Solution Manual for Differential Equations Computing and Modeling 5th Edition by Edwards

Page 1

CHAPTER 1

FIRST-ORDER DIFFERENTIAL EQUATIONS SECTION 1.1 DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of differential equations, and to show the student what is meant by a solution of a differential equation. Also, the use of differential equations in the mathematical modeling of real-world phenomena is outlined. Problems 1-12 are routine verifications by direct substitution of the suggested solutions into the given differential equations. We include here just some typical examples of such verifications. 3.

If y1  cos2x and y2  sin 2x , then y1 2sin2x y22cos 2x , so y14cos2x 4 y and y24sin2x 4 y2 . Thus y1 4 y 0 and y2 4 y2 0 . 1 1

4.

If y1 e3 x and y2 e3 x , then y1  3e 3x and y2  3e3x , so y1 9e3 x  9 y1 and y29e3 x 9 y2 .

5.

If y ex ex , then yex ex , so yy  ex ex ex  ex   2 ex . Thus  yy 2 ex .

6.

If y1 e2 x and y2 xe2 x , then y12 e2 x , y14 e2 x , y2e2 x 2xe2 x , and y24 e2 x 4xe2 x . Hence y 4 y  4 y  4 e2 x 4 2e2 x  4e2 x   0 1 1 1 and y24 y24 y2 4 e2 x 4xe2 x 4 e2 x 2xe2 x 4 xe2 x 0.

8.

If y1  cos x cos2x and y2  sin x cos2x , then y1 sin x 2sin2x, y1cos x 4cos2x, y2cos x 2sin2x , and y2sin x 4cos2x. Hence y1 and y2

y1  

y

  2

cos x 4cos2x  cos x cos2x 3cos2x sin x 4cos2x  sin x cos2x 3cos2x.

 1 Copyright © 2015 Pearson Education, Inc.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.