CHAPTER 1
FIRST-ORDER DIFFERENTIAL EQUATIONS SECTION 1.1 DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of differential equations, and to show the student what is meant by a solution of a differential equation. Also, the use of differential equations in the mathematical modeling of real-world phenomena is outlined. Problems 1-12 are routine verifications by direct substitution of the suggested solutions into the given differential equations. We include here just some typical examples of such verifications. 3.
If y1 cos2x and y2 sin 2x , then y1 2sin2x y22cos 2x , so y14cos2x 4 y and y24sin2x 4 y2 . Thus y1 4 y 0 and y2 4 y2 0 . 1 1
4.
If y1 e3 x and y2 e3 x , then y1 3e 3x and y2 3e3x , so y1 9e3 x 9 y1 and y29e3 x 9 y2 .
5.
If y ex ex , then yex ex , so yy ex ex ex ex 2 ex . Thus yy 2 ex .
6.
If y1 e2 x and y2 xe2 x , then y12 e2 x , y14 e2 x , y2e2 x 2xe2 x , and y24 e2 x 4xe2 x . Hence y 4 y 4 y 4 e2 x 4 2e2 x 4e2 x 0 1 1 1 and y24 y24 y2 4 e2 x 4xe2 x 4 e2 x 2xe2 x 4 xe2 x 0.
8.
If y1 cos x cos2x and y2 sin x cos2x , then y1 sin x 2sin2x, y1cos x 4cos2x, y2cos x 2sin2x , and y2sin x 4cos2x. Hence y1 and y2
y1
y
2
cos x 4cos2x cos x cos2x 3cos2x sin x 4cos2x sin x cos2x 3cos2x.
1 Copyright © 2015 Pearson Education, Inc.