402 Capítulo 8: Muros de retención tan ur 5 CIE 5
kh 0.081 5 0.081 5 1 2 kv 120 sen (90 2 24) 2 cos (90 2 24)tan 36 5 0.957 tan 36 2 0.081 1 g H 2KaeClE 2 1 h
Ww 5
0.29 [tabla 7.6] 1 Ww 5 (16) (5) 2 (0.29) (0.957) 5 55.5 kN m 2 Con un factor de seguridad de 1.5, Ww 5 83.3 kNym
8.10
Comentario sobre el diseño de muros de retención y estudio de un caso En la sección 8.3 se sugirió que se utilice el coeficiente de presión activa de tierra para estimar la fuerza lateral sobre un muro de retención debida al relleno. Es importante reconocer el hecho de que el estado activo del relleno se puede establecer sólo si el muro cede lo suficientemente, lo cual no sucede en todos los casos. El grado hasta el cual el muro cede depende de su altura y del módulo de sección. Además, la fuerza lateral del relleno depende de varios factores identificados por Casagrande (1973): 1. 2. 3. 4. 5. 6. 7.
Efecto de la temperatura. Fluctuación del nivel freático. Reajuste de las partículas de suelo debido a la fluencia plástica y a lluvias prolongadas. Cambios en las mareas. Acción pesada de las olas. Vibración de tráfico. Sismos.
Una cedencia insuficiente del muro combinada con otros factores previsibles pueden generar una fuerza lateral mayor sobre la estructura de retención, comparada con la obtenida con la teoría de presión activa de tierra. Esto es particularmente cierto en el caso de muros de retención de gravedad, estribos de puentes y otras estructuras pesadas que tienen un módulo de sección grande.
Estudio de caso del desempeño de un muro de retención en voladizo Bentler y Labuz (2006) reportaron el desempeño de un muro de retención en voladizo construido a lo largo de la carretera interestatal 494 en Bloomington, Minnesota. El muro de retención tenía 83 paneles, cada uno con una longitud de 9.3 m. La altura de los paneles varió entre 4 y 7.9 m. Uno de los paneles de 7.9 m de altura se instrumentó con celdas de presión de tierra, inclinométros, deformímetros y tuberías para inclinómetros. En la figura 8.19 se muestra un diagrama