Sección 2.2
1
49
Vibración libre viscosamente amortiguada
Críticamente amortiguado, ζ = 1
u(t) / u(0)
Sobreamortiguado, ζ = 2 t / Tn
0 1
−1
2
3
Subamortiguado, ζ = 0.1
Figura 2.2.1 Vibración libre de sistemas subamortiguado, críticamente amortiguado y sobreamortiguado.
vuelve a su posición de equilibrio sin oscilar. Si c > ccr o ζ > 1, de nuevo el sistema no oscila y regresa a su posición de equilibrio, como en el caso de ζ = 1, pero a un ritmo más lento. El amortiguamiento ccr se denomina amortiguamiento crítico debido a que es el valor más pequeño de c que inhibe por completo la oscilación. Representa la línea divisoria entre el movimiento oscilatorio y no oscilatorio. El resto de esta presentación se limita a los sistemas subamortiguados (c < ccr) porque todas las estructuras de interés (edificios, puentes, presas, centrales nucleares, estructuras marítimas, etcétera) entran dentro de esta categoría ya que, por lo general, su fracción de amortiguamiento es menor a 0.10. Por lo tanto, existen pocas razones para estudiar la dinámica de los sistemas críticamente amortiguados (c = ccr) o los sistemas sobreamortiguados (c > ccr). Sin embargo, tales sistemas existen; por ejemplo, los mecanismos de retroceso, como la puerta automática común, están sobreamortiguados; y los instrumentos utilizados para medir valores de estado estable, como una báscula para medir peso muerto, por lo general se amortiguan críticamente. Sin embargo, incluso para los sistemas de absorción de choques en automóviles, suelen tener un amortiguamiento menor a la mitad del amortiguamiento crítico, ζ < 0.5.
2.2.2 Sistemas subamortiguados La solución de la ecuación (2.2.1) sujeta a las condiciones iniciales de la ecuación (2.1.2) para sistemas con c < ccr o ζ < 1 es (vea la deducción 2.2)
u(t) = e−ζ ωn t u(0) cos ω D t +
u(0) ˙ + ζ ωn u(0) sen ω D t ωD
(2.2.4)
donde
ω D = ωn 1 − ζ 2
(2.2.5)
Observe que la ecuación (2.2.4) especializada para sistemas no amortiguados (ζ = 0) se reduce a la ecuación (2.1.3). La ecuación (2.2.4) se representa con una gráfica en la figura 2.2.2, que muestra la respuesta a la vibración libre de un sistema de 1GDL con fracción de amortiguamiento ζ = 0.05,
M02_Chopra.indd 49
23/07/13 11:21