybridmodelswereprojectedtoknowautomaticallyaboutgalvanicskinresponse (GSR),alsovideoclipsratingagainstsimilartosentimentsrecognition,personalitydetectionfacts,matchingalong projectedmodels,alsostate-of-the-artmodelsalongsimilarworks.Thepracticalfindingspresentedagainstpredominant findingsalongsentimentrecognition,alsopersonalitydetectionbeingbenefittedalongprecision,recall,andF1score.

ADVANTAGE

 MatchedagainstothersimilartrialsadaptingGalvanicSkinresponse(GSR)signalalongemotionalcategorisation ofpersonalitydetection,practicalfindingsareenhanced.

www.iaset.us editor@iaset.us

DISADVANTAGE

 Thecategorisationalongsurprise,happinessbeingatoughfact

StudyonDeterminingtheBig-FivePersonalityTraitsofanIndividualBasedOnFacialExpressions

PublishedIn:2015E-HealthandBioengineeringConference(EHB)

Abstract

Accordingtopreviousstudies,thereisanincreasingdemandforinformationaboutpeople'spersonalitiesandbehavioursin areaslikecareerdevelopmentandcounselling,individualisedhealthcare,mentaldisorderdiagnosis,andtheearly detectionofphysicalillnesseswithpersonalityshiftsymptoms.TheBig-Fivepersonalitytypescancurrentlyonlybe identifiedbycompletingaquestionnaire,whichtakesanunreasonableamountoftimeandcannotbeusedfrequently.Our researchintendstodevelopacutting-edge,non-invasivemethodforidentifyingtheBig-Fivepersonalitytraitsbasedon facialfeaturescollectedwiththehelpoftheFacialActionCodingSystem.Thefindingsindicatearelationshipbetweena person'spersonalityqualitiesandtheFACSactionunitspresentinfacefeaturesattheirhighestintensitiesAdditionally, comparedtotherequiredforcompletingaquestionnaire,thesystemdevelopeddeliversover75%accuracyofthe predictionopennesstoexperience,aswellastraitanxietyandextraversion,anditispractical,givingfindingsinlessthan3 minutes.

ADVANTAGES

 Approximatetimetakenbythesystemtoprovideresultswasroughly45secforvideosequenceswithincluded emotions.

DISADVANTAGE

 Unabletoaccuratelydetermineconscientiousnessandagreeablenesswhicharepartofpersonalitytraits.

4.IMPLEMENTATION

I.Proposedalgorithm

inthispartweprovideanapproachtoenhancetheperformanceofstressrecognitionoverallstructureinthesuggested approachstressrecognitionbeginswithfacepictureandfaciallandmarkdetectioninordertodetectfacesmorecorrectly weemployadeeplearningtechniquethatusesthreenetworkssequentiallyweemployacustomapproachthatemploysa cascadetypeofextractedfeaturesalongsudden-femalso,theregressiontreeclassifieralongrecognisingface identificationsgraphicbelowvisualisescollectiveframeworksflowchart

ImpactFactor(JCC):8.5226

NASRating:3.17

4 PriyankaH&BLJayakumar
Figure1.

BasedAutomaticPersonalityRecognitionUsedinAsynchronousVideoInterviewsofStressDetectionAlgorithm 5

UsingFaceImagesandFacialLandmarkbyUsingtheConvolutionNeuralNetwork(CNN)

Alongtheestimatednetwork,thefacialimaging,identifiedpreviouslyisinputtooutputstressrecognition findings.Thestructureoftheestimatednetworkisvisualisedalongfig.

Progressednetwork,adaptedshortcutassigning,bottleneckarchitecturetoenhanceneuralnetworkstructure. Throughthisshortcutassigningtotheneuralnetworkstructuresupportedalongnumerouslayers,encouragesin simplifyinglearningmethods,alosexplainslearningdirectionsMakingitsuccessfulinsimplyenhancingthein-depth neuralnetwork,alsotoprogressaccuracyalongprogresseddepth.Thruimplyingbottleneckarchitecture,thequantumof internalfactorsbeinglessenedalongelevatingquantumoffeaturemaps,whichelevatesfunctionality,declinesquantumof computation.

