22
Capítulo 1
Introducción al diseño estructural en acero
humos industriales muy corrosivos. Tampoco son adecuados en áreas muy secas, como en algunas partes del oeste de Estados Unidos. Para que a estos aceros se les forme la pátina, deben estar sujetos a ciclos de humedad y resequedad, de otra manera seguirán teniendo la apariencia de acero sin pintar. La Tabla 1.1 que se presenta aquí, que corresponde a la Tabla 2-4 en el Manual del Acero, enlista los 12 aceros de ASTM mencionados anteriormente en esta sección, junto con sus resistencias a la fluencia mínimas especificadas (Fy) y sus resistencias a la tensión mínimas especificadas (Fu). Además, las columnas a la derecha de la tabla suministran información con respecto a la disponibilidad de los perfiles en los diversos grados de aceros, así como el grado recomendado para usarse para cada uno. En cada caso, se muestra el acero recomendado con un cuadro negro. Mediante los cuadros negros, observará en la tabla que se recomienda el acero A36 que se debe usar para las secciones M, S, HP, C, MC y L, mientras que el A992 es el material recomendado para los perfiles más comunes, los W. Los cuadros grises en la tabla se refieren a los perfiles disponibles en grados de acero que no sean los recomendados. Antes de seleccionar perfiles de esos grados, el proyectista deberá verificar si están disponibles con los proveedores de acero. Finalmente, los cuadros vacíos, o de color blanco, indican los grados de acero que no están disponibles para ciertos perfiles. En la Tabla 2-5 del Manual del Acero se proporciona información similar para placas y barras. Como se mencionó anteriormente, los aceros pueden fortalecerse mediante la adición de aleaciones especiales. Otro factor que afecta la resistencia del acero es el espesor. Entre más se rola el acero para hacerlo más delgado, adquiere mayor resistencia. Los miembros más gruesos tienden a ser más frágiles, y sus tasas de enfriamiento más lentas hacen que el acero tenga una microestructura más áspera. Haciendo referencia nuevamente a la Tabla 1.1, usted puede ver que varios de los aceros listados están disponibles con esfuerzos de fluencia y de tensión diferentes con el mismo número ASTM. Por ejemplo, los perfiles A572 están disponibles con resistencias a la fluencia de 42, 50, 55, 60 y 65 klb/plg2. En seguida, leyendo los pies de página de la Tabla 1.1, observamos que los aceros de grados 60 y 65 tienen asignada la letra “e” como pie de página. Este pie de página indica que los únicos perfiles A572 disponibles con estas resistencias son los más delgados que tienen un espesor de patín ⱕ 2 pulgadas. En la tabla se muestran situaciones similares para algunos otros aceros, incluyendo el A992 y el A242.
1.9
USO DE LOS ACEROS DE ALTA RESISTENCIA Existen otros grupos de aceros de alta resistencia como los de ultra-alta-resistencia que tienen fluencias de entre 160 klb/plg2 y 300 klb/plg2. Estos aceros no se han incluido en el Manual del Acero porque la ASTM no les ha asignado un número de clasificación. Actualmente existen en el mercado más de 200 aceros con esfuerzos de fluencia mayores de 36 klb/plg2. La industria del acero está experimentando ahora con aceros cuyos esfuerzos de fluencia varían entre 200 klb/plg2 y 300 klb/plg2, y esto es sólo el principio. Mucha gente de esta industria cree que en unos cuantos años se dispondrá de aceros con fluencias de 500 klb/plg2. La fuerza teórica de unión entre los átomos de hierro se ha estimado en más de 4 000 klb/plg2.7
7
L. S. Beedle et al., Structural Steel Design (Nueva York: Ronald Press, 1964), p. 44.
Diseño de Estructuras de Acero – McCormac /Csernak
Alfaomega