II.Input/OutputDesign

Systemdesignshowstheoveralldesignofsystem.Inthissectionwediscussindetailthedesignaspectsofthesystem:

ImageCapture

Staticphotosorimagesequencesareutilisedtodetectfaceexpressions.Acameracanrecordpicturesoffaces.Face recognition

Inordertoidentifyfacialimages,facedetectionishelpful.Facedetectionisdoneinthetrainingdatasetusingthe OpencvimplementationoftheHaarclassifierVoila-Jonesfacedetector.Thevalueofafeaturewithahaar-likestructureis thedifferenceinthesumofthepixelvaluesintheblackandwhiteregions,anditencodesthevariationinaverageintensity indifferentregionsoftheimage[6].Imagepreparation

Noiseiseliminatedduringimagepre-processing,andbrightnessandpixelpositionvariationsarenormalised.

ColorNormalization\s

HistogramNormalization

ExtractionofFeatures

Thechoiceofthefeaturevectorinapatternclassificationissueiscrucial.Afterpre-processing,thefacialimageisusedto extractthekeyfeatures.Scale,attitude,translation,andfluctuationsinilluminationlevelaresomeofthefundamental issueswithimageclassification[6].ClassificationClassificationisusedtoreducethehighdimensionalityofdatathatwas obtainedusingthefeatureextractionmethod.Convolutionalneuralnetworkalgorithmwillbeusedtoclassifyobjects,and featuresshouldtakedistinctvaluesforobjectsbelongingtodifferentclasses.

www.iaset.us editor@iaset.us

Figure2. Database Imagesof different Face detection from Image Extarct Emotion
Prediction Results
Facialpoint extraction fromImage Machine Learning Algorithm Transformed Facialpoint asfeatures

III.DataFlowDiagram

SequenceDiagram

SequenceDiagram

Inasequencediagram,objectconnectionsarearrangedintemporalorder.Itillustratestheclassesandobjectsinvolvedin thesituationaswellasthemessageflowthatmustoccurfortheobjectstofunctionasintended.Sequencediagramsand usecaserealisationsarefrequentlyconnectedinthelogicalviewofthesystemunderdevelopment.Othernamesfor sequencediagramsareeventdiagramsandeventscenarios.

ActivityDiagram

Thesystem'sdynamicfeaturesaredescribedintheactivitydiagram,aUMLdiagram.Inactuality,aflowchartcontrols howeacheventproceeds.Thesystem'soperationcanbecharacterisedastheevent.Thecontrolflowmustbefollowed betweentasks.

ImpactFactor(JCC):8.5226

NASRating:3.17

6
PriyankaH&BLJayakumar Figure3. Figure4. Figure5. PriyankaH&BLJayakumar Figure3. Figure4.

UsingFaceImagesandFacialLandmarkbyUsingtheConvolutionNeuralNetwork(CNN)

5.REQUIRMENTS

A.Functionalrequirements

Asystem'sfunctionalrequirementsspecifywhatthesystemshouldbeabletoachieve.Thesespecificationsaredetermined bythekindofsoftwarebeingcreatedandtheintendedaudience.

 CreatingWebbasedfunctionsforTraitanalysis.

 Designing/formulatingquestionsforanalysis,visualisingtousersequentially

 Capturingfacialimagingthruansweringtoquestions.

 Analyzingtraitsalongimaging

 Visualisingclarifiedassessmentreport.

B.Non-FunctionalEssentialities

Nonfunctionalessentialitiesarethosethatdonotdirectlyrelatetothesystem'sperformanceofthegivenfunction.They mightbeconnectedtoemergentsystemattributesincludingdependability,responsetime,andstoreoccupancy.

C.HARDWAREANDSOFTWARENECESSITIESHARDWARE

Figure6.

6.RESULTS

Considerableobjectivesalongthisworkbeingdesigninganefficient,accuratealgorithm,thusidentifiesattitudeanalysis alongtheinterviewaspirants,attitudeidentificationofaspirantsSupportsaspirantswhoareunabletoparticipatein interviewoncompanyvicinityBenefitsalongsavingtime,manpowerofinterviewer.Alongfacialidentificationto functioncapably,itsnecessarytoavailanimaginginputthatshouldnotblur/printedHereadaptedalgorithmalongfacial identification,featureextractions,systemgeneratesautomaticquestionnairesagainstaspirantsavailablealongcomputer, alsoidentifythepersonalityofaspirantalongthemodeofansweringthequestions.Feedbackbeinggenerated automatically,thusreceivedofinterviewersmailbox.Functionalrealtimeanalysis,probabilitydatarepresentations

7.CONCLUSION

Wesuggestastressrecognitionsystemthatmakesuseoffacelandmarksandfacephotos.Theexperiment'sfindings showedthatemployingfacelandmarksenhancedtheperformanceofstressrecognition.Becausetheymakeiteasierfor youtocomprehendeye,mouth,andheadmovements,faciallandmarksarebetterathelpingyoudetectstress.Wealso discoveredthatwhenemployingagreyfacialimageoftherightsize,performancewasenhancedbymoreaccurately identifyingstress-relatedinformation.

www.iaset.us editor@iaset.us

BasedAutomaticPersonalityRecognitionUsedinAsynchronousVideoInterviewsofStressDetectionAlgorithm 7

Futurestudiesaimtoenhancetheperformanceofstressrecognitionbyutilisingtime-axisinformationonhead, mouth,andeyemotion.

REFERENCES

1.Sriramprakash,S.,Prasanna,V.D.,&Murthy,O.R.(2017).Stressdetectioninworkingpeople.Procedia computerscience,115,359-366.

2.Mohd,M.N.H.,Kashima,M.,Sato,K.,&Watanabe,M.(2015).Mentalstressrecognitionbasedonnon-invasive andnon-contactmeasurementfromstereothermalandvisiblesensors.InternationalJournalofAffective Engineering,14(1),9-17.

3.Prasetio,B.H.,Tamura,H.,&Tanno,K.(2018,May).SupportVectorSlantBinaryTreeArchitectureforFacial StressRecognitionBasedonGaborandHOGFeatureIn2018InternationalWorkshoponBigDataand InformationSecurity(IWBIS)(pp.63-68).IEEE.

4.Zhang,K.,Zhang,Z.,Li,Z.,&Qiao,Y.(2016).Jointfacedetectionandalignmentusingmultitaskcascaded convolutionalnetworks.IEEESignalProcessingLetters,23(10),1499-1503.

5.Kazemi,V.,&Sullivan,J.(2014).Onemillisecondfacealignmentwithanensembleofregressiontrees.In ProceedingsoftheIEEEconferenceoncomputervisionandpatternrecognition(pp.1867-1874).

6.He,K.,Zhang,X.,Ren,S.,&Sun,J.(2016).Deepresiduallearningforimagerecognition.InProceedingsofthe IEEEconferenceoncomputervisionandpatternrecognition(pp.770-778).

7.Nishanth,N.,AndKamalKhumarLs."AnAutomaticPersonalityRecognitionSystemUsingTimeDistributed Cnn."InternationalJournalofComputerScienceEngineeringandInformationTechnologyResearch(IJCSEITR)

ISSN(P):2249

6831;ISSN(E):2249

7943Vol.12,Issue1,Jun2022,1-12

8 PriyankaH&BLJayakumar
ImpactFactor(JCC):8.5226 NASRating:3.17

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
BASED AUTOMATIC PERSONALITY RECOGNITION USED IN ASYNCHRONOUS VIDEO INTERVIEWS OF STRESS DETECTION US by IASET Journals - Issuu